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3 de noviembre de 2011 
 
Señores  
Comité de Condonación de COLCIENCIAS 
Cra 7B Bis No. 132-28 
Bogotá D.C  
Colombia 
 
Solicitud de Estudio de documentos para condonación de beca-crédito otorgada por 
Colciencias al Dr. Leonardo Mariño Ramírez 
 
Agradezco inmensamente todo el apoyo que he recibido por parte de COLCIENCIAS 
desde el principio de mi carrera como Investigador. Es mi deseo continuar impulsando el 
desarrollo de la bioinformática en Colombia a través de actividades de cooperación 
internacional desde mi posición como Staff Scientist en el National Center for 
Biotechnology Information (NCBI). 
 
Atentamente me dirijo a Ustedes para solicitarles el estudio de los documentos que pongo 
a su disposición. En 1997 tuve el honor de ser becario del programa Fulbright-
Colciencias-IIE para realizar estudios de doctorado en los Estados Unidos. En 2002 
culmine exitosamente mis estudios de doctorado en la Universidad de Texas A&M, 
regrese a Colombia en 2008 y tengo un programa de investigación activo en 
bioinformática con varios investigadores Colombianos y pertenezco a dos grupos de 
investigación clasificados en A (COL0085459) y A1 (COL0078428) respectivamente. 
Además he participado en la capacitación de un gran numero estudiantes de pregrado y 
postgrado.  
 
De antemano les agradezco el estudio de mi solicitud de condonación. 
 
Atentamente, 
 

 
Leonardo Mariño Ramírez, Ph.D. 
Staff Scientist, Computational Biology Branch   
National Center for Biotechnology Information, NLM, NIH 
Building 38A, Room 6S614M 
8600 Rockville Pike, MSC 6075 
Bethesda, MD 20894-6075 
Tel: +1 301-402-3708 
E-mail: marino@ncbi.nlm.nih.gov 
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Leonardo Mariño-Ramírez 
Staff Scientist - NCBI / NLM / NIH 

Building 38A, Room 6S614M 
8600 Rockville Pike 
Bethesda, MD 20894 

Phone: (301) 402-3708  Fax: (301) 480-2288 
E-mail: marino@ncbi.nlm.nih.gov 

 
 

Education 1997 – 2002 
 
 
1988 – 1992 

Texas A&M University.  College Station, TX. 
PhD - Biochemistry 
 
Universidad de Los Andes. Bogotá, Colombia 
BSc - Microbiology 
 

Research 
Experience 

2012 – Present Computational Biology Branch. National Center for 
Biotechnology Information. National Library of Medicine. 
National Institutes of Health. Bethesda, MD 
Staff Scientist 

 2008 – 2012 Computational Biology and Bioinformatics Unit. 
Biotechnology and Bioindustry Center. Corporación 
Colombiana de Investigación Agropecuaria (CORPOICA).  
Bogotá, Colombia. 
Associate Investigator 

 2004 – 2008 Computational Biology Branch. National Center for 
Biotechnology Information. National Library of Medicine. 
National Institutes of Health. Bethesda, MD 
Staff Scientist 

 2002 – 2004 Computational Biology Branch. National Center for 
Biotechnology Information. National Library of Medicine. 
National Institutes of Health. Bethesda, MD 
Research Fellow 
- Computational analysis of mammalian promoter 

sequences for the identification of regulatory elements. 
Supervisor: David Landsman 

 1997 – 2002 The Hu lab. Department of Biochemistry and Biophysics. 
Texas A&M University. College Station, TX. 
Research Assistant 
- Mapping protein oligomerization domains from yeast 

and E. coli in bacterial cells. 
Advisor: James C. Hu 

 1996 Boyce Thompson Institute for Plant Research.  Cornell 
University.  Ithaca, NY. 
Visiting Scientist 
- Genetic transformation of potato (Solanum spp.).  

Analysis of gene expression during breaking potato 
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tuber dormancy. 
Advisor: Charles J. Arntzen 

 1995 Institute of Biosciences and Technology. Texas A&M 
University.  Houston, TX. 
Visiting Scientist 
- DNA sequence analysis of cucumber mosaic virus 

(CMV) coat protein gene isolated from Colombian 
cultivars. 

Advisor: Charles J. Arntzen 
 1994 – 1997 National Plant Biotechnology Program. Corporación 

Colombiana de Investigación Agropecuaria (CORPOICA).  
Bogotá, Colombia. 
Research Assistant 
- Molecular characterization of Bacillus thuringiensis 

isolates. 
- Genetic transformation of banana (Musa spp.) 
Advisor: Javier Narvaez-Vasquez 

 1992 – 1994 Immunology Institute.  San Juan de Dios Hospital.  National 
University of Colombia.  Bogotá, Colombia 
Research Assistant 
- Molecular characterization of pathogen related genes 

from Mycobacterium tuberculosis. 
Advisor: Manuel E. Patarroyo 
 

Honors and 
Awards 

 - DHHS / NIH / NLM – Special Achievement Award (2006) 
- GlaxoSmithKline Bioinformatics Prize. Best paper award 

13th Annual International Conference on Intelligent 
Systems for Molecular Biology - ISMB 2005 (2005) 

- Encyclopedia Britannica Scholarship (1997) 
- Fulbright/Colciencias/IIE pre-doctoral Fellowship (1997) 
- Fellowship in Bioinformatics.  International Centre for 

Genetic Engineering and Biotechnology – ICGEB (1996) 
- Short-Term Fellowships in Biotechnology.  UNESCO 

(1996) 
- Cochran Fellowship Program in Biotechnology.  United 

States Department of Agriculture – USDA (1995) 
 

Memberships in 
Professional 
Societies 

 - American Society for Biochemistry and Molecular Biology 
(ASBMB) 

- International Society for Computational Biology (ISCB) 
- Fulbright Alumni Association 
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Peer-reviewed 
Publications 

  

 Research 
articles 

 
- Novoa-Aponte L, León-Torres A, Patiño-Ruiz M, Cuesta-
Bernal J, Salazar LM, Landsman D, Marino-Ramirez L, 
Soto CY. (2012) In silico identification and characterization 
of the ion transport specificity for P-type ATPases in the 
Mycobacterium tuberculosis complex. BMC Struct Biol. 
12:25. 

  - Kostka JE, Green SJ, Rishishwar L, Prakash O, Katz LS, 
Mariño-Ramírez L, Jordan IK, Munk C, Ivanova N, 
Mikhailova N, Watson DB, Brown SD, Palumbo AV, 
Brooks SC. (2012) Genome sequences for six 
Rhodanobacter strains, isolated from soils and the terrestrial 
subsurface, with variable denitrification capabilities. J 
Bacteriol. 194:4461-4462. 

  - Hansen L, Mariño-Ramírez L, Landsman D. (2012) 
Differences in local genomic context of bound and unbound 
motifs. Gene. 506:125-134. 

  - Spouge JL, Mariño-Ramírez L. (2012) The practical 
evaluation of DNA barcode efficacy. Methods Mol Biol. 
858:365-377. 

  - Garzón-Martínez GA, Zhu ZI, Landsman D, Barrero LS, 
Mariño-Ramírez L. (2012) The Physalis peruviana leaf 
transcriptome: assembly, annotation and gene model 
prediction. BMC Genomics. 13:151. 

  - Heibel SK, Lopez GY, Panglao M, Sodha S, Mariño-
Ramírez L, Tuchman M, Caldovic L. (2012) Transcriptional 
regulation of N-acetylglutamate synthase. PLoS One. 
7:e29527. 

  - Hansen, L, Kim, NK, Mariño-Ramírez L, Landsman D. 
(2011) Analysis of biological features associated with 
meiotic recombination hot and cold spots in Saccharomyces 
cerevisiae. PLoS One. 6:e29711. 

  - Huda, A., Tyagi, E., Mariño-Ramírez, L., Bowen NJ, 
Jjingo D, Jordan IK. (2011) Prediction of transposable 
element derived enhancers using chromatin modification 
profiles. PLoS One. 6:e27513. 

  - González-Pérez, M., Murcia, M.I., Landsman, D., I. King 
Jordan and Mariño-Ramírez, L. (2011) The genome 
sequence of Mycobacterium colombiense CECT 3035 type 
strain. J. Bacteriol. 193:5866-5867. 

  - Simbaqueba, J., Sánchez, P., Sanchez, E., Núñez Zarantes, 
V. M., Chacon, M. I., Barrero, L. S. and Mariño-Ramírez, 
L. (2011) Development and Characterization of 
Microsatellite Markers for the Cape Gooseberry Physalis 
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peruviana. PLoS One. 6:e26719. 
  - Mariño-Ramírez, L., Levine, K. M., Morales, M., Zhang, 

S., Moreland, R. T., Baxevanis, A. D. and Landsman D. 
(2011) The Histone Database: an integrated resource for 
histones and histone fold-containing proteins. Database 
(Oxford): bar048. 

  - Jjingo, D., Huda, A., Gundapuneni, M., Mariño- 
Ramírez, L. and I. King Jordan (2011) Effect of the 
transposable element environment of human genes on gene 
length and expression. Genome Biol Evol. 3:259-271. 

  - Valderrama-Aguirre, A., Zúñiga-Soto,  E., Mariño-
Ramírez, L., Moreno, L.Á., Escalante, A.A., Arévalo-
Herrera, M. and Herrera S. (2011) Polymorphism of the 
Pv200L fragment of merozoite surface protein-1 of 
Plasmodium vivax in clinical isolates from the Pacific coast 
of Colombia. Am J Trop Med Hyg. 84(2 Suppl):64-70. 

  - Huda, A., Mariño-Ramírez, L. and Jordan, I. K. (2010) 
Epigenetic histone modifications of human transposable 
elements: genome defense versus exaptation. Mob DNA. 1:2. 

  - Hansen, L., Mariño-Ramírez, L. and Landsman, D. (2010) 
Many sequence-specific chromatin modifying protein-
binding motifs show strong positional preferences for 
potential regulatory regions in the Saccharomyces cerevisiae 
genome. Nucleic Acids Research. 38:1772-1779. 

  - Wang, J., Bowen, N. J., Mariño-Ramírez, L. and Jordan, 
I. K. (2009) A c-Myc regulatory subnetwork from human 
transposable element sequences. Mol Biosyst. 5:1831-1839. 

  - Huda, A., Mariño-Ramírez, L., Landsman, D. and Jordan, 
I. K. (2009) Repetitive DNA elements, nucleosome binding 
and human gene expression. Gene. 436:12-22. 

  - Ogurtsov, A. Y., Mariño-Ramírez, L., Johnson, G. R., 
Landsman, D., Shabalina, S. A. and Spiridonov, N. A. 
(2008) Expression patterns of protein kinases correlate with 
gene architecture and evolutionary rates. PLoS ONE. 
3:e3599. 

  - Kim, N-K., Tharakaraman, K., Mariño-Ramírez, L. and 
Spouge, J. L.  (2008) Finding sequence motifs with Bayesian 
models incorporating positional information: an application 
to transcription factor binding sites. BMC Bioinformatics. 
9:262. 

  - Polavarapu, N., Mariño-Ramírez, L., Landsman, D., 
McDonald, J. F. and Jordan, I. K. (2008) Evolutionary rates 
and patterns for human transcription factor binding sites 
derived from repetitive DNA. BMC Genomics. 9:226. 

  - Tharakaraman, K., Bodenreider, O., Landsman, D., Spouge 
J. L. and Mariño-Ramírez, L. (2008) The biological 
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function of some human transcription factor binding motifs 
varies with position relative to the transcription start site. 
Nucleic Acids Research. 36:2777-2786. 

  - Resch, A. M., Carmel, L., Mariño-Ramírez, L., Ogurtsov, 
A. Y., Shabalina, S. A., Rogozin, I. B. and Koonin, E. V. 
(2007) Widespread Positive Selection in Synonymous Sites 
of Mammalian Genes. Molecular Biology and Evolution. 
24:1821-1831. 

  - Piriyapongsa, J., Mariño-Ramírez, L. and Jordan, I. K. 
(2007) Origin and evolution of human microRNAs from 
transposable elements. Genetics. 176:1323-1337. 

  - Riz, I., Akimov, S. S., Eaker, S. S., Baxter, K. K., Lee, H. 
J., Mariño-Ramírez, L., Landsman, D., Hawley, T. S. and 
Hawley, R. G. (2007) TLX1/HOX11-induced hematopoietic 
differentiation blockade. Oncogene. 26:4115-4123. 

  - Mariño-Ramírez, L., Jordan, I. K. and Landsman, D. 
(2006) Multiple independent evolutionary solutions to core 
histone gene regulation. Genome Biology. 7:R122. 

  - Mariño-Ramírez, L., Bodenreider, O., Kantz, N. and 
Jordan, I. K. (2006) Co-evolutionary Rates of Functionally 
Related Yeast Genes. Evolutionary Bioinformatics. 2:295-
300. 

  - Tsaparas, P., Mariño-Ramírez, L., Bodenreider, O., 
Koonin, E. V. and Jordan, I. K. (2006) Global similarity and 
local divergence in human and mouse gene co-expression 
networks. BMC Evolutionary Biology. 6:70. 

  - Mariño-Ramírez, L., Tharakaraman, K., Sheetlin, S. L., 
Landsman, D. and Spouge, J. L. (2006) Scanning sequences 
after Gibbs sampling to find multiple occurrences of 
functional elements. BMC Bioinformatics. 7:408. 

  - Mariño-Ramírez, L. and Jordan, I. K. (2006) 
Transposable element derived DNaseI-hypersensitive sites in 
the human genome. Biology Direct. 1:20. 

  - Mariño-Ramírez, L., Hsu, B., Baxevanis, A. D. and 
Landsman, D. (2006) The Histone Database: a 
comprehensive resource for histones and histone fold-
containing proteins. Proteins. 62:838-842. 

  - Eriksson, P. R., Mendiratta, G., McLaughlin, N., 
Wolfsberg, T., Mariño-Ramírez, L., Pompa, T., Jainerin, 
M., Landsman, D., Shen, C-H. and Clark, D. J. (2005) 
Global regulation by the yeast Spt10 protein is mediated 
through chromatin structure and the histone UAS elements. 
Molecular and Cellular Biology. 25: 9127-9137. 

  - Mariño-Ramírez, L., Tharakaraman, K., Sheetlin, S., 
Landsman, D. and Spouge, J. L. (2005) Alignments anchored 
on genomic landmarks can aid in the identification of 
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regulatory elements. Bioinformatics. 21 Suppl 1:i440-i448. 
  - Jordan, I. K., Mariño-Ramírez, L. and Koonin, E. V. 

(2005) Evolutionary significance of gene expression 
divergence. Gene, 345:119-126. 

  - Mariño-Ramírez, L., Spouge, J. L., Kanga, G. C. and 
Landsman, D. (2004) Statistical analysis of over-represented 
words in human promoter sequences. Nucleic Acids Res., 
32:949-958. 

  - Jordan, I. K., Mariño-Ramírez, L., Wolf, Y. I. and 
Koonin, E. V. (2004) Conservation and co-evolution in the 
scale-free human gene co-expression network. Molecular 
Biology and Evolution. 21:2058-2070. 

  - Mariño-Ramírez, L., Minor, J. L., Reading, N. and Hu, J. 
C. (2004) Identification and mapping of self-assembling 
protein domains encoded by the Escherichia coli K-12 
genome using λ repressor fusions. J. Bacteriol., 186:1311-
1319. 

  - Mariño-Ramírez, L. and Hu, J. C. (2002) Isolation and 
mapping of self-assembling protein domains encoded by the 
Saccharomyces cerevisiae genome. Yeast, 19:641-650. 

  - Moon, Y. S., Clendennen,  S. K., Mariño-Ramírez, L. and 
May, G. D. (1997) Differential gene expression during the 
break in potato tuber dormancy. Plant Physiol., 114: 1636-
1636 Suppl. S. 

  - Mariño-Ramírez, L. (1997) Clonación del gen de la 
cápside proteica de una cepa colombiana del virus del 
mosaico del pepino (CMV) para su expresión en plantas por 
transformación mediante Agrobacterium. Revista Corpoica 
2, 58-59. 

  - Hernández Fernández, J., Mariño-Ramírez, L., Orozco 
Cárdenas, M. L. y Narváez Vásquez J. (1996) Uso de la 
reacción en cadena de la polimerasa para la caracterización 
de aislamientos nativos de Bacillus thuringiensis. Revista 
Corpoica 2, 1-9. 

  - Mariño-Ramírez, L., Hernández Fernández, J., Orozco 
Cárdenas, M. L. y Narváez Vásquez J. (1996) 
Caracterización Molecular de Genes cry de Bacillus 
thuringiensis utilizando PCR Extra-Rápida. Revista 
Corpoica 1, 47-47.    

  - Reichel, H., Mariño-Ramírez, L., Kummert, J., 
Belalcazar, S. y Narváez, J. (1996) Caracterización del gen 
de la proteína de la cápside de dos aislamientos del virus del 
mosaico del pepino (CMV), obtenidos de plátano y banano 
(Musa spp.) Revista Corpoica 1, 1-5. 

 



Page 7                        Leonardo Mariño-Ramírez, Ph.D. – 3/4/2013 

 
 Invited 

Review 
articles 

- Mariño-Ramírez, L., Kann, M. G., Shoemaker, B. A. and 
Landsman, D. (2005) Histone structure and nucleosome 
stability. Expert Review of Proteomics. 2:719-729. 

  - Mariño-Ramírez, L., Lewis, K. C., Landsman, D. and 
Jordan, I. K. (2005) Transposable elements donate lineage-
specific regulatory sequences to host genomes. Cytogenetic 
and Genome Research. 110:333-341. 
 

 Invited 
Book chapters 

- Mariño-Ramírez, L., Tharakaraman, K., Bodenreider, O., 
Spouge, J. L. and Landsman, D. (2009) Identification of cis-
Regulatory Elements in Gene Co-expression Networks 
Using A-GLAM, in Methods in Molecular Biology: 
Computational Systems Biology, (McDermott, J.; 
Samudrala, R.; Bumgarner, R.; Montgomery, K.; Ireton, R. 
ed.) 541:3-22, Springer, New York, NY. 

  - Mariño-Ramírez, L., Tharakaraman, K., Spouge, J. L. and 
Landsman, D. (2009) Promoter analysis: gene regulatory 
motif identification with A-GLAM, in Methods in Molecular 
Biology: Bioinformatics for DNA Sequence Analysis, 
(Posada, D. ed.) 537:263-276, Springer, New York, NY. 

  - Jordan, I. K. and Mariño-Ramírez, L. (2007) Evolutionary 
genomics of gene expression, in Structural Approaches to 
Sequence Evolution Molecules, Networks, Populations 
(Bastolla, U.; Porto, M.; Roman, H.E. and Vendruscolo, M. 
ed.), Springer, New York, NY. 

  - Mariño-Ramírez, L., Campbell, L. and Hu, J. C. (2003) 
Screening peptide/protein libraries fused to the λ repressor 
DNA-binding Domain in E. coli cells, in Methods in 
Molecular Biology: E. coli Gene Expression Protocols, 
(Vaillancourt, P. ed.) 205:235-250, Humana Press, Totowa, 
NJ. 

  - Mariño-Ramírez, L. and Hu, J. C. (2002) Using λ 
repressor fusions to isolate and characterize self-assembling 
domains, in Protein-Protein Interactions: A Laboratory 
Manual, (Golemis, E., and Serebriiskii, I. ed.) 375-394, Cold 
Spring Harbor Laboratory Press, Cold Spring Harbor, NY. 
 

Teaching 
Experience 

2012 - Lecturer: Practical Course "Bioinformatics: Computer 
Methods in Molecular Biology" - International Centre for 
Genetic Engineering and Biotechnology (ICGEB). Trieste, 
Italy 

 2008 – Present - Lecturer: Computational Genomics - School of Biology - 
Georgia Institute of Technology. Atlanta, Georgia 

 2007 - Lecturer: Curso de Bioinformática: Fundamentos para el 
manejo y uso de datos biológicos. Montería, Colombia 
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 2006 - Lecturer: Curso Internacional: Manejo de Herramientas 
Básicas en Bioinformática. Bogotá, Colombia 

 2005 - Lecturer: Curso Internacional de Bioinformática: Manejo 
de las herramientas básicas. Bogotá, Colombia 

 2003 – Present Study group leader: NCBI Perl programming language study 
group 
 

Academic 
Service 

2011 – Present Editor: PLoS ONE (Public Library of Science) 

 2011 – Present Steering Committee – NIH Staff Scientists/Staff Clinicians 
Organization 

 2010 – Present Founding Member: PanAmerican Bioinformatics Institute. 
(http://panambioinfo.org/) 

 2008 – Present Editor: DATABASE (Oxford Journals) 
 2008 – Present Member of the External Advisory Board for the Professional 

MS Bioinformatics Program. School of Biology. Georgia 
Institute of Technology 

 2007 – Present Ad hoc Grant Reviewer: The National Science Foundation 
(NSF) 

 2007 – Present Editor: GENE (Elsevier) 
 2007 – 2008 Steering Committee – NIH Staff Scientists/Staff Clinicians 

Organization 
 2006 – 2009 Program Committee – Intelligent Systems for Molecular 

Biology (ISMB) 
 2005 – Present - Reviewer for papers in scientific meetings: ISMB, Pacific 

Symposium on Biocomputing (PSB), VirtualGenomics 
 2005 – Present - Ad hoc Grant Reviewer: The Kentucky Science and 

Engineering Foundation (KSEF) 
 2005 – Present - Reviewer for scientific journals:  

Bioinformatics, Nucleic Acids Research (Oxford University 
Press) 
Biochemistry (American Chemical Society) 
Gene, Genomics (Elsevier) 
Genome Dynamics (Karger) 
BioMed Central 
Biomédica (Instituto Nacional de Salud – Colombia) 
 

Research 
Projects  

2002 – Present Analysis of Gene Regulatory Sequences from Whole 
Chromosomes and Genomes. Funded by NIH Intramural 
research project Z01 LM000084. 

 2002 – Present Structural and Functional Analysis of Protein Sequence 
Families. Funded by the NIH Intramural research project 
Z01 LM000071. 

 2002 – Present Analysis of Repeated Elements in the Human Genome. 
Funded by the NIH Intramural research project Z01 
LM000092. 
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 2003 – Present The Analysis of Signal Elements in Promoter Sequences. 
Funded by the NIH Intramural research project Z01 
LM091704. 

 2001 – 2002 Protein Self-Assembly in Model Microorganisms. Funded by 
the NIH grant R01GM063652. 
 

  
 

Software 
developed 

2005 The Histone Database - 
http://research.nhgri.nih.gov/histones/ 

 2005 A-GLAM - 
ftp://ftp.ncbi.nih.gov/pub/spouge/papers/archive/AGLAM/ 

 2002 Doodle Database - http://dimer.tamu.edu/doodle/ 
 



	  
	  
	  
	  
	  
Títulos	  profesionales	  
	  
Microbiologia,	  pregrado	  –	  Universidad	  de	  Los	  Andes	  -‐	  1992	  
	  
Bioquimica,	  doctorado	  –	  Texas	  A&M	  University	  –	  2002	  
	   	  









Certificados	  de	  vinculación	  laboral	  en	  Colombia	  (Regreso	  al	  país)	  
	  
Corporación	  Colombiana	  de	  Investigación	  Agropecuaria	  -‐	  Corpoica	  
Centro	  Colombiano	  de	  Genómica	  y	  Bioinformática	  de	  Ambientes	  Extremos	  –	  Gebix	  
Fulbright	  –	  Colombia	  
Fundación	  Instituto	  de	  Inmunología	  de	  Colombia	  -‐	  FIDIC	  
	   	  









 
 

Centro Colombiano de Genómica y Bioinformática de Ambientes Extremos 
http://tech.groups.yahoo.com/group/GeBiX 

Carrera 5 No. 66A-34, Bogotá 
Tel: 1-805-0122 Ext. 103 ó 110 Fax: 1-348-4607 

 

 
CONTRATO DE PRESTACION DE SERVICIOS No. 031-2009  

CELEBRADO ENTRE LA UNION TEMPORAL CENTRO COLOMBIANO DE 
GENÓMICA Y BIOINFORMÁTICA DE AMBIENTES EXTREMOS – GeBiX Y 

LEONARDO MARIÑO RAMIREZ 
 
Entre los suscritos MARIA MERCEDES ZAMBRANO EDER, mayor de edad, 
identificada con cédula de ciudadanía No. 31.874.035 expedida en Cali, quien obra 
en nombre y representación de la UNION TEMPORAL CENTRO COLOMBIANO DE 
GENÓMICA Y BIOINFORMÁTICA DE AMBIENTES EXTREMOS – GeBiX, y quien 
para los efectos del presente contrato se denominará GeBiX y LEONARDO MARIÑO 
RAMIREZ, identificado con cédula de ciudadanía No. 79.520.882 expedida en 
Bogotá, quien obra en su propio nombre y quien en adelante se llamará EL 
CONTRATISTA, han acordado celebrar el presente Contrato de Prestación de 
Servicio que se regirá por las siguientes cláusulas: 
 
PRIMERA.- OBJETO: EL CONTRATISTA se compromete a prestar sus servicios 
profesionales como Profesional en Bioinformática para asesorar a GEBIX en el 
montaje de su plataforma Bioinformática, en el marco del proyecto “Conformación de 
una plataforma en metagenómica y bioinformática para la caracterización y el 
aprovechamiento de recursos genéticos de ambientes extremos” ejecutado por 
GeBiX.  
 
 SEGUNDA.- OBLIGACIONES DEL CONTRATANTE:  
1. Suministrar oportunamente la información y documentación requerida por EL 

CONTRATISTA a fin de dar cumplimiento a lo estipulado en este contrato. 
2. De requerirse, permitir y hacer los esfuerzos necesarios para que el contratista 

se reúna e interactúe oportunamente con los directores de los grupos de 
investigación de GeBiX. 

3. Desembolsar lo acordado dentro de este Contrato de Prestación de Servicios, en 
la forma y fechas señaladas, previa presentación de la respectiva cuenta de 
cobro. 

4. Suministrar al CONTRATISTA, en caso de ser necesario, pasajes aéreos o 
terrestres dentro del país, estadía y demás gastos de viaje, que requiera para el 
cumplimiento de las obligaciones adquiridas en el presente Contrato. 

 
TERCERA.- OBLIGACIONES DEL CONTRATISTA:  
 
1. Brindar asesoría general a los grupos de GEBIX trabajando en bioinformática. 
2. Ayudar en la definición de los flujos de trabajo para análisis de diversidad y para 

análisis de secuencias metagenómicas. 
3. Asesorar en el análisis de los datos metagenómicos generados. 
4. Asistir a las reuniones programadas por el grupo de bioinformática de Gebix y, 

de ser necesario, a reuniones generales de GEBIX. 
5. Estar en disposición de trasladarse temporalmente fuera de su domicilio 

contractual, en caso de ser necesario. 
6. Afiliarse y aportar a una Entidad Promotora de Salud y a un Fondo de Pensiones 

como independiente durante la duración del presente contrato. 
7. Presentar las respectivas cuentas de cobro. 
 



 
 

Centro Colombiano de Genómica y Bioinformática de Ambientes Extremos 
http://tech.groups.yahoo.com/group/GeBiX 
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CUARTA.- EXCLUSIONES: El contratista no asumirá ninguna responsabilidad por 
eventuales infracciones o violaciones a derechos de propiedad intelectual en que 
pudieren incurrir las personas jurídicas y naturales que conforman la Unión Temporal 
GeBiX. El contrato no implica una asesoría jurídica general, es decir en las diversas 
áreas del derecho; lo anterior, sin perjuicio de que el contratista colabore emitiendo 
opiniones, y conceptos en las materias consultadas al Grupo de Investigación PLEBIO 
relacionadas con el objeto de la Unión Temporal GeBiX.  
 
SEXTA.- DURACIÓN: El presente Contrato de Prestación de Servicios tendrá una 
duración de ocho (8) meses a partir de la suscripción del contrato. 
 
SÉPTIMA.- VALOR DEL CONTRATO Y FORMA DE PAGO: El valor del presente 
Contrato de Prestación de Servicios es la suma de OCHO MILLONES NOVECIENTOS 
OCHENTA Y CINCO MIL SEISCIENTOS PESOS ($8,985.600,00) MONEDA CORRIENTE, 
que se cancelarán en ocho (8) desembolsos mensuales, cada uno de UN MILLON 
CIENTO VEINTITRES MIL DOSCIENTOS PESOS ($1.123.200,00) MONEDA CORRIENTE, 
sujetos a la entrega de un informe de actividades.  El último desembolso estará sujeto 
a la entrega de un informe final de las actividades realizadas, junto con los soportes 
generados de las obligaciones del contrato. PARAGRAFO 1.- Cada uno de los 
desembolsos requiere para su cancelación de la presentación de la cuenta de cobro 
acompañada de la certificación sobre el cumplimiento de las obligaciones a cargo del 
CONTRATISTA, otorgada por el supervisor del contrato, así como del recibo vigente 
de cotización al Sistema General de Salud y Pensiones. PARAGRAFO 2.- GeBiX 
pagará la suma acordada en este contrato dentro de los treinta (30) días siguientes a la 
presentación de la cuenta de cuenta de cobro por parte del CONTRATISTA. 
PARAGRAFO 3.- GeBiX deja claro que de conformidad con la legislación vigente al 
respecto, las personas naturales que presten sus servicios a las entidades del sector 
privado bajo la modalidad de contrato de prestación de servicios, están obligados a 
afiliarse y aportar  al Sistema General de Salud y Pensiones. PARÁGRAFO 4.-  En el 
evento de ser necesario el desplazamiento de EL CONTRATISTA a una ciudad 
diferente, por razón o en ocasión de las actividades contratadas, GeBiX asumirá los 
gastos de viaje, viáticos y pasajes para realizar las actividades mencionadas 
anteriormente. Para el desembolso de los gastos de desplazamiento, EL 
CONTRATISTA deberá presentar la solicitud con visto bueno del ordenador del gasto, 
dentro de los cinco (5) días hábiles siguientes al regreso, EL CONTRATISTA, deberá 
legalizar los gastos de viaje anexando los soportes correspondientes. 
 
OCTAVA.- SUSPENSIÓN TEMPORAL: De común acuerdo entre las partes, se podrá 
suspender la ejecución del contrato, mediante la suscripción de acta, sin que para 
efectos del plazo extintivo del contrato se compute el tiempo de suspensión, siempre 
y cuando esta suspensión no exceda el 30% del tiempo pactado para la asesoría. En 
caso de suspenderse el contrato por cualquier causa, EL CONTRATISTA tendrá 
derecho a la remuneración que se hubiere causado hasta la fecha de la suspensión, 
la que se determinará de conformidad con el servicio que hubiere realizado hasta esa 
fecha.     
 
NOVENA.- TERMINACIÓN ANTICIPADA O PRORROGA: El presente contrato 
podrá darse por terminado por mutuo acuerdo entre las partes, expresado por 
escrito, o en forma unilateral por cualquiera de ellas, manifestando la parte que 
desea hacerlo a la otra, su intención de darlo por terminado, con una antelación no 
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inferior a treinta (30) días, por incumplimiento de cualquiera de las obligaciones 
derivadas del contrato, o en uno cualquiera de los casos siguientes: 1. Suspensión 
total o parcial del proyecto sin justa causa imputable a la otra parte; 2. 
Incumplimiento de una o cualquiera de las obligaciones que asumen los 
contratantes; 3. Por acuerdo mutuo entre las partes; 4. Por no afiliación o 
desafiliación de las entidades de seguridad social como independiente por parte de 
EL CONTRATISTA; 5. Por realización de programa de estudios en el exterior. 
 
DÉCIMA.- EL CONTRATISTA será responsable de los daños y perjuicios que se 
causen a GeBiX o a terceros, con motivo de la ejecución de los trabajos contratados, 
cuando resulten de: 1. Incumplimiento a los términos y condiciones establecidos en 
el presente Contrato; 2. Inobservancia a las recomendaciones que GeBiX le haya 
dado por escrito; 3. Actos con dolo, mala fe o negligencia; 4. La pérdida de material, 
o detrimento grave en los equipos que le hayan sido dados para el correcto 
desarrollo de la labor contratada; 5. En general por actos u omisiones graves 
imputables a EL CONTRATISTA o al personal que este llegare a emplear. 
 
DÉCIMA PRIMERA.- INDEPENDENCIA DEL CONTRATISTA: EL CONTRATISTA 
actuará por su propia cuenta, con absoluta autonomía y no estará sometida a 
subordinación laboral alguna con GeBiX.  Sus derechos se limitarán, de acuerdo con 
la naturaleza del presente Contrato de Prestación de Servicios a exigir el pago de lo 
estipulado por la prestación de sus servicios. Queda claramente entendido que no 
existirá relación laboral alguna entre GeBiX y EL CONTRATISTA, o el personal que 
ésta utilice en la ejecución del objeto del presente Contrato.  
 
DÉCIMA SEGUNDA.- SUPERVISIÓN: El presente Contrato de Prestación de 
Servicios estará bajo la Supervisión del Dr. HOWARD ARMANDO JUNCA DIAZ PhD o 
quien haga sus veces. Dicha supervisión comprende, entre otras, el recibo y la 
verificación de los servicios contratados.  
 
DÉCIMA TERCERA.- CESIÓN DEL CONTRATO: EL CONTRATISTA no podrá ceder 
parcial ni totalmente la ejecución del presente Contrato a un tercero salvo previa 
autorización expresa y escrita de GeBiX. 
 
DECIMA CUARTA.- PROPIEDAD INTELECTUAL: Los derechos patrimoniales de 
autor sobre los documentos, ya sean éstos impresos o archivos magnéticos o 
electrónicos, generados como resultado de la ejecución del objeto del presente 
contrato de prestación de servicios, pertenecerán a GeBiX, quién podrá, en 
consecuencia, publicarlos, reproducirlos, cederlos y en general disponer de ellos a 
cualquier título. Para estos efectos el contratista se compromete a cumplir las 
formalidades requeridas para la transferencia de derechos patrimoniales conforme a 
la legislación vigente.  
 
DÉCIMA QUINTA.- CONFIDENCIALIDAD: EL CONTRATISTA se comprometa a 
guardar absoluta reserva acerca de toda la información relativa a los procedimientos 
y procesos técnicos o científicos que en desarrollo del objeto o de las funciones 
adelante GeBiX. Esta obligación de confidencialidad estará a cargo del 
CONTRATISTA durante el término de duración del contrato y un (1) año más. En 
consecuencia, EL CONTRATISTA se obliga a no utilizar ni divulgar para fines distintos 
a los previstos en este contrato los resultados de su trabajo conseguidos en la 
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ejecución del mismo, como tampoco la información que conozca con ocasión del 
contrato, sin la previa autorización expresa y escrita que para cada caso reciba de 
GeBiX y de COLCIENCIAS, pues se considera que todos los documentos empleados e 
información que se produzca directa y exclusivamente en desarrollo del presente 
contrato pertenecerán, en cuanto a derechos patrimoniales y de explotación económica 
se refiere, a las instituciones que conforman la Unión Temporal en proporción a su 
participación real efectiva en la realización de los trabajos que resulten patentables. La 
confidencialidad a que se refiere esta cláusula se mantendrá hasta que la información 
adquiera el carácter de pública. 
 
Sin embargo el contratista podrá utilizar los resultados  de su trabajo como insumos 
para análisis o estudios de caso en proyectos de investigación y publicación 
académicos. En todo caso deberá dar los reconocimientos institucionales 
correspondientes e informar a GeBiX, con copia de las publicaciones.  
 
DÉCIMA SEXTA.- SOLUCIÓN DE CONFLICTOS: Las partes convienen que en el 
evento en que surja alguna diferencia entre las mismas, por razón o en ocasión del 
presente Contrato, en que deba acudirse a la justicia ordinaria, previamente se 
acudirá al Centro de Conciliación de la Cámara  de Comercio de Bogotá. 
 
DÉCIMA SÉPTIMA.- DOMICILIO CONTRACTUAL: Para todos los efectos legales a 
que hubiera lugar, las partes acuerdan como domicilio contractual la ciudad de 
Bogotá, y las notificaciones serán recibidas por las partes en las siguientes 
direcciones: Por GeBiX, en la carrera 5 No. 66A-34 y por EL CONTRATISTA en la 
Carrera 28A No. 50-77 Apto. 301, en la ciudad de Bogotá. 
 
DÉCIMA OCTAVA.- REQUISITOS DE PERFECCIONAMIENTO: El presente 
Contrato se perfeccionará con la suscripción del mismo por las partes, y la 
presentación del Registro Único Tributario – RUT por parte del CONTRATISTA.  
 
De conformidad con lo anterior, las partes suscriben el presente documento, en dos 
copias del mismo valor y tenor, en la ciudad de Bogotá D.C., a los veinte (20) día del 
mes de abril de 2009.  
 
 
Por GeBiX                   EL CONTRATISTA 
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DAFF-3300-263-0099 
Abril 15 de 2013 
 
 
 

LA DIRECTORA ADMINISTRATIVA Y FINANCIERA DE LA FUNDACIÓN 
INSTITUTO DE INMUNOLOGIA DE COLOMBIA –FIDIC- 

 
CERTIFICA 

 
Que el(a) BIOINFORMÁTICO LEONARDO MARIÑO RAMIREZ, identificado(a) con CC No. 
79.520.882 Expedida en Bogotá, estuvo vinculado(a) a esta institución mediante la modalidad 
de Contrato de Prestación de Servicios Profesionales Independientes, como Consultor del 
Centro, bajo las siguientes condiciones: 
 
 

Contrato No. 2010-0098  
Contrato de Prestación de Servicios Profesionales Independientes 

Objeto: Prestar los servicios de consultoría y capacitación en el área de 
Bioinformática para  el montaje y expansión su plataforma Bioinformática, 

en el marco del proyecto “Validación de una prueba serológica para 
identificación de anticuerpos anti-VPH  e infección persistente por el virus 

de papiloma humano en mujeres de escasos recursos y víctimas del 

conflicto armado” 
Grupo Funcional:  Biología Molecular e Inmunología 

Fecha de Inicio:  Octubre 1 de 2010 
Fecha de Terminación:  Noviembre 30 de 2010 

Obligaciones del 

consultor: 

 Brindar asesoría general a los científicos que conforman los grupos 

funcionales que requieran de sus servicios trabajando en bioinformática. 

 Ayudar en la definición de los flujos de trabajo para análisis de 

 secuencias presentes en el genoma de Plasmodium vivax y P.  alciparum 

de interés inmunológico. 
 Asesorar en el análisis de los datos generados. 

 Asistir a las reuniones programadas por los grupos de bioinformática, 

según disponibilidad. 

 Dedicación de 10 horas semanales.  

 
 

Contrato No. 2011-0153 
Contrato de Prestación de Servicios Profesionales Independientes 

Objeto: Prestar los servicios de consultoría y capacitación en el área de 

Bioinformática para  el montaje y expansión su plataforma Bioinformática, 
en el marco del proyecto “Plan de Fortalecimiento Institucional 2011-2013” 

Grupo Funcional:  Biología Molecular e Inmunología 
Fecha de Inicio:  Marzo 21 de 2011 

Fecha de Terminación:  Octubre 20 de 2011 

http://www.fidic.org.co/
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Obligaciones del 

consultor: 

 Brindar asesoría general a los científicos que conforman los grupos 

funcionales que requieran de sus servicios trabajando en bioinformática. 

 Ayudar en la definición de los flujos de trabajo para análisis de 

 secuencias presentes en el genoma de Plasmodium vivax y P.  alciparum 

de interés inmunológico. 
 Asesorar en el análisis de los datos generados. 

 Asistir a las reuniones programadas por los grupos de bioinformática, 

según disponibilidad.  

 Dedicación de 10 horas semanales. 

 
 

Contrato No. 2012-0012 
Contrato de Prestación de Servicios Profesionales Independientes 

Objeto: Prestar los servicios de consultoría y capacitación en el área de 
Bioinformática para  el montaje y expansión su plataforma 
Bioinformática, en el marco del proyecto “Plan de Fortalecimiento 
Institucional 2011-2013” 

Grupo Funcional:  Biología Molecular e Inmunología 
Fecha de Inicio:  Enero 16 de 2012 

Fecha de Terminación:  Noviembre 15 de 2012 
Obligaciones del 

consultor: 
 Brindar asesoría general a los científicos que conforman los 

grupos funcionales que requieran de sus servicios trabajando en 
bioinformática. 

 Ayudar en la definición de los flujos de trabajo para análisis de 
 secuencias presentes en el genoma de Plasmodium vivax y P.  

alciparum de interés inmunológico. 

 Asesorar en el análisis de los datos generados. 
 Asistir a las reuniones programadas por los grupos de 

bioinformática, según disponibilidad.  

 Dedicación de 10 horas semanales. 
 
 

Esta Certificado se expide a solicitud del (a) interesado(a) para tramites personales. 
 
 
 
 
 

MARIA O. JIMÉNEZ P. 
Directora Administrativa y Financiera 

 
 
C.C.  Hoja de vida del contratista  
 Archivo de Certificaciones contratistas FIDIC 
 
 Grupo Funcional Biología Molecular e Inmunología, MAPG 

http://www.fidic.org.co/
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We report the first whole-genome sequence of the Mycobacterium colombiense type strain, CECT 3035, which
was initially isolated from Colombian HIV-positive patients and causes respiratory and disseminated infec-
tions. Preliminary comparative analyses indicate that the M. colombiense lineage has experienced a substantial
genome expansion, possibly contributing to its distinct pathogenic capacity.

The genus Mycobacterium comprises nearly 150 species (2,
3), including a number of human pathogens that pose major
challenges to public health. Mycobacterium colombiense is a
slow-growing, urease-positive, nontuberculous mycobacte-
rium (NTM) that belongs to the Mycobacterium avium com-
plex (MAC). M. colombiense was originally isolated from
HIV-positive individuals in Bogotá, Colombia, and the pa-
tient isolates were determined to represent a distinct species
by virtue of sequence comparisons with closely related My-
cobacterium species (7). Since the discovery of this new
species in 2006, M. colombiense has been confirmed to cause
respiratory disease and disseminated infection in immuno-
compromised HIV patients, as well as lymphadenopathy in
immunocompetent children (1, 8). Nevertheless, very little
is currently known about the molecular mechanisms that
underlie M. colombiense infection and pathogenesis. We
have characterized the complete genome sequence of M.
colombiense in an effort to better understand its virulence
mechanisms.

The M. colombiense genome was sequenced by a whole-
genome shotgun strategy using Roche 454 GS-FLX titanium
pyrosequencing technology. A total of 720,174 sequence
reads were generated, with an average read length of 375 bp,
yielding more than 270 Mb of total sequence. This repre-
sents 45� coverage for the estimated 5.6-Mb genome size. A
de novo assembly of the 454 single-end data was created
using the Newbler assembler (Roche), version 2.6, resulting
in 27 large contigs with an N50 of 436 kb. Genome annota-
tion was performed using the NCBI Prokaryotic Genomes
Automatic Annotation Pipeline (PGAAP), which produces
functional annotation using the NCBI nonredundant pro-
tein and protein cluster databases with functional domain
assignments for each protein by RPS-BLAST (5) against the
NCBI Conserved Domain Database (6). The M. colombiense

genome was predicted to encode 5,230 coding sequences
(CDS).

M. colombiense was previously shown to be most closely
related to M. avium, based on 16S rRNA sequence analysis
along with DNA-DNA hybridization experiments (7). Here,
we show that M. colombiense is most closely related to M.
avium subsp. paratuberculosis (4) and confirm these results
via sequence comparisons of M. colombiense contigs against
the NCBI microbial sequence database. Despite the close
relationship between these two species, reference-based as-
sembly of the M. colombiense genome using M. avium subsp.
paratuberculosis produced a highly fragmented assembly,
with markedly lower quality than seen for the de novo as-
sembly (1,914 large contigs with an N50 of 1,253), indicating
that numerous genome rearrangements have occurred since
the two species diverged. Furthermore, our characterization
of the M. colombiense genome shows it to be substantially
larger (5.6 Mb) than the genome of M. avium (4.8 Mb) and
to encode many more genes (5,230 versus 4,400). Sequence
alignments between the two species revealed that these dif-
ferences could be attributed to large genomic insertions
specific to the M. colombiense lineage. We hypothesize that
a genome expansion may have allowed for the elaboration of
novel pathways that contribute to the virulence of this
emerging opportunistic pathogen. Additional genomic and
functional analyses are needed to interrogate this hypothe-
sis.

Nucleotide sequence accession number. The M. colombiense
Whole Genome Shotgun project has been deposited at
DDBJ/EMBL/GenBank under the accession number
AFVW00000000.

This work was supported by an Alfred P. Sloan Research Fellowship
in Computational and Evolutionary Molecular Biology (BR-4839 to
I.K.J.) and the NCBI Scientific Visitors Program (ORISE to M.G.-P.).
The research was supported in part by the Intramural Research Pro-
gram of the NIH, NLM, NCBI.

We thank the Spanish Type Culture Collection (CECT) for provid-
ing strains.

* Corresponding author. Mailing address: Computational Biology
Branch, Building 38A, Room 6S614M, 8600 Rockville Pike, MSC
6075, Bethesda, MD 20894-6075. Phone: (301) 402-3708. Fax: (301)
480-2288. E-mail: marino@ncbi.nlm.nih.gov.
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Abstract

Independent lines of investigation have documented effects of both transposable elements (TEs) and gene length (GL) on

gene expression. However, TE gene fractions are highly correlated with GL, suggesting that they cannot be considered

independently. We evaluated the TE environment of human genes and GL jointly in an attempt to tease apart their relative

effects. TE gene fractions and GL were compared with the overall level of gene expression and the breadth of expression

across tissues. GL is strongly correlated with overall expression level but weakly correlated with the breadth of expression,
confirming the selection hypothesis that attributes the compactness of highly expressed genes to selection for economy of

transcription. However, TE gene fractions overall, and for the L1 family in particular, show stronger anticorrelations with

expression level than GL, indicating that GL may not be the most important target of selection for transcriptional economy.

These results suggest a specific mechanism, removal of TEs, by which highly expressed genes are selectively tuned for

efficiency. MIR elements are the only family of TEs with gene fractions that show a positive correlation with tissue-specific

expression, suggesting that they may provide regulatory sequences that help to control human gene expression. Consistent

with this notion, MIR fractions are relatively enriched close to transcription start sites and associated with coexpression in

specific sets of related tissues. Our results confirm the overall relevance of the TE environment to gene expression and point
to distinct mechanisms by which different TE families may contribute to gene regulation.

Key words: gene expression, gene regulation, selection hypothesis, genomic design hypothesis, L1, MIR.

Introduction

The relationship between gene architecture and gene ex-

pression has been and remains a subject of continuing in-

terest for genome analysis. In a pioneering study, Castillo-

Davis et al. (2002) observed that, for human and worm

genes, intron length was negatively correlated with the

level of expression. In other words, shorter genes were

found to be expressed at higher levels and longer genes

at lower levels. To explain this trend, the authors formu-

lated the ‘‘selection hypothesis’’ (Castillo-Davis et al.

2002). This hypothesis posits that highly expressed genes

are shorter due to selective forces that operate in favor of

minimizing the energy and time expended during tran-

scription. Subsequently, the relationship between gene

length (GL) and expression level was confirmed by a num-

ber of studies, providing support for the selection hypoth-

esis (Eisenberg and Levanon 2003; Urrutia and Hurst 2003;

Comeron 2004; Chen et al. 2005; Seoighe et al. 2005; Li

et al. 2007).

In 2004, Vinogradov (2004) also observed that compact

genes were more highly expressed, but he offered a different

explanation for this trend. Vinogradov proposed the ‘‘geno-

mic design’’ hypothesis, which postulates that the shorter
length of highly expressed genes is better explained by

the fact that these genes also tend to be broadly expressed

across numerous tissues and thus have simpler regulation,

and require fewer regulatory sequence elements, than
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genes expressed in a more narrow tissue-specific fashion. In
other words, the relative paucity of regulatory elements in

broadly expressed genes explains their shorter average

length. The genomic design hypothesis rests on the notion

that the apparent correlation between GL and the level of

expression actually reflects a relationship between GL and

the breadth of expression, that is, the number of tissues

in which a gene is expressed.

The selection hypothesis and the genomic design hypoth-
esis make distinct testable predictions regarding the rela-

tionship between GL and gene expression. The selection

hypothesis predicts the strongest correlation between GL

and the overall expression level, whereas the genomic de-

sign hypothesis predicts the strongest correlation between

GL and the breadth of expression. A recent study used these

predictions to evaluate the competing hypotheses and

found that the selection hypothesis serves as the best expla-
nation for the relationship between GL and expression (Carmel

and Koonin 2009).

While the aforementioned studies were ongoing, there

was an independent line of research investigating the rela-

tionship between gene architecture and gene expression

from a different perspective. In eukaryotic genomes, and

particularly for mammalian genomes, gene architecture is

substantially influenced by the presence of transposable el-
ement (TE)–derived sequences. TE-derived sequences are

extremely abundant in mammalian genomes; at least

45% of the human genome is made up of TE sequences

(Lander et al. 2001; Venter et al. 2001). In addition, TE se-

quences are nonrandomly distributed across genomes. In

the human genome, Alu (SINE) elements are enriched in

GC- and gene-rich regions, whereas L1 (LINE) elements

are enriched in low-GC and gene-poor regions (Smit
1999; Lander et al. 2001). Finally, individual genes can vary

tremendously with respect to the amount and identity of TE

sequences that they harbor.

Over the last several years, a series of studies have called

attention to a relationship between the TE environment in

and around genes and the level and breadth of gene expres-

sion. In 2003, the human genome sequence was used

together with expression data to construct a human tran-
scriptome map (Versteeg et al. 2003). This map identified

colocated clusters of highly expressed genes with specific

genomic characteristics. These clusters were gene dense,

had high GC content, were enriched for SINEs, Alu elements

in particular, and had low LINE densities. The same study

found clusters of weakly expressed genes with low SINE

and high LINE densities. Shortly thereafter, Han et al.

(2004) confirmed that the most highly expressed human
genes were depleted for L1 elements and demonstrated

a mechanism that could partially explain this pattern. They

showed that L1 elements can disrupt transcriptional elonga-

tion based on the presence of strong polyA signals in their

sequences.

Kim et al. made an important contribution to this body of
work by distinguishing between TE effects on the level of ex-

pression and the breadth of expression (Kim et al. 2004). They

measured overall expression level as the peak expression (PE)

over all tissues and breadth of expression (BE) as the number

of tissues in which a gene is expressed over some basal

threshold. Their work revealed that Alu element gene densi-

ties are more highly correlated with BE, whereas L1 densities

are most negatively correlated with PE. These results sug-
gested that different families of TEs may have specific effects

on different aspects of gene expression. Consistent with

these results, Eller et al. showed that highly and broadly ex-

pressed housekeeping genes can be distinguished by their TE

content, being primarily enriched for Alus and depleted for

L1s (Eller et al. 2007). In addition to the level and breadth

of expression, the TE environment of mammalian genes

has also been related to expression in cancer tissues (Lerat
and Semon 2007) and the evolutionary divergence of gene

expression (Pereira et al. 2009).

As of yet, no one has attempted to consider these two areas

of investigation together: 1) the relationship between GL and

expression and 2) the relationship between TE environment

and gene expression. In this study, we attempt to disentangle

the effects of GL and TE environment on gene expression and

to evaluate the relative influences of each on expression. Hav-
ing considered their effects separately, we then more thor-

oughly evaluate the connections between gene architecture

and the selection versus genomic design hypotheses.

Materials and Methods

Defining Gene Loci

To accommodate alternative splice variants of human genes
and compute TE fractions for specific loci, we define genes

here as distinct transcriptional units (TUs)—genomic regions

encompassing all overlapping transcripts from the start of the

5#-most exon to the end of the 3#-most exon (supplementary

fig. S1A, Supplementary Material online). To that end, we

downloaded RefSeq annotations for the March 2006 build

of the human genome reference sequence (National Center

for Biotechnology Information [NCBI] build 36.1; University of
California–Santa Cruz [UCSC] hg18) from the UCSC Genome

Browser (Karolchik et al. 2004; Rhead et al. 2010). A total of

32,128 RefSeq transcripts were merged into 19,123 TUs that

represent distinct gene loci.

Determining Genic and Intergenic TE Fractions

To determine the fractions of human genes (TUs) that
are made up of TE sequences, human TEs were broken

down into six of the major human TE classes or families

according to the Repbase classification system (Jurka

et al. 2005; Kohany et al. 2006)—Alu, MIR, L1, L2, DNA

and LTR (long terminal repeat). RepeatMasker (http://

Jjingo et al. GBE

260 Genome Biol. Evol. 3:259–271. doi:10.1093/gbe/evr015 Advance Access publication February 28, 2011

 at N
IH

 Library on O
ctober 14, 2011

gbe.oxfordjournals.org
D

ow
nloaded from

 

http://gbe.oxfordjournals.org/cgi/content/full/evr015/DC1
http://gbe.oxfordjournals.org/cgi/content/full/evr015/DC1
http://www.repeatmasker.org
http://gbe.oxfordjournals.org/


www.repeatmasker.org) annotations of the genomic coor-
dinates of these TEs were used to map them onto their

colocated genes. For each TE type, its fraction in a gene

was computed as the number of base pairs occupied by

a TE as a fraction of all base pairs in the gene. For each hu-

man gene, its intergenic region was taken as the union of

the regions upstream of the transcription start site (TSS) and

downstream of the termination site to the genomic mid-

point between the adjacent upstream and downstream
genes. TE intergenic fractions were then calculated in the

same way as for TE genic fractions based on these genomic

coordinates.

Gene Expression Data

To measure gene expression in different tissues, we used the
Gene Expression Atlas from the Genomics Institute of the

Novartis Research Foundation, which consists of Affymetrix

microarray gene expression values for 44,776 probe sets

across 79 human tissues (Su et al. 2004). Affymetrix probe

sets were mapped onto their corresponding TUs based on

their genomic location coordinates. As suggested previously

(Stalteri and Harrison 2007), probes that mapped to more

than one TU were discarded, and for TUs with more than
one mapped probe, the average expression level per tissue

was used. This resulted into a final data set of 15,658 TUs to

which expression data could be assigned. Expression data

are represented as signal intensity units based on the Affy-

metrix MAS4 processing and normalization algorithm suite.

Measurement of GL and Gene Expression Param-
eters

For each TU, the GL was calculated by simply subtracting its

start coordinate along the chromosome from the end coor-

dinate and then subjecting the difference to a log2 transfor-

mation. The microarray expression data described above

were used to calculate three measurements of gene expres-
sion: peak expression (PE), breadth of expression (BE) and

tissue-specificity (TS). To obtain PE, the signal intensity value

from the tissue where the TU is most highly expressed was

selected for each TU and subjected to a log2 transformation

to accommodate the vast disparity (range 5 197,652.4 sig-

nal intensity units) in the peak levels of expression between

TUs. For each TU, the BE was calculated as the number of

tissues in which the expression of the TU exceeded a thresh-
old of 350 expression signal intensity units (Jordan et al.

2005). For each TU, a TS index was computed as described

(Yanai et al. 2005). The value of TS varies between 0 and 1

and reflects the number of tissues where the TU is overly

expressed relative to its expression in other tissues. The

TS index is calculated as follows:

TS 5

PN
i 5 1ð1� xiÞ
N � 1

;

where N is the number of tissues and xi represents a TU’s
signal intensity value in each tissue i divided by the maxi-

mum signal intensity value of the TU across all tissues.

Comparative Analysis of GL, TE Gene Fractions,
and Gene Expression Parameters

The relative effects of GL and the TE gene environment

on gene expression were evaluated using pairwise and
multiple linear regression analyses where GL and the

TE fractions were the independent variables and the gene

expression parameters PE, BE, and TS were the depen-

dent variables. For these analyses, parameter values were

ranked and binned in order to smooth the signal and re-

duce the background noise. For each parameter, the

15,658 TUs were ranked and divided into 100 bins of

approximately equal size (;157 TUs per bin). Parameter
values were averaged for each bin and the averages were

used to populate ordered vectors of values (n 5 100).

Vectors that represent independent and dependent

variables were then compared using pairwise regression

or combined into a multiple regression model. All data

were treated using the same ranking and binning proce-

dure so that the relative effects of the independent

variables on the dependent variables could be compara-
tively evaluated.

Gene Expression Clustering Analysis

TS patterns for the top 10% MIR-rich genes were analyzed

using hierarchical clustering based on pairwise Euclidean

distances between vectors of tissue-specific gene expression
levels over 79 tissues. This analysis was conducted using the

program Genesis (Sturn et al. 2002) with signal intensity val-

ues median normalized across tissues.

Statistical Analyses Used

For the pairwise regression analyses, independent and de-
pendent variable vectors were compared using pairwise

Pearson correlation (r values in figs. 1–5; individual coef-

ficient of determination R2 values in tables 1–5), and

the significance of the correlations (P values in figs. 1–5

and tables 1–5) was determined using the Student’s t-
distribution. Partial correlation analyses were used to con-

trol for the effects of correlated pairs of independent

variables (tables 1, 2 and 4). Multiple regression analyses
were conducted to determine the combined coefficient

of determination for all TE fractions (R2 values in table

3) and the partial correlation values (r values in table 3).

Significance values for the multiple coefficients of deter-

mination (‘‘all TE’’ P values in table 3) were determined

using the F distribution. Significance values for the partial

correlations (P values in tables 1–4) were determined using

the Student’s t-distribution.

Effect of TE Environment on Gene Length and Expression GBE

Genome Biol. Evol. 3:259–271. doi:10.1093/gbe/evr015 Advance Access publication February 28, 2011 261

 at N
IH

 Library on O
ctober 14, 2011

gbe.oxfordjournals.org
D

ow
nloaded from

 

http://www.repeatmasker.org
http://gbe.oxfordjournals.org/


Results and Discussion

TE Environment of Human Genes

Gene and TE annotations from the reference sequence

of the human genome (NCBI build 36.1; UCSC hg18) were

analyzed together to characterize the TE environment of

human genes. A total of 19,123 TUs, which reconcile alter-

native splice variants and represent discrete gene loci, were
derived from RefSeq annotations as described in the Mate-

rials and Methods (see also supplementary fig. S1A, Supple-

mentary Material online). The fraction of each human gene

locus derived from TE sequences was determined using

RepeatMasker annotations. Six of the most abundant clas-

ses (families) of TEs were considered in this analysis—Alu,

MIR, L1, L2, DNA and LTR. The frequencies of other classes

of TEs were found to be too low to substantially affect the
overall TE environment of human genes.

Human genes show an average TE fraction of 34% and

a standard deviation (SD) of 18% (fig. 1A). Human TE gene

fractions show a broad distribution that is fairly bell shaped

with the exception of a sharp peak of genes that are devoid

of TEs (0% TE fraction in fig. 1A). The presence of these TE-

free genes is consistent with the removal of genic TEs by

purifying selection (Simons et al. 2006). The TE gene frac-
tions observed for individual TE families are consistent with

previous results (Medstrand et al. 2002) in which Alu ele-

ments were found to be the most abundant family of TEs

in human genes, whereas LTR elements are found in the

lowest frequency within human genes (supplementary

fig. S1B, Supplementary Material online). The length distri-

butions of TEs in genes (supplementary table S2, Supple-

mentary Material online) reveal that they are mostly short
(,400 bp) as would be expected in transcribed regions

where long TEs are less tolerated owing to their higher pro-

pensity to be deleterious.

Overall, intergenic regions show higher TE fractions (aver-

age 5 46%; fig. 1A) and also have a more normal distribution

with lower variation than seen for genic regions (SD 5 14%;

fig. 1A). For individual human genes, genic and intergenic TE

fractions are highly positively correlated (r 5 0.95, P 5 6.3 �
10�53; fig. 1B), consistent with the notion that the local ge-

nomic environment strongly influences TE gene fractions

(Smit 1999; Lander et al. 2001).

TE Fractions are Related to GL

As noted in the introduction, the relationship between GL

and expression has been investigated separately from the

relationship between the TE environment of genes and their

expression. However, GL and gene TE fractions may be re-

lated if genes increase in length due, at least in part, to an

accumulation of TE-derived sequences. If genes increase in

length due to the acquisition of TEs, then we expect to see

a positive correlation between gene TE fractions and GL. On

the other hand, if GL increases via mechanisms that do not

involve TEs, there should be no correlation between gene TE

fractions and GL. To distinguish between these two possibil-

ities, we compared the TE fractions of human genes with
their length (as described in Materials and Methods).

When all human TEs are considered together, there is

a strong and significantly positive correlation between gene

TE fractions and GL (r 5 0.87, P 5 1.0 � 10�32; fig. 1C).

A

B

C

FIG. 1.—TE fractions in and around human genes. (A) Distributions

of intergenic (green) and genic (red) TE fractions. (B) Relationship

between intergenic TE fractions and the corresponding genic TE

fractions. (C) Relationship between intergenic TE fractions and GL

(green) and relationship between genic TE fractions and GL (red).

Pearson correlation coefficient values (r) along with their significance

values (P) are shown for all pairwise regressions.
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Although only 0.55% of the average GL for the bin with the

1% shortest genes is constituted by TEs, the percentage pro-

gressively increases to 39.73% for the bin with the top 1%
longest genes, a .72-fold increase in the average fractions

of genes occupied by TEs. However, the positive relationship

between gene TE fractions and GL is not strictly monotonic.

Specifically, in 77% of all genes, the percentage of GL con-

stituted by TEs progressively increases from 0.55% in genes

of about 850 bp to 44.79% for genes spanning about 70.9

kb (.81-fold increase in gene TE fraction; fig. 1C). For the

remaining genes beyond this length (23% of all genes), the
percentage of GL constituted by TEs levels off and remains

more or less constant with increasing length.

As noted in the previous section, TE genic and intergenic

fractions are highly correlated (fig. 1B). These data are con-

sistent with previous studies showing that TE fractions and

family distributions differ among genomic compartments

and thus may depend on regional factors such as GC content

and recombination rate (Medstrand et al. 2002; Versteeg
et al. 2003). Therefore, it is possible that the relationship be-

tween genic TE fractions and GL simply reflects such regional

genomic features. To test for this possibility, we compared in-

tergenic TE fractions with GL. Intergenic TE fractions are sig-

nificantly positively correlated with GL (r 5 0.55, P 5 1.4 �
10�9); however, the correlation is substantially weaker than

seen for genic TE fractions and the slope of the relationship is

far more flat (fig. 1C). Furthermore, partial correlation analysis
shows that TE genic fractions remain positively correlated

with GL when intergenic TE fractions are controlled for,

whereas the positive correlation between intergenic TE frac-

tions and GL disappears when genic TE fractions are con-

trolled for (table 1). In other words, the relationship

between TE gene fractions and GL does appear to have some

gene-specific, as opposed to genomic regional, component.

To evaluate the correlation between TE genic fractions
and GL more closely, we focused on individual TE families

and found that Alus dominate the leveling off in gene

TE fractions seen for the longest genes. Alus are the most

abundant TE sequence within gene boundaries (supplemen-

tary fig. S1B, Supplementary Material online), and Alus also

show a unique TE fraction distribution with GL. The fraction
of Alus within genes rises sharply and peaks for midsize

genes (;23.3 kb) followed by an almost equally precipitous

decline in frequency, yielding a bell-shaped distribution (fig.

2A and supplementary fig. S3A, Supplementary Material

online). However, the distribution of TE gene fractions for

all other TE families analyzed tends to be generally linear

in relation to GL (fig. 2B; supplementary fig. S3B–F, Supple-

mentary Material online), increasing from an average per-
centage of 0.34% in the shortest genes to 32.83% in

the longest genes (a .96-fold increase in the fractions of

genes occupied by TEs).

It is not immediately apparent while Alu fractions,

unique among all classes of TEs considered here, decline

for the longest genes. One possibility is that Alus are

known to be prevalent in GC-rich regions, whereas larger

genes (introns) tend to have lower GC content (fig. 2C).
Thus, it may be that the decline in Alu content for longer

genes is based on regional genomic biases in GC content. If

this is the case, then genes with low GC content should

also have low Alu fractions and vice versa. We found that

genes with low GC content do in fact have lower Alu con-

tent as expected (fig. 2D). However, the relationship be-

tween genic Alu fractions and GC content is not

monotonic; Alu fractions peak for genes in the middle
of the GC content range and decrease for both low–

and high–GC content genes. We performed partial corre-

lation in an attempt to further tease apart the relationship

between Alu gene fractions and GC content as they relate

to GL. GC content is much more strongly correlated with

GL than Alu fractions are (fig. 2A and C). If the relationship

of Alu genic fractions with GL mainly reflects regional

changes in GC content, then the correlation of Alu frac-
tions with GL should decrease when GC content is con-

trolled for. However, when GC content is controlled for

with partial correlation, the positive correlation between

Alu gene fractions and GL actually increases (table 2). Sim-

ilarly, when Alu gene fractions are controlled for, the cor-

relation between GC content and GL becomes more

negative. These data suggest that both Alu gene fractions

and GC content are independently related, to some extent,
with GL in the human genome.

Overall, the positive correlations between TE gene frac-

tions and GL indicate that longer genes have dispropor-

tionately more TEs relative to other sequence elements.

Considering all TE families together, TEs make up only

0.55% of the shortest genes and yet account for ;40%

of the increase in GL when assessed in the longest genes.

For three-fourth of all genes, the contribution of TEs to
increases in GL is .45%. These results underscore the con-

tributions of TEs to the length differences among

human genes and suggest that the influences of TE

environment and GL on gene expression cannot be ade-

quately considered separately.

Table 1

Relationship between the Local TE Environment and GL

TE Fractions r P Value

GL Genic TEa 0.87 1.04E-32

Intergenic TEa 0.55 1.40E-09

Genic TE j Intergenic TEb 0.82 6.80E-45

Intergenic TE j Genic TEc �0.18 7.02E-02

a
TE fractions within genes (genic) and between genes (intergenic) are correlated

with GL.
b

Partial correlation between genic TE fractions and GL controlling for intergenic

TE fractions.
c

Partial correlation between intergenic TE fractions and GL controlling for genic

TE fractions.
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TE Gene Environment and the Selection
Hypothesis

In order to relate the TE environment of human genes and

GL to gene expression, three expression parameters for
human genes were measured using microarray data over

79 tissues as described in the Materials and Methods: 1)

peak expression (PE), 2) breadth of expression (BE) and 3)

TS. PE is the maximum expression level observed for

a gene over all 79 tissues and is taken to represent the

overall gene expression level; BE is the number of tissues

in which a gene can be considered to be expressed, and TS

is a measure of tissue specificity described previously
(Yanai et al. 2005). PE and BE were measured here be-

cause they can be used to distinguish between the selec-

tion versus genomic design hypotheses. The selection

hypothesis predicts a stronger positive correlation of PE

with GL, whereas the genomic design hypothesis predicts

a stronger correlation of BE with GL. However, BE has

been criticized as an overly simplistic measure that may

not distinguish genes that are expressed in the same sets

of tissues albeit at very different relative levels. For this

reason, we also use a measure of TS that explicitly reflects

the number of tissues where a gene is overly expressed

relative to its expression in other tissues (see Materials
and Methods). Genes overly expressed in a few tissues

(i.e., tissue-specific genes) have high TS indices, whereas

more broadly and evenly expressed genes have low values

of TS.

Regression analysis was used to individually compare

values of these expression parameters with TE gene frac-

tions for all six families and GL (figs. 3–5), and the effects of

TE gene fractions and GL were also considered jointly using
multiple regression (table 3). Consistent with previous re-

sults (Eisenberg and Levanon 2003; Carmel and Koonin

2009), GL can be seen to have a much stronger association

with PE than BE. Whereas 48% of the variability in PE is

attributable to GL, only about 4% of the variability in BE

is attributable to GL (table 3). Furthermore, it can be seen

that the nonmonotonic shape of the relationship between

GL and PE (fig. 3H) is similar to what has been reported
previously (Carmel and Koonin 2009) and also closely re-

sembles the shape of the Alu gene fraction versus PE

FIG. 2.—Relationships between the Alu fractions of human genes, GL, and GC content. (A) Relationships between Alu gene fractions and GL. (B)

Relationship between TE gene fractions for all TEs except Alu and GL. (C) Relationship between GC content and GL. (D) Relationships between Alu gene

fraction and GC content. Pearson correlation coefficient values (r) along with their significance values (P) are shown for all pairwise regressions.

Table 2

Effect of GC Content on the Relationship between Alu Genic Fractions

and GL

Featurea r P Value Controlb r P Value

GL Alu 0.45 1.32E-06 Alu j GC 0.58 1.69E-12

GC �0.92 5.93E-42 GC j Alu �0.94 2.99E-152

a
Alu genic fractions and genic GC content values are correlated with GL.

b
Partial correlation analyses control for effect of GC content on Alu fractions (Alu j

GC) and Alu fractions on GC content (GC j Alu), respectively.
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distribution (fig. 3A). The strongest individual TE family cor-

relation with PE is the negative correlation seen for L1 frac-

tion versus PE (fig. 3C). L1 also has the largest negative

partial correlation value with PE in the multiple regression

analysis as well as the largest coefficient of determination

(table 3). When all TEs are analyzed together, 78% of the

variability in PE can be attributed to variability in TE gene

fractions, whereas only 48% is attributable to variability in

GL (table 3).

Although these data do lend support to the selection hy-

pothesis, they also indicate that TE-derived sequences

within genes are more highly correlated with their expres-

sion level than the overall GL. Thus, the selective mechanism

for streamlining highly expressed genes may be related more

to the elimination, or shortening, of TE sequences per se

rather than the overall shortening of genes.

TE Gene Environment and the Genomic Design
Hypothesis

The relationship between GL and BE seen here is generally

weak; GL has one of the lower individual correlations with

BE (fig. 3G), and variability in GL only contributes 9% of the

variability seen in BE (table 1). In addition, the results show

that although all the longest genes are narrowly expressed,

there are about as many compact narrowly expressed genes

as there are compact broadly expressed genes (fig. 4H). Even
more surprising is the fact that the partial correlation value

for GL versus BE is positive, albeit marginally (table 3), and

not negative as can be expected if more narrowly expressed

genes are in fact longer.

To interrogate the genomic design hypothesis more

closely, we used TS as an alternate measure for the tissue

specificity of expression. The genomic design hypothesis

FIG. 3.—TE fractions, GL, and the peak expression (PE). Relationships between the TE gene fractions for (A) Alu, (B) MIR, (C) L1, (D) L2, (E) DNA, (F)

LTR, and (G) all TEs and the PE of human genes. (H) Relationship between GL and PE. Pearson correlation coefficient values (r) along with their

significance values (P) are shown for all pairwise regressions.
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posits that increasing GL is based on the requirement for

additional regulatory sequences in genes that are expressed

more narrowly. Thus, in the case of TS, a positive correla-

tion is expected between GL and TS; in other words, longer

genes are expected to be more tissue specific. For the pair-

wise regression analysis, there is actually a strongly negative

correlation between GL and TS (fig. 5H). This negative trend
holds when the TE fractions are controlled for in the partial

correlation, and GL also has a high coefficient of determi-

nation for TS (table 3). It should be noted that the negative

correlation between GL and TS may be related to the ana-

lytical formulation used to compute TS (see Materials and

Methods) because genes with high expression levels in

one or a few tissues (i.e., high PE) will often, but not always,

have high TS as well. Nevertheless, when taken together,
the data for both GL versus BE and GL versus TS seem to

argue against the genomic design hypothesis as originally

conceived.

With respect to the TEs, there are strongly positive (Alu;

fig. 4A) and negative (L1; fig. 4C) correlations between TE

gene fractions and BE, and 76% of the variability in BE can

be attributed to variability in all TE gene fractions (table 3).

Overall, TE gene fractions also have the highest coefficient
of determination for TS. Consistent with what was previ-

ously shown for PE, these data suggest that the combina-

torial impact of TEs in human genes is more important

than the overall GL with respect to the number of tissues

in which a gene is expressed and the tissue specificity of

genes.

L1 Elements and Gene Expression Levels

As described previously, the data analyzed here provide sup-

port for the selection hypothesis because GL is more strongly

(negatively) correlated with PE than BE. However, the stron-

gest negative correlation with PE in the pairwise regression

analysis is seen for L1 gene fractions (fig. 3C). L1 also has the

highest negative partial correlation with PE in the multiple

regression analysis and the highest coefficient of determina-
tion (table 3); 75% of the variability in PE is attributable to L1

gene fractions compared with the 48% explained by GL.

Thus, L1 gene fractions are more predictive of PE than

GL, indicating that variation in the gene fractions of L1s

is associated with a higher change in gene expression than

variation in GL.

It is also possible that regional genomic features, such as

GC content, contribute to the apparent effect of L1 gene
content on PE. It is known that L1 elements are enriched

in GC-poor regions (Smit 1999; Lander et al. 2001), whereas

GC content is strongly positively correlated with PE and BE

(Vinogradov 2005). Thus, one may expect to see the kind of

negative correlations between L1 and PE/BE seen here based

solely on regional biases in GC content. We performed par-

tial correlation to separate the effects of L1 gene fractions

and GC content on both PE and BE. When we control for GC
content, the partial correlation of L1 fractions with PE re-

mains highly significant (table 4). Conversely, when we con-

trol for L1 fractions, the partial correlation of GC with PE is

rendered insignificant (table 4). Both L1 fractions and GC

content show similar levels of relatedness with BE and partial

correlation analysis does not remove either effect (table 4).

Thus, the relationship between L1 gene fractions and PE/BE

cannot be explained solely by the genomic distribution of
L1s among different GC content regions.

L1 elements are an abundant and recently active family of

LINEs that make up 17% of the human genome sequence

(Lander et al. 2001; Venter et al. 2001). Experimental studies

have demonstrated that the presence of L1 sequences

within genes can lower transcriptional activity (Han et al.

2004; Ustyugova et al. 2006). The effect of the presence

of L1s on PE observed here may be attributed to the fact
that the disruptive activity of L1s on transcription inhibits

gene expression more than an overall increase in GL does.

However, this finding is not entirely inconsistent with the

selection hypothesis, rather it suggests a specific mecha-

nism, namely the elimination of L1 sequences, for selectively

Table 3

The Relationship between TE Fractions, GL, and Gene Expression

Expression

Parameter

TE and

GL

Coefficient of

Determination

Partial

Correlation

R2a P Value rb P Value

PE All TEs 0.78 ,2.2E-16 �0.13 2.1E-01

L1 0.75 ,2.2E-16 �0.86 2.6E-63

LTR 0.60 ,2.2E-16 �0.20 4.5E-02

GL 0.48 1.1E-15 �0.13 2.2E-01

DNA 0.29 4.2E-09 �0.01 9.4E-01

L2 0.27 2.0E-08 �0.25 1.4E-02

MIR 0.06 6.3E-03 0.25 1.1E-02

Alu 0.03 5.0E-02 0.32 1.1E-03

BE All TEs 0.76 ,2.2E-16 �0.10 3.1E-01

Alu 0.59 ,2.2E-16 0.52 3.0E-09

LTR 0.57 ,2.2E-16 �0.37 1.0E-04

L1 0.47 2.8E-15 �0.52 2.4E-09

MIR 0.12 2.2E-04 �0.28 3.6E-03

GL 0.04 3.2E-02 0.15 1.5E-01

L2 0.02 7.4E-02 0.08 4.4E-01

DNA 0.01 1.3E-01 0.14 1.7E-01

TS All TEs 0.66 ,2.2E-16 �0.32 8.8E-04

L1 0.63 ,2.2E-16 �0.67 9.5E-19

GL 0.53 ,2.2E-16 �0.05 6.3E-01

L2 0.30 3.0E-09 �0.21 3.3E-02

Alu 0.29 5.0E-09 �0.13 2.2E-01

LTR 0.28 9.4E-09 �0.24 1.8E-02

MIR 0.27 2.1E-08 0.31 1.6E-03

DNA 0.24 1.8E-07 �0.04 7.3E-01

a
R2 (the coefficient of determination) is the fraction of variability in each

expression parameter that can be attributed to the variability in each sequence feature

(individual TE families, GL, or all TEs combined).
b
r is the partial correlation of each feature with the expression parameters, taking

into account the presence of the other elements. For each expression parameter, the

TEs and GL are ranked by their predictive value for the parameter.
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tuning highly expressed genes that would also result in an

overall decrease in their length.

MIR Elements and Tissue-Specific Gene Expression

The genomic design hypothesis posits a requirement for ad-

ditional regulatory sequence elements that facilitate TS,

which in turn leads to an increase in GL. However, data re-

ported here show that the presence of such regulatory el-

ements does not necessarily result in an overall increase in

GL as predicted by the genome design hypothesis (fig. 5H).

In light of this realization, we sought to evaluate whether

any specific TE sequence elements might be related to
the regulatory complexity entailed by tissue-specific genes.

Of all the TE families evaluated, MIRs are the only elements

that show the expected trends for the genome design hy-

pothesis for both BE and TS. The fraction of MIRs in human

genes is negatively correlated with BE (fig. 4B) and positively

correlated with TS (fig. 5B) as expected. In fact, MIRs are

the only TEs positively correlated with TS, and the increase

in the MIR gene fraction is not linear with increasing TS. At

the high range of TS (.0.7; 58% of all genes), the positive
correlation of MIR gene fractions to TS is even stronger

(r 5 0.78, P 5 3.7 � 10�18).

These results are interesting in light of what is already

known about MIRs. MIR elements (mammalian-wide inter-

spersed repeats) are an ancient family of transfer RNA–

derived SINEs (Jurka et al. 1995; Smit and Riggs 1995),

and they have previously been implicated as having regula-

tory significance in a number of studies. Initially, human MIR
sequences were shown to be highly conserved over time

suggesting that they may encode some unknown regulatory

function (Silva et al. 2003). Subsequently, MIR-derived se-

quences have been shown to donate transcription factor–

binding sites (Polavarapu et al. 2008; Wang et al. 2009),

FIG. 4.—TE fractions, GL, and the breadth of expression (BE). Relationships between the TE gene fractions for (A) Alu, (B) MIR, (C) L1, (D) L2, (E)

DNA, (F) LTR, and (G) all TEs and the BE of human genes. (H) Relationship between GL and BE. Pearson correlation coefficient values (r) along with their

significance values (P) are shown for all pairwise regressions.
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enhancer sequences (Marino-Ramirez and Jordan 2006), mi-

croRNAs (Piriyapongsa et al. 2007), and cis-natural antisense

transcripts (Conley et al. 2008) to the human genome. In

addition, it has been shown that, whereas TEs are generally

depleted from introns, MIRs are actually significantly en-

riched within genes that might require subtle regulation

of transcript levels or precise activation timing, such as

growth factors, cytokines, hormones, and genes involved

in the immune response (Sironi et al. 2006). Such genes

would be expected to be largely tissue specific.

If MIRs donate regulatory sequences to tissue-specific

genes, then one may expect to observe relative increases

in MIR density in the regulatory regions upstream and down-

stream of TSSs. To evaluate this possibility, we took the top

10% tissue-specific genes and evaluated their MIR frequen-

cies at 1-kb intervals along a 20-kb window surrounding the

gene TSS. As with all other TEs, MIRs show a marked decline

in frequency most proximal to the TSS. However, MIRs show

a unique pattern of enrichment both upstream and

FIG. 5.—TE fractions, GL, and TS. Relationships between the TE gene fractions for (A) Alu, (B) MIR, (C) L1, (D) L2, (E) DNA, (F) LTR, and (G) all TEs

and the TS of human genes. (H) Relationship between GL and TS. Pearson correlation coefficient values (r) along with their significance values (P) are

shown for all pairwise regressions.

Table 4

Effect of GC Content on the Relationship between L1 Genic Fractions

and Gene Expression

Featurea r P Value Controlb r P Value

PE L1 �0.87 1.69E-31 L1 j GC �0.73 1.3E-25

GC 0.69 1.20E-15 GC j L1 0.12 2.2E-01

BE L1 �0.69 1.38E-15 L1 j GC �0.44 1.7E-06

GC �0.21 2.00E-02 GC j L1 0.44 1.4E-06

TS L1 �0.79 3.12E-23 L1 j GC �0.77 3.0E-32

GC 0.32 6.81E-04 GC j L1 �0.03 7.5E-01

a
L1 genic fractions and genic GC content values are correlated with the

expression parameters PE, BE, and TS (tissue-specificity).
b

Partial correlation analyses control for effect of GC content on L1 fractions (L1 j
GC) and L1 fractions on GC content (GC j L1), respectively.
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downstream of the TSS, just outside the proximal promoter

region, compared with other families of TEs. In fact, MIRs

are the only elements that show local frequency maxima

at �1 kb and þ2 kb with respect to the TSS. All other
TEs show their maxima in more distal regions from the

TSS (fig. 6). This pattern is consistent with a unique regula-

tory role for MIRs, perhaps owing to the donation of cis-

regulatory elements, as compared with other TEs.

If the regulatory effect of genic MIRs is based on the do-

nation of shared transcription factor–binding sites, then one

may expect the tissues in which MIR-rich genes are ex-

pressed to be similar. We evaluated this prediction in two
ways. First, we took the top 10% MIR-rich genes and for

each gene we determined the tissue in which it was max-

imally expressed. The observed frequency distribution for

these tissues was compared with a randomized distribution

of the same number of genes among all tissues in the micro-

array data set analyzed here using a v2 test. The observed

distribution is far from random (supplementary fig. S4, Sup-

plementary Material online; v2 5 1,406.8, P 5 1.1 � 10�

242), and there are a number of specific tissues, and groups

of related tissues, that are overrepresented, particularly

liver, blood-related tissues, reproductive tissues and nervous

tissues. Second, we clustered the expression patterns of the

top 10% MIR-rich genes using hierarchical clustering based

on the Euclidean distances between their gene expression

patterns over 79 tissues. Several of the resulting clusters
show groups of MIR-rich genes that are markedly overex-

pressed among these same related groups of tissues (fig. 7).

MIRs are a relatively ancient family of TEs that are con-

served among mammals including mouse. We evaluated

TE gene fraction and expression data for mouse, in the same

way as was done for humans, to see if the same trends in the

relationship between MIR gene fractions and tissue specific-

ity hold for mouse elements. As is the case for the human
genome, mouse MIR elements are the only family of TEs

with genic fractions that are significantly positively corre-

lated with TS (table 5). This suggests the possibility that

MIR elements have been conserved among mammalian ge-

nomes, at least to some extent, by virtue of their regulatory

contributions.

The genomic design hypothesis predicts that additional

regulatory sequence elements required by tissue-specific
genes will lead to an increase in their overall length. How-

ever, with respect to MIRs, our analysis suggests that the en-

richment of regulatory elements in tissue-specific genes

does not lead to an increase in the overall length of genes.

Rather, the regulatory complexity required by tissue-specific

genes may be achieved in some cases via the donation of

a few key sequence elements provided by TEs that come

preequipped with existing regulatory capacity.

Conclusions

The architecture of human genes has important implications

for how they are expressed. Previous studies on this topic

have focused separately on the influences of GL or the TE

environment on gene expression. Here, we show that these

two factors are closely related, and we consider them jointly
in an attempt to dissect their individual contributions. Con-

sistent with previous results, we observed GL to be strongly

correlated with PE and less so with BE. We also show that GL

is strongly correlated with TS but not in the direction that is

expected according to the genomic design hypothesis. These

data provide strong support for the selection hypothesis.

However, we show that the TE fraction of human genes

has a stronger overall effect on gene expression than does
GL. Considered together, TE gene fractions explain 78%,

MIR MIRDNA DNAL2 L2L1 L1LTR LTRAlu Alu

FIG. 6.—The local frequency maxima of TE densities around the

TSSs of tissue-specific genes. The red line shows the density distribution

of MIRs around TSSs. Colored dots show the locations of the local

frequency maxima for the different TE classes/families.

FIG. 7.—MIR-rich genes hierarchically clustered into groups of similar expression profiles across tissues. The clusters show maximum expression in

related sets of tissues.
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76%, and 66% of the variability observed for PE, BE, and TS

respectively, in all cases greater than what is seen for GL. We

also uncover examples where individual TE families, L1s, and
MIRs respectively, have marked effects on the level and

breadth of gene expression.

Consideration of intergenic TE fractions and GC content

together with TE gene fractions suggests that the relation-

ships between TE gene fractions and GL and expression are

not solely related to regional genomic processes. However,

there may be other as yet undetected regional genomic fac-

tors that could mitigate the apparent relationships between
TE gene fractions and GL and expression. Nevertheless, the

results reported here underscore the potential regulatory

implications of the TE environment of human genes and also

suggest specific mechanisms for how TEs may contribute to

gene regulation.

Supplementary Material

Supplementary figures S1, S3, and S4 and table S2 are avail-

able at Genome Biology and Evolution online (http://

www.gbe.oxfordjournals.org/).
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     INTRODUCTION 

  Plasmodium vivax  is responsible for about 20% of the 
global malaria cases and more than half (56%) of the non-
African malarial infections. Indeed,  P. vivax  has reemerged 
in many regions of the world where malaria was eliminated 
in the 1950–60s with 70–80 million cases per year and 2.6 bil-
lion people at risk of infection. 1,  2  Given its broad distribu-
tion,  P. vivax  co-exists with  Plasmodium falciparum  and in 
minor proportion with  P. malariae . 3,  4  Regardless, the prog-
ress achieved in the development of a vaccine against  P. falci-
parum,  there is paucity of suitable vaccine candidates against 
 P. vivax , with only two antigens currently under evaluation 
in human clinical trials and a few others in preclinical eval-
uation. 2–  6  The understandable bias in research effort toward 
 P. falciparum,  however, hampers our ability of developing a 
vaccine that can be effectively deployed against malaria out-
side Africa where these two parasites coexist. 

 We previously defined the  Pv 200L fragment of  Pv MSP-1, 
located toward the N-terminal end of the 83 kDa domain 
( Figure 1 ), as a  P. vivax  potential subunit vaccine based on 
several features of the protein. The  Pv 200L has significant 
homology to  Pf 190L, a well-defined  P. falciparum  vaccine 
candidate, 7–  9  and a  Pv 200L recombinant protein produced 
in  Escherichia coli , displayed a high level of antigenicity in 
humans. Additionally, this protein fragment showed good 
immunogenicity in mice and primates, and the capacity to 
induce partial protection against a  P. vivax  blood-stage chal-
lenge in  Aotus  monkeys. 7  

  The  Pv 200L fragment includes the entire blocks 2, 3, and 
4, plus segments of blocks 1 and 5 of the  Pv MSP-1. 10  Genetic 
polymorphism studies in  P. vivax  isolates have shown that 
blocks 1, 3, and 5 are conserved at the protein level and dis-
play a few dimorphic substitutions. Blocks 2 and 4 are the most 
variable, both in size and sequence, with basic and recombinant 
block types generated by intra- and inter-allelic recombination 
events. 11  Here, we describe the polymorphism of the  Pv 200L 

gene fragment and its inferred amino acid sequence in 26 
 P. vivax  clinical isolates from Buenaventura, a malaria-endemic 
area located on the southern Pacific coast of Colombia. 4  We 
also examined 42  Pv 200L fragments from  Pv MSP-1 sequences 
previously reported in GenBank and describe the phyloge-
netic analysis of all sequences. 

   MATERIALS AND METHODS 

  Study population and  P. vivax  isolates.   The Colombian 
Pacific region is composed of four states—Chocó, Valle, 
Cauca, and Nariño—and is considered the second most 
malaria-endemic region of Colombia, as it accounts for 
about 30% of the country’s disease burden. 4  In Colombia 
 P. vivax  is the predominant malaria species and is responsible 
for more than 60% of the clinical cases reported every year; 
however, because of the high prevalence of Duffy-negative in 
the Afro-colombian habitants of this region, the predominant 
species in the Pacific region is  P. falciparum . 4  Blood samples 
were collected by convenience during 2004 and 2005 from 
symptomatic patients diagnosed by thick smear at the 
outpatient clinical facilities of the Malaria Vaccine and Drug 
Development Center (MVDC) in Buenaventura, the main 
seaport on the Colombian Pacific coast. Buenaventura, located 
in the Valle state, has ~400,000 inhabitants and conditions for 
low and unstable malaria transmission. 12  A total of 26 samples 
exclusively infected by  P. vivax , as confirmed by polymerase 
chain reaction (PCR), 13  were collected from patients from rural 
and urban communities. All adult participants and the parents, 
or legal guardians of minor patients, were asked to provide a 
signed written informed consent previously approved by the 
Institutional Review Board of Universidad del Valle. 

   PCR, cloning, and sequencing.   The primers 200L-1 
(5-′GCC AAG CTG GAC AAG TTA GA-3′) and 200L-2 
(5′-AAG GTT GGA ACT GTC TTT CC-3′) were designed 
to amplify by PCR the  Pv 200L coding region (bp 143–1,333) 
from the  Pv MSP-1 of Salvador 1 strain (GenBank accession 
no. AF435593). The primers were confirmed to align with all 
available complete sequences of  Pv MSP-1 in GenBank. 14  The 
PCR reactions were performed with iProof high-fidelity DNA 
polymerase (Bio-Rad, Hercules, CA) in a PTC-100 thermal 
cycler (MJ Research, Watertown, MA) as follows: 35 cycles of 
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30 sec at 94°C, 60 sec at 55°C, and 60 sec at 72°C. The PCR 
products (1–1.2 Kb) were ligated to pCR4-TOPO (Invitrogen, 
Carlsbad, CA) according to manufacturer instructions, and 
then used to transform chemically competent  E. coli  One-Shot 
(Invitrogen). Kanamycin-resistant clones were confirmed by 
restriction enzyme analysis with  Eco RI (Fermentas, Hanover, 
MD). We sequenced only one clone per isolate. Sequencing 
was performed with BigDye Terminator version 3.1 kit and the 
M14 forward and reverse primers in an ABI-PRISM AVANT 
3100 sequencer (Applied Biosystems, Foster City, CA). Every 
run was performed a minimum of two times and repeated as 
much as needed to obtain quality values > 20 (< 4 Ns/20 bases, 
< 10% Ns, and maximum percent of mixed bases = 20.0%) as 
assessed with SeqScape Software (Applied Biosystems). 

   Sequences, sequence alignment, and statistical analysis.  
 We analyzed the 26  Pv 200L gene sequences from the 
Colombian Pacific coast, and the 42  Pv 200L fragments from 
 Pv MSP-1 sequences available in GenBank, accession numbers: 
AF435593–AF435599, AF435601–AF435620, AF435622–
AF435625, AF435627, AF435629–AF435632, and AF435634–
AF435639 (October 2006). 10  These GenBank sequences were 
collectively named as non-Colombian. Sequences were aligned 
using CLUSTAL X2, 15  and the alignment was used to calculate 
nucleotide diversity (π ± SE) with MEGA 4.0 using the Jukes-
Cantor model and retaining all gaps. 16  The π value obtained for 
 Pv 200L and each block was submitted to one-way analysis of 
variance statistical analysis. DNA polymorphism was analyzed 
with DnaSP 4.10 with a sliding window of 100 bases and a 
step size of 20 bases for a haploid genome. 17  To determine the 
influence of geographical origin of the isolates on nucleotide 
diversity and DNA polymorphism, we performed the same 
analysis for groups of GenBank sequences from Thailand 
(20 isolates) and Brazil (8 isolates). The output data were 
exported to STATA 8.0 (Stata Corp., College Station, TX) 
to plot overlapping π curves with standardized scales for the 

different groups. Boundaries of conserved and variable blocks 
were determined from nucleotide sequence homology, as 
previously reported. 10  Subsequently, π and its standard error 
were computed for each block. The number of synonymous 
(d S ) and non-synonymous (d N ) substitutions was estimated for 
each block, to avoid bias caused by size polymorphisms, by Nei 
and Gojobori’s method with the Jukes-Cantor correction in 
MEGA 4.0. 18–  20  We estimated the difference between Ds an Dn 
and its standard deviation was calculated using bootstrap with 
500 pseudo-replications for Ds and Dn, and two-tail Z-test on 
the difference between Ds and Dn. 21  The null hypothesis is that 
Ds = Dn; thus, we assumed as null hypothesis that the observed 
polymorphism was neutral.  In silico  translated DNA sequences 
were used to identify the types of variable blocks (2 and 4), as 
previously defined, 10  and point mutations in conserved blocks. 
Alleles were identified by the specific combination of variable 
block types as proposed by Putaporntip and others. 10  

   Phylogenetics and epitope conservation analysis.   The 
distances of the  P. vivax  isolates were inferred from phylogenetic 
analysis of the translated  Pv 200L sequences using MEGA 4.0. 
Because of size polymorphism in variable blocks, distances 
were calculated only with sequence alignments of conserved 
edited-joined blocks 1, 3, and 5. Trees were constructed using 
the neighbor-joining (NJ) method, excluding gaps by pairwise 
deletion, with the Kimura p-distance model. 22  The reliability 
of the trees was assessed by the bootstrap method with 1,000 
pseudo-replications. Phylogenetic analysis was performed with 
the 26 Colombian sequences and the 42 sequences available 
in GenBank. Complementary analyses to determine genetic 
divergences was performed using the Fstat program (Fst). 
Finally, we determined the conservation pattern of previously 
defined promiscuous T-helper epitopes contained in the  Pv 200L 
fragment. 23  To this purpose we constructed multiple sequence 
alignments with the 68  Pv 200L available sequences and then 
realigned the T-helper epitope sequences in CLUSTAL X2. 

    RESULTS 

  Geographical origin of Colombian isolates.   The  Pv 200L 
gene fragment was sequenced and analyzed in a total of 26 
isolates from the Colombian Pacific coast obtained from 
 P. vivax -infected patients. Eighteen (69.2%) of the isolates were 
collected from patients who preferred to live in rural areas of 
Buenaventura ( Table 1 ). The majority of rural isolates were 
from La Delfina and San Cipriano villages. The urban isolates 
were predominantly from Commune 12, of Buenaventura 

  Figure  1.    Nucleotide diversity (π) scores along the  Pv 200L gene 
fragment. The scores are shown for three groups of isolates: 26 from 
Colombia, 20 from Thailand, and 8 from Brazil. The sequences from 
Thai and Brazil isolates were extracted from complete  Pv MSP-1 cds 
sequences available in GenBank. Relative position of blocks is indi-
cated in the bar. Variable blocks are indicated in black.    

  Table  1 
  Origin of the Colombian  Plasmodium vivax  isolates  

Place Locality n Isolates

Comuna 12 U * 6 CU45, CU57, CU65, CU66, CU81, CU83
La Delfina R † 6 D20, D48, D61, D85, D102, D103
San Cipriano R 4 SC84, SC92, SC93, SC1
Buenaventura U 2 B74, B30
La Laguna R 1 L8
La Gloria R 1 G91
Cordoba R 1 Co68
Zacarias R 1 Z80
San Francisco R 1 SF56
Triana R 1 T28
Citronela R 1 Ci22
Potedo R 1 P54

  *   Urban.  
  †   Rural.  
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town. This commune is the closest community to the humid 
rain forests in the Pacific coast. 

        Nucleotide diversity.   We found a nucleotide diversity value of 
0.088 ± 0.006 for the  Pv 200L gene fragment for all the isolates, 
including Colombian and non-Colombian ( Table 2 ). Such 
π value was significantly lower in the Colombian group than 
in either Thai or Brazilian subgroups of sequences. The highest 
contribution for nucleotide diversity was observed in the 
Brazilian group followed by the Thai group. As expected, the 
variable blocks 2 and 4 had the highest π values across all of 
the groups. Block 2 from Colombian isolates had a significantly 
lower π value than Thai and Brazilian isolates ( Figure 1  and 
 Table 2 ); whereas Thai sequences displayed the lowest π value 
for block 4. Regarding conserved blocks 1, 3, and 5, all of them 
displayed the expected conservation. In the case of block 1, the 
nucleotide diversity was significantly lower in the Colombian 
isolates than in the Thai and Brazilian ones. Although block 3 
had also the lowest π value in the Colombian parasites, the 
difference was not statistically significant. Conserved block 5 
displayed π values below 0.040 in all isolates, with the lowest 
diversity in the Brazilian isolates ( Table 2 ). 

        Synonymous and non-synonymous substitutions.   As 
expected, the d N  value was higher in blocks 2 and 4 ( Table 3 ); 
however, the value was only significant in block 2   . This was 
true for each country and the combined sample. The d S  value 
was significantly higher than d N  for blocks 1 and 5 using the 
Z-test, indicating that some blocks involved in this fragment 
could be under negative selection. 

        Non-synonymous substitutions in conserved blocks 
of Colombian isolates.   We found a total of 26 dimorphic 
substitutions across conserved blocks 1, 3, and 5, and seven of 
them are newly identified ( Table 4 ). Some substitutions were 
consistently linked within isolates, such as SC84, SC93, SC1, 
and Co68, most of them collected from inhabitants from San 
Cipriano village, which shared four dimorphic substitutions, 
and isolates D61 and B74 that shared five dimorphic sub-
stitutions plus two insertions (block 1: 61[−/A] and 62[−/S]). 

  Table  2 
  Nucleotide diversity (π ± SE) *  per blocks of the  Pv 200L gene fragment  

Groups n Overall Block 1 Block 2 Block 3 Block 4 Block 5

All 68 0.088 ± 0.006 0.020 ± 0.004 0.233 ± 0.020 0.049 ± 0.017 0.160 ± 0.021 0.049 ± 0.010
Non-Colombian † 42 0.086 ± 0.005 0.022 ± 0.004 0.212 ± 0.018 0.052 ± 0.017 0.162 ± 0.024 0.051 ± 0.011
Colombian 26 0.061 ± 0.004 ‡ 0.011 ± 0.002 ‡ 0.155 ± 0.014 ‡ 0.040 ± 0.014 0.134 ± 0.022 0.039 ± 0.010
Thailand 20 0.083 ± 0.006 0.022 ± 0.004 0.228 ± 0.020 0.042 ± 0.015 0.126 ± 0.019 0.038 ± 0.008
Brazil 8 0.090 ± 0.006 0.021 ± 0.004 0.203 ± 0.019 0.056 ± 0.020 0.166 ± 0.026 0.035 ± 0.015

  *   As calculated with MEGA 3.0 using the Jukes-Cantor model.  
  †    Pv  200L gene fragment trimmed out from the 42  Pv  MSP-1 cds available in GenBank by June 2009.  
  ‡    P  ≤ 0.001 as calculated by one-way analysis of variance (ANOVA) Colombia vs. Thailand and Colombia vs. Brazil.  

  Table  3 
  Synonymous (d S ) and non-synonymous (d N ) nucleotide substitutions 

in  Pv 200L fragment  
Groups Block d S  *  ± SE d N  *  ± SE Z

All ( N  = 68) 1 0.053 ± 0.016 0.012 ± 0.003 −2.5944 † 
2 0.168 ± 0.036 0.259 ± 0.032 −2.5930 † 
3 0.165 ± 0.084 0.020 ± 0.011 −1.6597
4 0.110 ± 0.044 0.174 ± 0.026 1.1718
5 0.141 ± 0.048 0.023 ± 0.008 −2.5111 † 

Non-Colombian 
( N  = 42)

1  †  0.057 ± 0.017 0.012 ± 0.004 −2.6581 † 
2 0.132 ± 0.028 0.244 ± 0.028 −2.67242 † 
3 0.182 ± 0.088 0.019 ± 0.011 −1.7733
4 0.088 ± 0.038 0.184 ± 0.030 1.891
5 0.142 ± 0.046 0.026 ± 0.010 −2.4249

Colombian ( N  = 26) 1 0.030 ± 0.009 0.006 ± 0.002 −2.6278 † 
2 0.142 ± 0.029 0.161 ± 0.020 −2.13556 † 
3 0.116 ± 0.066 0.020 ± 0.010 −1.2895
4 0.116 ± 0.052 0.139 ± 0.023 0.3967
5 0.118 ± 0.043 0.017 ± 0.006 −2.1372 † 

Thailand ( N  = 20) 1 0.053 ± 0.016 0.013 ± 0.004 −2.49773 † 
2 0.152 ± 0.034 0.259 ± 0.030 −2.42017 † 
3 0.141 ± 0.078 0.016 ± 0.009 −1.6835
4 0.079 ± 0.034 0.139 ± 0.022 1.4794
5 0.105 ± 0.034 0.019 ± 0.008 −2.3153 † 

Brazil ( N  = 8) 1 0.060 ± 0.018 0.010 ± 0.003 −2.7435 † 
2 0.140 ± 0.030 0.229 ± 0.028 −2.5384 † 
3 0.184 ± 0.090 0.024 ± 0.013 −1.5954
4 0.108 ± 0.043 0.183 ± 0.033 1.3086
5 0.190 ± 0.064 0.033 ± 0.013 −2.4627 † 

  *   d S  and d N  are per every 100 sites.  
  †   Indicates significant with  P  < 0.05.  

  Table  4 
  Dimorphic substitutions in conserved blocks  

Block Mutation * Pos † Proportion ‡ Isolates § 

N/S 53 24:02:00  D61, B74 
K/Q 56 24:02:00  D61, B74 
V/G  ¶  57 25:01:00 B74
D/E 58 21:05 D61, B74, SC84, SC93, SC1
A/T 59 24:02:00  D61, B74 
G/S 83 24:02:00  D61, B74 
S/F  ¶  85 25:01:00 SC1

 1 F/V 105 24:02:00  D61, B74 
N/H  ¶  108 25:01:00 SC1
H/R  ¶  152 25:01:00 CU45
I/V  ¶  155 25:01:00 D48
T/S 156 19:07  Co68, SC84, SC93, SC1,  D61, 

B74, SC92
E/D 157 22:04  Co68, SC84, SC93, SC1 
A/T 186 24:02:00 Co68, SC92

 3 E/A 315 17:09 L8, D20, CU45, D48, D61, CU66, 
B74, G91, D103

D/G 329 22:04  Co68, SC84, SC93, SC1 
V/A 332 21:05  Co68, SC84, SC93, SC1,  SF56
D/Y  ¶  384 25:01:00  SC92 
D/N 389 13:13 Ci22, T28, B30, P54, SF56, CU57, 

CU65, Z80, CU81, CU83, D85, 
SC92, D102

I/V 409 25:01:00  SC92 
 5 S/N  ¶  412 25:01:00 D103

K/S 414 25:01:00  SC92 
S/A 415 25:01:00  SC92 
A/S 416 25:01:00  SC92 
G/S 417 25:01:00  SC92 
P/T 419 25:01:00  SC92 

  *   The least frequent amino acid residue is presented as denominator.  
  †   Position. Referred as to the sequence of  Pv  MSP-1 of Salvador I strain.  
  ‡   Exact number of Colombian isolates that presented the most frequent over the least fre-

quent amino acid residue.  
  §   Only those isolates that contain the least frequent substitution are listed. Isolates 

with linked substitutions are shown with special characters (bold, italic, and italic/bold/
underlined).  

  ¶   Newly identified substitutions.  
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Characteristically, only isolate SC92 had seven out of nine of 
the dimorphic substitutions identified for block 5 ( Table 4 ). 

        Variable blocks classification in Colombian isolates.   Results 
were consistent with previously reported data. 10  We identi fied 
six block 2a types (four basic and two recombinants), four block 
2b types (three previously reported and a new one), five block 
2c types (two basic and three recombinants), and four block 4
types (three basic and one recombinant) ( Table 5 ). The new 
block 2b type named by us as type 20, had an extra insertion 
of the tandem repeat GSSNS in the SC92 isolate. Additionally, 
seven isolates shared the P/S substitution in block 2c type 3. 
These last two findings helped to identify the two new alleles 
reported here (see below). Several new substitutions were 
identified in each block.    Interestingly, the recombinant types 

identified contained fragments from basic types previously 
reported but not detected in the 26 Colombian isolates (see 
supplemental data). 

        Allelic distribution.   The variable blocks included in 
the  Pv 200L fragment allowed us to classify the isolates in 
12 potential alleles pooled in seven groups. Alleles are 
presented in groups because the definite allele needs of other 
variable blocks are not included in the  Pv 200L fragment 
( Table 6 ). We found two non-previously described alleles, 
which we have designated as 32 and 33, to continue with the 
nomenclature proposed previously. 10  Allele 32 was designed 
as a new allele because the block 2b type 20 and only isolate 
SC92 had it. The reason why allele 33 was considered as new 
is because its mosaic organization of variable blocks 2 (a, b, 
and c) and 4 have not been previously described. A total of 
seven of the isolates (26.9%) were classified as allele 32 and 
all shared the dimorphic substitution P/S in the block 2c 
( Table 6 ). The majority of isolates (38.5%) were grouped as 
allele 6 or 20, meanwhile the isolate SC1 that is being used 
to develop a vaccine candidate was the third most frequent 
(11%). 

        Phylogenetic analysis.   The NJ tree, created with distances 
between amino acid sequences of conserved blocks, showed 
that the 26 Colombian isolates clustered in agreement with 
the allele distribution, which was determined with the specific 
combination of variable blocks ( Figure 2A ). The isolate 
SC1 clustered with the isolates SC84 and SC93, all of them 
collected from inhabitants of San Cipriano village. The NJ tree 
created with the 68  Pv 200L sequences showed that there is 
a slight trend to cluster in agreement with the geographical 
origin ( Figure 2B ), being more evident for the isolates 
from Colombia (COL), South Korea (SK), and Bangladesh 
(BD). Brazil (B) and Thailand (T) isolates displayed a more 
promiscuous clustering. The isolate SC92, collected from San 
Cipriano village, was the most distant of Colombian isolates, 
and clustered fairly close to Asian sequences ( Figure 2B ). 
A complementary analyses with Fst among Colombian, 
Brazilian, and Thai isolates revealed that there is a strong 
geographic structure; however, the lowest divergence (Fst = 
0.06453) was observed between Brazilian and Thailand iso-
lates, whereas Colombian isolates were clearly divergent 
(Fst = 0.1676 with Thailand and Fst = 0.2437 with Brazil). 

    Epitope conservation analysis.   At least five different 
T-helper epitopes have been previously defined toward the 
N-terminal portion of  Pv MSP-1, and four of them are included 
within the  Pv 200L fragment. 23  All of them showed a high 
conservation pattern along the 68  Pv 200L amino acid sequences 
( Table 7 ). 

  Table  5 
  Classification of variable blocks  

Type  #  (%) Isolates

Block 2a
Basic 1 1 (3.8) SC92
Basic 2 4 (15.4) Co68, SC84, SC93, SC1
Basic 3 2 (7.7) D61, B74
Basic 4 7 (26.9) L8, D20, CU45, D48, CU66, G91, D103
Rec 6 10 (38.5) Ci22, T28, B30, P54, SF56, CU57, Z80, CU81, 

CU83, D102
Rec 7 2 (7.7) CU65, D85

Block 2b
Type 20 * 1 (3.8) SC92
Type 14 7 (26.9) L8, D20, CU45, D48, CU66, G91, D103
Type 15 12 (46.2) Ci22, T28, B30, P54, SF56, CU57, CU65, Z80, 

CU81, CU83, D85, D102
Type 16 2 (7.7) D61, B74
Type 19 4 (15.4) Co68, SC84, SC93, SC1

Block 2c
Basic 2 1 (3.8) Co68
Basic 3 19 (73.1) L8, †  D20, †  CU45, †  D48, †  CU66, †  G91, †  

D103, †  Ci22, T28, B30, P54, SF56, CU57, 
CU65, Z80, CU81, CU83, D85, D102

Rec 5 2 (7.7) D61, B74
Rec 7 1 (3.8) SC92
Rec 10 3 (11.6) SC84, SC93, SC1

Block 4
Basic 1 7 (26.9) L8, D20, CU45, D48, CU66, G91, D103
Basic 2 4 (15.4) Co68, SC84, SC93, SC1
Basic 3 1 (3.8) SC92
Rec 5 14 (53.9) Ci22, T28, B30, P54, SF56, CU57, CU65, Z80, 

CU81, CU83, D85, D102, D61, ‡  B74 ‡ 
  #   = Number of block types.  
  *   Newly identified insertion of GSSNS after fifth amino acid.  
  †   Seven isolates had the P/S mutation in the fourth amino acid.  
  ‡   Two isolates had the four linked substitutions I/V, D/E, V/E, and D/A at positions 3, 33, 

39, and 40.  

  Table  6 
  Frequency of the  Pv Msp-1  Pv 200L alleles identified in the Colombian Pacific coast  

Block 2a Block 2b Block 2c Block 4 Allele * Isolates Frequency (%)

Rec 6 Type 15 Basic 3 Rec 5  6, 20 Ci22, T28, B30, P54, SF56, CU57, Z80, CU81, CU83, D102 38.5
Basic 4 Type 14 Basic 3 † Basic 1  33  ‡ L8, D20, CU45, D48, CU66, G91, D103 26.9
Basic 2 Type 19 Rec 10 Basic 2  7, 21 SC84, SC93, SC1 11.5
Basic 3 Type 16 Rec 5 Rec 5  5, 11, 12, 13 D61, B74 7.7
Rec 7 Type 15 Basic 3 Rec 5  25 CU65, D85 7.7
Basic 1 Type 20 § Rec 7 Basic 3  32 SC92 3.8
Basic 2 Type 19 Basic 2 Basic 2  31 Co68 3.8

  *   Allele is defined by the specific arrangement of variable blocks. Several alleles mean that any of them contain that specific combination of blocks 2a, 2b, 2c, and 4. To define the exact allele needs 
variable blocks that are not included in the  Pv 200L sequence.  

  †   P/S mutation in the fourth amino acid across the seven isolates.  
  ‡   New alleles.  
  §   Newly identified insertion of repeat GSSNS after fifth amino acid.  
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  Figure  2.    Neighbor-joining (NJ) phylogenetic trees of  Pv 200L. Trees were built with edited-joined sequences of conserved blocks 1, 3, and 5. 
( A ) NJ tree of the 26  Pv 200L sequences from Colombian  Plasmodium vivax  isolates. Isolates alleles are denoted as follows: ▲ (Alleles 6 or 20), 
D (Allele 33), ¨ (Alleles 7 or 21), à (Alleles 8, 11, 12 or 13), • (Allele 31), and ■ (Allele 32). ( B ) NJ trees of trees of 68  Pv 200L sequences, including 
42 obtained from  Pv MSP-1 cds available in Genbank and the 26 Colombian isolates (▼COL).    

         DISCUSSION 

 As expected, the  Pv 200L fragment of  Pv MSP-1 showed to 
be polymorphic in sequence and in size, which resembles very 
well the mosaic structure previously described by others, with a 
polymorphism greatly concentrated in fragments 2 and 4, sur-
rounded by the well-conserved blocks 1, 3, and 5. 10  However, 
regardless of this polymorphism, there is some evidence of 
purifying selection. Although this study focused only in the 
 Pv 200L fragment, our results may indicate a more complex 
dynamic of selection acting on the  Pv MSP-1 polymorphism 

than previously thought. 24  The overall nucleotide polymor-
phism and the genetic diversity found in the isolates from the 
Colombian Pacific coast was substantially lower than in those 
from Thailand and Brazil, probably due in part to the lower/
seasonal transmission and geographic isolation. Most malaria 
cases studied here occur in close rural communities with high 
internal mobility but low foreign influence from potentially 
 P. vivax -infected international travelers. This geographic isola-
tion also could explain the pattern of Fst. However, presence 
of imported parasites cannot be completely excluded. SC92 
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was the most distant Colombian isolate; it clusters with Asian 
sequences, and is a non-previously described allele. These 
observations might indicate the introduction of  Pv MSP-1 
alleles from Asian  P. vivax . This possibility is not extraordi-
nary given that Buenaventura is the main entrance for most 
of the Colombian market arriving through the Pacific Ocean. 
Inter- and intra-allelic recombination can be observed among 
the Colombian isolates, a factor that can be attributable to 
the active internal migration of  P. vivax -infected patients and 
multiplicity of infection within the study area, which might be 
also the explanation why there is a low correlation between 
Colombian alleles and the geographical origin. 

 The distribution of Colombian isolates in the NJ tree resem-
bled very well the allele groups identified. The former was built 
based exclusively in conserved blocks 1, 3, and 5; meanwhile, 
the allele is defined exclusively in the specific combination of 
variables blocks 2a, 2b, 2c, and 4. Such a specific combination of 
variable blocks (allele), in some cases, was associated with spe-
cific dimorphic substitution observed in conserved residues of 
either variable or conserved blocks. For example, 1) all isolates 
having the block 2c basic 3 with the substitution P/S in the 
fourth position were finally classified as being allele 33, mean-
while the remaining basic 3 (without the P/S) substitution were 
classified as alleles 6 or 20; and 2) a similar effect was observed 
with isolates D61 and B74, which always matched together 
for variable block 2a–c and shared nine exclusively linked 
dimorphic substitutions, five of them in conserved block 1 
and four in variable block 4. Despite no clear geographical 
relationship, the similarity between them is so strong that it is 
possible to propose that the isolate from Buenaventura (B74), 
where malaria transmission does not occur, was acquired in La 
Delfina (D61), which is a near rural spot for local tourism with 
active malaria transmission. 

 Several non-previously described dimorphic substitutions 
and two new alleles were found suggesting that  Pv 200L from 
 Pv MSP-1 is under evolutionary forces non-equally distributed 
along the whole fragment. Such evolutionary forces, which 
might be related to the immune response, may have generated 
these new alleles by selecting new combinations generated by 
mitotic recombination in the asexual blood stages. 

 Besides the presence of highly conserved fragments in this 
protein, several other factors indicate that this protein could 
be a suitable target for a vaccine: First, this protein is highly 
antigenic as indicated by its recognition by the great major-
ity of individuals from endemic communities in Brazil and 
Colombia. 7  Second, it has been demonstrated that naturally 
acquired IgG antibodies directed to the N-terminal region of 
 Pv MSP-1 are associated with clinical protection to  P. vivax -
malaria. 25  Third, previously defined promiscuous T-helper 

epitopes are located at highly conserved portions of  Pv 200L 
and displayed a high conservation pattern across the 68 
sequences of  Pv 200L. 

 This is the first study of  Pv 200L polymorphism in Colombia. 
Although the number of isolates is limited, this is the  Pv MSP-1 
polymorphism study with the highest number of  P. vivax  iso-
lates from the same geographic origin. Such an approach has 
allowed us to confirm the mosaic structure of  Pv MSP-1 and 
its inter- and intra-allelic recombinant nature, to illustrate 
its specific association with dimorphic substitutions in con-
served blocks, and describe the wide geographic distribution 
of highly conserved epitopes, despite the high level of poly-
morphism in this fragment. Further studies with a larger num-
ber of isolates from other endemic regions of the country and 
the planet would be required to assess genetic diversity with 
greater accuracy, linkage disequilibrium, and population struc-
ture. The presence of highly conserved blocks in this fragment 
of the  P. vivax  MSP-1 protein has important implications for 
the development of  Pv 200L as a subunit vaccine candidate. 

 Received September 2, 2009. Accepted for publication December 23, 
2009. 
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Abstract

Background: Transposition is disruptive in nature and, thus, it is imperative for host genomes to evolve
mechanisms that suppress the activity of transposable elements (TEs). At the same time, transposition also provides
diverse sequences that can be exapted by host genomes as functional elements. These notions form the basis of
two competing hypotheses pertaining to the role of epigenetic modifications of TEs in eukaryotic genomes: the
genome defense hypothesis and the exaptation hypothesis. To date, all available evidence points to the genome
defense hypothesis as the best explanation for the biological role of TE epigenetic modifications.

Results: We evaluated several predictions generated by the genome defense hypothesis versus the exaptation
hypothesis using recently characterized epigenetic histone modification data for the human genome. To this end,
we mapped chromatin immunoprecipitation sequence tags from 38 histone modifications, characterized in CD4+ T
cells, to the human genome and calculated their enrichment and depletion in all families of human TEs. We found
that several of these families are significantly enriched or depleted for various histone modifications, both active
and repressive. The enrichment of human TE families with active histone modifications is consistent with the
exaptation hypothesis and stands in contrast to previous analyses that have found mammalian TEs to be
exclusively repressively modified. Comparisons between TE families revealed that older families carry more histone
modifications than younger ones, another observation consistent with the exaptation hypothesis. However, data
from within family analyses on the relative ages of epigenetically modified elements are consistent with both the
genome defense and exaptation hypotheses. Finally, TEs located proximal to genes carry more histone
modifications than the ones that are distal to genes, as may be expected if epigenetically modified TEs help to
regulate the expression of nearby host genes.

Conclusions: With a few exceptions, most of our findings support the exaptation hypothesis for the role of TE
epigenetic modifications when vetted against the genome defense hypothesis. The recruitment of epigenetic
modifications may represent an additional mechanism by which TEs can contribute to the regulatory functions of
their host genomes.

Background
Transposable elements (TEs) are mobile DNA sequences
that can replicate to extremely high genomic copy num-
bers. TEs are also widely distributed; they have been
found within genomes representing all major eukaryotic
lineages. Accordingly, TEs have had a profound impact
on the structure, function and evolution of their host
genomes. In this study, we explore the relationship

between TEs and the epigenetic regulatory mechanisms
that are thought to have evolved in response to their
proliferation in eukaryotic genomes [1].
Transposition is inherently disruptive in nature.

Therefore, in order to ensure their own survival, host
genomes must have evolved various repressive mechan-
isms to guard against deleterious TE insertions. Epige-
netic regulatory modifications represent a broad class of
silencing mechanisms that may have come into exis-
tence in response to the need to repress TEs [1-4]. The
notion that epigenetic regulatory systems evolved to
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silence TEs is known as the ‘genome defense hypothesis’
[4] and this hypothesis can be taken to make several
predictions regarding the epigenetic modifications of
TEs. According to the genome defense hypothesis, it be
may expected that: (1) younger TEs, that is those that
are potentially active, will bear more epigenetic modifi-
cations than older inactive TEs; and (2) TEs will bear
primarily repressive (gene silencing) modifications rather
than active modifications which are associated with gene
expression.
An alternative hypothesis to the genome defense

model is what we refer to as the ‘exaptation hypothesis’.
An exaptation describes an organismic feature that cur-
rently performs a function for which it was not origin-
ally evolved [5]. In the case of TEs, it is well known that
a number of formerly selfish or parasitic element
sequences have been exapted to provide regulatory and/
or coding sequences that serve to increase the fitness of
the host [6,7]. For instance, TEs can regulate host genes
by serving as the targets of epigenetic histone modifica-
tions that spread into adjacent gene loci [2,8]. TE
sequences that have been exapted are often anomalously
conserved, due to the fact that they are preserved by
natural selection after acquiring a function for the host
genome [9]. For this reason, exapted TEs tend to be
relatively ancient compared to TEs genome-wide.
Consideration of the exaptation hypothesis for TEs in

epigenetic terms also yields several specific predictions.
According to the TE exaptation model, it is expected
that: (1) older and more conserved TEs will bear more
epigenetic marks than younger TEs; (2) both active and
repressive histone modifications will be targeted to TEs;
and (3) TEs closer to genes will bear more histone mod-
ifications than more distal TEs.
Our current understanding of the relationship

between TEs and epigenetic histone modifications is
mainly derived from studies on plants and fungi [10-17].
The vast majority of evidence from these studies points
to the genome defense hypothesis as the best explana-
tion for how and why TEs are epigenetically modified.
For instance, in Arabidopsis thaliana, TE insertions can
trigger de novo formation of heterochromatin by recruit-
ing repressive histone modifications [2,10]. Similarly, in
the yeast Schizosaccharomyces pombe, a classical repres-
sive histone tail modification histone H3 lysine 9 tri-
methylation (H3K9me3) is known to induce the
formation of heterochromatin upon a TE insertion [18].
For both plants and yeast, RNA transcripts generated
from TEs are thought to trigger an RNA interference
related pathway that leads to their epigenetic suppres-
sion [13,14].
To date, only a handful of studies have investigated

the relationship between mammalian TEs and epigenetic
histone modifications. These studies have found that

mammalian TEs are targeted primarily by repressive his-
tone tail modifications. The first indication of the invol-
vement of repressive histone modifications with human
TEs was unexpectedly discovered by Kondo and Issa in
2003 who found that H3K9me2 is targeted primarily to
Alu elements in the human genome [19]. A couple of
years later, Martens et al. reported varying levels of TE
enrichment for repressive marks in repetitive DNA in
mouse embryonic stem cells [20]. Recently, a genome-
wide map of several histone tail modifications in mouse
was published by the Bernstein and Lander groups
[8,21]. They found that intracisternal A particle (IAP)
and early transposon (ETn) elements were the only
families of TEs enriched in repressive histone marks.
IAP and ETn are young and active lineages of long
terminal repeat (LTR) - retrotransposons and their tar-
geting by repressive modifications is consistent with the
host’s need to suppress their activity. Another recent
study in the mouse by the Jenuwein group also found
an enrichment of the repressive mark H3K27me3 in
silent genes and nearby short interspersed nuclear ele-
ments (SINEs) [22]. Thus, the majority of evidence to
date points to the genome defense hypothesis as the
best explanation for the role of epigenetic modifications
targeted to mammalian TE sequences.
Recently, a series of chromatin immunoprecipitation

followed by high-throughput sequencing (ChIP-Seq)
experiments have been performed by the Keji Zhao
group, which together yield a genome-wide map of his-
tone tail modifications in human CD4+ T cells [23,24].
These data provide a unique opportunity to qualitatively
and quantitatively investigate the relationship between
epigenetic histone modifications and human TEs, and to
test the predictions of the genome defense hypothesis
versus the exaptation hypothesis.

Results and discussion
Characterization of TE histone modifications
Previously, a series of ChIP-Seq analyses were used to
determine the genome-wide distributions of 38 histone
tail modifications in human CD4+ T cells [23,24]. For
these studies, sequence tags corresponding to specifically
modified histones were characterized using the Illumina-
Solexa platform and the tags were mapped to the human
genome sequence using the software provided by the
vendor. This approach only yields unambiguously
mapped sequence tags that correspond to unique geno-
mic locations. In other words, all tags that map to repeti-
tive sequences are eliminated from consideration. Since
we are analysing TEs here, many of which are repetitive
DNA sequences, we used our own mapping procedure
(see Methods) to recover many of the sequence tags that
map to more than one location in the genome and there-
fore had been discarded in the previous studies.
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Our tag-to-genome mapping procedure yielded a total
of 369,225,759 mapped sequence tags over the 38 his-
tone modifications. This figure represents an increase of
144,125,239 tags (64%) over the previously employed
mapping procedure, for an average increase of 3,792,769
tags per modification. Differences in the numbers of
mapped tags for each histone modification can be seen
in Additional file 1, Figure S1. For human TE sequences,
we mapped an additional 77,065,760 tags over the 38
modifications.
The genome defense hypothesis for TE epigenetic

modifications predicts that TEs will bear primarily
repressive, rather than active, histone tail modifications,
whereas the exaptation hypothesis holds that both active
and repressive histone modifications will be targeted to
TEs. The histone tail modifications analysed here were
characterized as active or repressive based on their
enrichment in genes with different CD4+ T cell expres-
sion levels using a previously described approach [24].
To apply this approach, we established presence/absence
calls for each modification in the promoter regions of
human genes by comparing promoter modification tag
counts to corresponding genomic background tag
counts as described in the Methods. We then calculated
the fold enrichment of expression by comparing the
average CD4+ T cell expression level of genes marked as
present for a particular modification with the average
expression level of genes that do not display any enrich-
ment of the same modification (Additional file 1, Figure
S2). There are 28 histone tail modifications character-
ized as active using this approach and 10 modifications
characterized as repressive. This method reveals the
effects of individual histone modifications on gene
expression, presumably based on how they help to
determine open versus closed chromatin states. In other
words, active modifications are associated with the
active expression of human gene sequences, whereas
repressive modifications are associated with gene silen-
cing. Accordingly, the genome defense hypothesis would
predict the targeting of potentially active TEs with
repressive histone tail modifications.
A variety of TEs are found in the human genome [25].

Retrotransposons constitute the vast majority of these
sequences with Alu and L1 being the youngest and
most abundant families and MIR and L2 being older
inactive lineages of SINEs and LINEs, respectively. LTR
retrotransposons are a less abundant but more diverse
group of retrotransposons, with very few extant subfa-
milies. DNA-type elements make up a distinct class of
TEs, which are substantially less abundant than retro-
transposons in the human genome. We evaluated the
relative enrichment of each histone tail modification
over six classes (families) of human TEs: Alu, L1, LTR,
DNA, L2 and MIR (Figure 1). To do this, a fold-change

approach similar to that used to characterize active ver-
sus repressive modifications was used. For each histone
tail modification, the TE family-specific tag counts were
compared against the genomic background for that
modification (Methods). Thus, the fold-change values
represent the extent to which TE families are enriched
or depleted for each of the 38 histone tail modifications.
This generated a total of 228 (6 × 38) TE-by-modifica-
tion fold-change values, all of which were statistically
significant (Additional file 1, Table S1; G test 0 = P <
2.1e-5). TE epigenetic histone modifications vary widely
according to the TE family, as well as the identity of the
specific modification. There are numerous active and
repressive modifications that are enriched for different
TE families. Some families, such as Alu and L2, appear
to be enriched for active modifications, whereas others,
such as L1 and LTR, are depleted for active modifica-
tions and/or enriched for repressive modifications.
Cleary, human TE sequences are bound by histones that
are subject to numerous active and repressive epigenetic
modifications.
Human TEs are distributed non-randomly across the

genome with respect to gene locations and guanine-
cytosine (GC) content. For instance, Alu elements are
enriched in and around genes in high GC rich regions
of the genome, whereas L1 elements are found primarily
in AT rich DNA in intergenic regions [25]. Thus, using
the entire genomic background of histone modification
tag counts to compute the modification enrichments for
TE families with distinct genomic distributions could
bias the results. In order to control for this possibility,
we re-calculated the enrichment of histone modifica-
tions by comparing the histone modification tag counts
of each TE to a background tag count computed from a
genomic window encompassing that TE (Methods). This
local approach to computing TE histone modification
enrichments does not qualitatively change the results
obtained when compared to the global approach.
Indeed, the TE-histone modification enrichment ratios
computed using global versus local histone modification
background tag counts are highly correlated (0.91 = r =
0.99) for each of the six classes (families) of TEs evalu-
ated (Additional file 1, Figure S3). For comparison, the
relative enrichments of TE-histone tail modifications
calculated in this way are shown in Additional file 1,
Figure S4. Whether the TE-histone modification enrich-
ments are computed using global or local modification
tag counts, human TEs show evidence of being targeted
by a number of different active and repressive epigenetic
marks.
Active versus repressive TE histone modifications
The genome defense hypothesis for TE epigenetic modi-
fications predicts that TEs that are capable of transposi-
tion will be targeted by repressive histone modifications
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in order to suppress their activity. The exaptation
hypothesis, on the other hand, predicts that older and
more conserved TEs will bear more epigenetic marks.
These older TEs will have lost the ability to transpose
and are more likely to have been exapted to play some
role for their host genome. To distinguish between
these models, we correlated the histone tail modification
enrichment for specific TE families with the histone tail
modification gene expression enrichment values. The
genome defense hypothesis would predict a negative
correlation since repressive modifications should target
actively expressing TEs with the potential to transpose,
whereas the exaptation model may predict a positive
correlation or no correlation at all. None of the TE
families shows a statistically significant relationship
between TE and gene expression enrichment for indivi-
dual histone modifications (Figure 2 and Additional file
1, Table S2). The same analysis was done using the
local approach to computing the histone modification
background tag counts, as described in the previous sec-
tion, and the results are qualitatively similar when this
technique is applied (Additional file 1, Figure S5). These
results are not consistent with the genome defense
hypothesis, but it is unclear whether they reflect the
absence of genome defense, exaptation or some combi-
nation thereof.
To further evaluate the active versus repressive TE

modification predictions for the genome defense versus
exaptation hypotheses, we grouped and summed the his-
tone tail modification tags into the 28 active and 10

repressive modifications. The enrichment of active and
repressive modifications was calculated by co-locating
the tags from each class with TE sequences from each
family and comparing the TE family-specific active or
repressive tag counts with the genomic background. The
data shows considerable variation between active and
repressive modification enrichments in different lineages
of TEs (Figure 3). Alus and L1s are significantly
depleted in both active and repressive modifications,
with relatively fewer active modifications. LTR elements
show depletion for active modifications and enrichment
for repressive modifications, which is entirely consistent
with the predictions of the genome defense model. On
the other hand, L2 and mammalian-wide interspersed
repeat (MIR) elements show enrichment for both active
and repressive modifications consistent with the exapta-
tion model.
The data on active versus repressive histone modifica-

tions for TE families also bears on the predictions relat-
ing epigenetic modifications to the ages of TEs. The
genome defense hypothesis predicts that potentially
active younger TEs will bear more epigenetic modifica-
tions than older TEs, while the exaptation model pre-
dicts that more ancient conserved TEs will bear more
epigenetic modifications. The different families of TEs
shown in Figure 3 have different relative ages, on aver-
age, with Alu elements being the youngest and MIRs
being the oldest [young-to-old: Alu-L1-LTR-DNA-L2-
MIR] [25]. The enrichments of both active and repres-
sive modifications are positively correlated with the age

Figure 1 Enrichment or depletion of 38 individual histone modifications in transposable element (TE) families. Log2 normalized ratio of
the number of tags of each of the 38 histone modifications located within each TE family over the total number of tags taken as the genomic
background is shown. Statistical significance determined by the G test (see Additional file 1, Table S1).
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Figure 2 Correlation between enrichment of histone modifications in transposable element (TE) families and for human gene
expression. The enrichment of 38 histone modifications in human gene expression (Additional file 1, Figure S2) is plotted against the same in
six TE families (Figure 1). See Methods for details and Additional file 1, Table S2 for statistical significance. Pearson correlation coefficient values
(r) are shown.
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of the TE families (Figure 3); in other words, older
families of elements tend to be more modified than
younger families. The same analysis was done using the
local approach to computing the histone modification
background tag counts, as described in the previous sec-
tion, and the results are qualitatively similar when this
technique is applied (Additional file 1, Figure S6). These
data are consistent with the exaptation hypothesis for
TE modifications, as opposed to the genome defense
model, and suggest that many older TE sequences may
be preserved, at least in part, due to the contributions
they make the epigenetic environment of the human
genome.
TE ages and histone modifications
The divergence of an individual TE insertion from its
subfamily consensus sequence is a barometer of the
time elapsed since its insertion and is, thus, a good mea-
sure for its relative age [25]. As shown in Figure 3, a
comparison between TE families indicates a positive
correlation between element ages and the extent of his-
tone tail modifications. This observation is consistent
with the exaptation hypothesis, which predicts that
older TEs will bear more epigenetic modifications. How-
ever, these results may be confounded by comparisons
between families made up of very different kinds of TEs
with distinct insertion mechanisms, genomic

distributions and life histories. In order to evaluate the
relationship between element ages and histone tail mod-
ifications in a more controlled way, we compared the
extent of TE histone modifications with the relative ages
of TE insertions within the Alu and L1 families of ele-
ments. The Alu and L1 families were chosen for two
reasons: first, they are numerous and abundant provid-
ing statistical resolution on the question; secondly, and
more importantly, they have well-characterized subfami-
lies the relative ages of which are known [25-27]. The
relative ages of individual Alu and L1 insertions can be
inferred by comparing their sequences to the consensus
sequences of their subfamilies (Additional file 1, Figures
S11 and S12) and these data are provided in the output
of the RepeatMasker program used to annotate the ele-
ments. We computed the average element-to-subfamily
consensus sequence divergence for all Alu and L1 subfa-
milies and compared these values to the extent of active
and repressive histone modifications that map to mem-
bers of the individual subfamilies.
The within-family analyses of the relationship between

the relative ages of Alu elements and their histone mod-
ifications yield results that are most consistent with the
exaptation hypothesis (Figure 4a). Alu element ages are
significantly positively correlated with both active (r =
0.94, P = 4e-20) and repressive (r = 0.92, P = 9e-18)
histone modifications (Additional file 1, Table S4).
These data indicate that members of older Alu subfami-
lies are subject to more active and repressive modifica-
tions, which stands in contrast to the prediction of the
genome defense model that younger elements should be
more repressed.
The relationships between the ages of L1 elements

and their histone modification states appear to support
both the genome defense and exaptation models (Figure
4b). The ages of L1 elements are negatively correlated
with repressive modifications (r = -0.39, P = 5e-6) and
positively correlated with active modifications (r = 0.71,
P = 4e-20) (Additional file 1, Table S4). The relative
abundance of repressive modifications of younger L1s is
consistent with the genome defense model, whereas the
data for the increasing active modifications of older L1
elements are consistent with the exaptation model.
Taken together, the within-family data for Alu and L1
elements display a complex view of the relationship
between TE ages and histone modifications suggesting
interplay between the genome defense and exaptation
hypotheses.
TE-gene locations and histone modifications
The exaptation hypothesis predicts that TEs proximal to
host genes would bear more histone modifications than
those that are distal to genes, since these modifications
are more likely to effect the regulation of the genes. In
order to test this prediction, we analysed the Alu and

Figure 3 Enrichment or depletion of active and repressive
histone modifications in retrotransposons. Histone modifications
were classified as active or repressive based on expression
enrichment (Additional file 1, Figure S2). The log2 normalized ratios
of the number of tags of active or repressive modifications located
within each family of retrotransposons over the total number of
tags taken as the genomic background is shown. Retrotransposon
families are arranged according to their relative ages. Spearman
rank correlations (r) between active and repressive transposable
element (TE)-modification enrichments (depletions) and the relative
ages of TE families are shown.
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L1 TE families and associated every TE sequence to the
nearest gene. The corresponding tag counts of active
and repressive histone modifications in TEs were binned
according to their distance from genes. Only uniquely
mapped TE-tags that could be assigned unambiguous
genomic locations were used for this analysis. Alu and
L1 were chosen both for their genomic abundance and
for the fact that they have distinct genomic distribu-
tions: Alus are enriched near genes, whereas L1s are
found more often in intergenic regions. For both Alu
and L1, we observed negative correlations (Alu active r
= -0.38, P = 5e-5, Alu repressive r = -0.67, P = 9e-14,
L1 active r = -0.27, P = 0.003, L1 repressive r = -0.01,
P = 0.46) between TE insertion distances from genes
and histone modifications (Figure 5 and Additional file
1, Table S3). Moreover, TEs that lie within gene bound-
aries are modified at much higher levels compared to
those outside of genes. These findings are in agreement
with the exaptation hypothesis. The same analysis was
done using both unique and repetitively mapping tags,
and the results are qualitatively unchanged when this
more comprehensive approach is taken (Additional file
1, Figure S7).

Conclusions
Comparison with previous results
While most work to date on mammalian histone modifi-
cations has focused on non-repetitive DNA, there have
been four recent studies on the histone modification sta-
tus of mammalian repetitive sequence elements, three in
mouse [8,20,22] and one in human [19]. The previous
studies focused on repressive histone modifications and

they turned up a number of cases where mammalian
TEs, including SINEs, LTR and DNA elements, were
found to be enriched for specific histone modifications.
We compare the results of these previous studies with
the findings reported here in Table 1. Interestingly, the
results reported here agree and disagree with those of
previous studies in equal measure. When specific his-
tone modifications are considered for individual TE
classes, there are six cases where histone modifications
previously identified to be enriched for a given TE class
are enriched in the same class in our study, and there
are six cases where previously enriched TE-modifica-
tions are found to be depleted here. These discrepancies
underscore the extent to which histone modifications,
particularly those that target TEs, may be cell-type spe-
cific, since the different studies that are being compared
analysed different cell types. Indeed, the study of Mar-
tens et al. evaluated multiple cell types and found that
histone modifications of TEs were more variable across
cell types than those of tandem satellite repeats [20].
This was attributed to the fact that tandemly repeated
DNA, such as that found around centromeres, form
more stable chromatin architectural elements and tan-
dem repeats are present in more constitutively hetero-
chromatic environments. Interspersed repeats, on the
other hand, may be more prone to cell-type specific in
situ formation of heterochromatic regions dispersed
among the euchromatic portion of the genome. This has
been seen in plants where insertions of TEs lead to the
localized spread of repressive chromatin [2]. In any case,
a deeper understanding of how human TEs are epigen-
etically modified, along with the regulatory implications,

Figure 4 Age of Alu and L1 elements versus their histone modifications. Relative ages of Alu (a) and L1 (b) subfamilies, as determined by
divergence from subfamily consensus sequences, are plotted against their respective tag counts normalized by genomic length. Spearman rank
correlations (r) between tag counts and percent divergence are shown for active (red) and repressive (green) modifications separately
(significance values are in Additional file 1, Table S4).
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will require a comparison of TE-modifications across a
variety of cell types.
Exaptation as a local or global phenomenon
Exaptation refers to the evolutionary process whereby an
organismic feature comes to play some role for which it
was not originally evolved or selected [5]. TEs are pri-
marily selfish genetic elements that evolved solely virtue
of their ability to transpose and thus out-replicate the
host genomes in which they reside [28,29]. They do not
owe their evolutionary success to any ability to provide
functional utility to their hosts. However, at this time it
is widely recognized that a number of individual TE
sequences have been exapted to play some positive role
for their host genomes [6,7]. Exaptation of individual TE
sequences may include cases where TEs become incor-
porated into host protein coding genes or cases where

TEs provide regulatory sequences that help to control
the expression of host genes. Such examples of TE exap-
tation are very much in keeping with the original defini-
tion of exaptation as referring to a series of individual,
and largely contingent, cases. However, the genome-
scale approach taken here to exploring the implications
of TE epigenetic modifications entails the consideration
of exaptation as a more global, rather than a strictly
local, phenomenon. This is because there are particular
features of TEs, specifically their ability to recruit epige-
netic modifications, which are shared across many ele-
ments over the entire genome and which, in turn, allow
individual insertions to be exapted. This does not mean
that all TEs in the genome are exapted. Rather, the data
reported here suggest that there are genome-scale sig-
nals, in terms of how the TEs are epigenetically

Figure 5 Transposable element (TE) distance from genes versus histone modifications. Distances between Alu (a and b) and L1 (c and d)
sequences and the nearest genes are binned in 10 kb bins and plotted against the number of active (a and c) or repressive (b and d) histone
modification tags mapped to the TE sequences normalized by their lengths. Spearman rank correlations (r) are shown and significance values
are in Additional file 1, Table S3.
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modified, which indicate an overall potential for indivi-
dual human TE sequences to be exapted. Consideration
of exaptation as a global or genome-scale phenomenon
as it relates to TEs reveals how inherent features of the
elements, such as their ability to be transcribed or their
dispersed repetitive nature, serve to recruit the very epi-
genetic machinery that will allow them to affect the reg-
ulation of nearby genes. Having established this global
pattern of TE epigenetic exaptation, further inquiry can
now be used to identify individual cases of interest. We
give specific examples of how individual cases of TE epi-
genetic exaptation may be uncovered in the following
section.
Caveats and future directions
As mentioned previously, TE epigenetic modifications
are certain to be cell-type specific to some extent. Here,
we only analysed histone modifications of human TEs
in a single cell type - CD4+ T cells. As more and more
genome-scale histone modification data sets become
available, it will become possible to systematically evalu-
ate changes in the histone modification states of TEs
across tissues. This is particularly relevant for a deeper
interrogation of the genome defense hypothesis. Vertical
transmission (inheritance) of novel TE insertions, along
with their mutagenic effects, is dependant upon trans-
position events that occur in the germline, as opposed
to TE insertions in somatic tissue, which is an evolu-
tionary dead end. For this reason, one may expect that

the most vigorous genome defense mechanisms would
be employed in germline tissue. Thus, it is possible that
the predictions of the genome defense model, which are
not supported for the most part in this study, may be
borne out if germline tissue was evaluated in the same
way as done here for somatic tissue. However, there is
some evidence that suggests this may not be the case
for human TEs. Alu elements, which make up a huge
fraction of the methylated DNA in the human genome
in somatic tissues, are actually hypomethylated in the
male germline [30]. This may represent an evolutionary
strategy for the elements, whereby the TEs mitigate
their deleterious effects in somatic tissue by reducing
transposition therein and yet allow for the transmission
of new insertions across generations by relaxing element
suppression in the germline [31]. This kind of strategy
can be seen for P elements in Drosophila, which utilize
alternative splicing to encode a repressor protein in
somatic tissue and a transposase in the germline [32].
Nevertheless, a better understanding of the role epige-
netic histone modifications in the repression of heritable
TE insertions will require the analysis of germline
tissue.
The genome-wide mapping of 38 histone modifica-

tions in the human genome enabled us to thoroughly
investigate the relationship between TEs and epigenetic
histone modifications. We tested several predictions
generated by two competing hypotheses - the genome
defense hypothesis and the exaptation hypothesis - in
the light of epigenetic histone modifications. Consistent
with the exaptation hypothesis, we found that the over-
all enrichment of histone modifications is positively cor-
related with the increasing age of TE insertions, and
TEs proximal to human genes bear more histone marks
than TEs distal to genes. We also found support for the
genome defense hypothesis for certain cases, but the
majority of our data and analyses support the exaptation
hypothesis.
Thus, for the human genome, some epigenetic modifi-

cations of TEs may serve to regulate the expression of
host genes rather than to silence the elements them-
selves. More definitive proof of epigenetically related
exaptation of TEs will require the analysis of individual
cases whereby specific TE sequences have been exapted
to regulate host genes. These could include TE-derived
promoter sequences, which provide local regulatory
sequences and transcription start sites to host genes,
and/or TE-derived enhancers that regulate genes from
more distal locations. An evaluation of how such TE-
derived regulatory sequences are epigenetically modified
across different cell types along with an examination of
how cell-type specific modifications correspond to
expression differences should help to reveal epigenetic
routes by which TEs influence their host genomes.

Table 1 Comparison of transposable element (TE) histone
modification enrichments found in this study with those
of previous studies.

Enriched in previous studya Status in current studyb

Kondo and Issa 2003 (Human) [19]

SINE: H3K9me2 Depleted

Martens et al. 2005 (Mouse) [20]

SINE: H3K9me3 Depleted

SINE: H3K27me3 Enriched

SINE: H4K20me3 Depleted

LTR: H3K9me3 Enriched

LTR: H3K27me3 Enriched

LTR: H4K20me3 Depleted

DNA: H3K27me3 Enriched

DNA: H4K20me3 Depleted

Mikkelsen et al. 2007 (Mouse) [8]

LTR: H3K9me3 Enriched

LTR: H4K20me3 Depleted

Pauler et al. 2008 (Mouse) [22]

SINE: H3K27me3 Enriched
a TE classes (SINE, LINE, LTR or DNA) that were shown to be enriched for
specific histone modifications (as shown) in previous studies.
b Status of the same TE class-histone modification pairs as enriched or
depleted in this study
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Methods
Tag-to-genome mapping
The genome-wide distributions of 38 histone tail modifi-
cations were previously evaluated in human CD4+ T
cells using ChIP-Seq with the Illumina-Solexa platform
[23,24]. The mapping protocol used in these studies did
not allow for the consideration of histone modifications
at repetitive DNA sequences, since they removed redun-
dantly mapping sequence tags. Therefore, we employed
a heuristic mapping procedure for the data generated in
these ChIP-Seq studies in order to be able to analyse
sequence tags that map to repetitive DNA. To do this,
we downloaded 140 sequence tag libraries correspond-
ing to the 38 previously characterized CD4+ T cell his-
tone tail modifications from the NCBI Short Read
Archive (SRP000200 and SRP000201) [33]. Sequence
reads and their respective quality scores were converted
from Illumina-Solexa format to the standard (Sanger)
fastq format, and the MAQ (Mapping and Alignment
with Qualities) program was used to map each fastq
library to the March 2006 human genome reference
sequence (NCBI Build 36.1, hg18 assembly). MAQ uses
a mapping algorithm that utilizes the tag sequences
along with their quality scores to determine the highest
scoring match to the genomic location [34]. MAQ was
run in such a way that tags with more than one identi-
cally scoring best tag-to-genome alignment, i.e. repeti-
tively mapping tags, were randomly assigned to one
genomic location. This procedure allowed us to avoid
the elimination of sequence tags that have high scoring
tag-to-genome alignments but map to more than one
location. Since human TEs can be characterized into
related groups (classes, families and subfamilies), using
this heuristic mapping procedure provides an unambigu-
ous way to evaluate differences in the frequencies of
specific histone modifications between related groups of
TEs.
Gene expression-histone modification enrichment analysis
We downloaded the Refseq annotations of experimen-
tally characterized transcription start sites from the
database of transcription start sites (DBTSS) [35,36],
and mapped them to the human genome reference
sequence (hg18) at the UCSC Genome Browser [37].
CD4+ T cell expression data corresponding to the
mapped Refseq genes were taken from the Novartis
Gene Expression Atlas 2 [38]. We were able to obtain
unambiguously mapped transcription start sites and
gene expression data for 12,644 human genes. We
defined promoter regions as 1000 nucleotides
upstream and 200 nucleotides downstream of the tran-
scription start sites. We located the number of tags
corresponding to each histone tail modifications in
each promoter region. The number of tags of each

modification in a promoter region was converted to a
binary presence/absence call using a genomic back-
ground tag distribution and a conservative threshold
determined by the Poisson distribution and incorporat-
ing Bonferroni correction for multiple tests [24].
Combing the CD4+ T cell gene expression data with

promoter histone modification presence/absence calls,
we calculated the expression enrichment for each his-
tone modification using the following formula:

Expression fold change log
average express on of genes with modif 2

i iication
average expression of genes without modification











In addition, for each histone tail promoter modifica-
tion, the significance of the difference in average CD4+

T cell gene expression levels for genes with and without
the modification was evaluated using the Student’s t-
test.
TE-histone modification enrichment analysis
We downloaded RepeatMasker [39] annotations (ver-
sion 3.2.7) of TE locations for the human genome
reference sequence (hg18) from the UCSC genome
browser. Using the TE genomic coordinates and our
tag-to-genome mapping data, we co-located the tags
that correspond to each histone tail modification with
TE sequences in the human genome. In this way, we
obtained the number of tags of each histone tail modi-
fication that map to TE sequences in the human
genome.
The TE-histone modification mapping dataset was

divided into six classes (families) of TEs [40,41] which
are: Alu, MIR, L1, L2, DNA transposons and LTR-ret-
rotransposons. We normalized the number of histone
modification tags in each class (family) of TE
sequences by the total genomic length of these TE
sequences in the class (family), and compared the nor-
malized TE tag counts to either (1) genome-wide back-
ground tag counts or (2) locally computed genomic
background tag counts. Genome-wide background tag
counts are the total number of tags for each modifica-
tion divided by the length of the genome. To obtain
local histone modification background tag counts for
TE classes (families), for each individual TE insertion,
a background tag count was computed by randomly
sampling a non-TE sequence of the same size from
within a 1 megabase genomic window surrounding
that TE. These individual local background tag counts
were then averaged over all TE insertions of a given
class (family). The following formulas were used for
enrichment calculations:

TE fold change
Normalized tag count in TE se

Alu L LTR DNA MIR L, , , , ,1 2  qquences
Normalized tag count in genomic background











Huda et al. Mobile DNA 2010, 1:2
http://www.mobilednajournal.com/content/1/1/2

Page 10 of 12



where

Normalized tag count
tags located in TE se

modification  
    

1 38  qquences
length of TE sequences


    

Statistical analyses
The statistical significance of TE-histone modification
enrichment values were calculated using the goodness of
fit G-test, which uses a log-likelihood ratio comparing
the observed to expected tag counts. The P-value
thresholds for the G-tests were adjusted using the Bon-
ferroni correction for multiple tests. Prior to correlation
analysis, all data distributions were checked for normal-
ity using Q-Q plots to visually compare the observed
distributions against theoretical normal distributions
(Additional file 1, Figures S8-S10). Data with distribu-
tions that were deemed to be normal were correlated
using Pearson correlation (r) and data with distributions
that were deemed to be non-normal were correlated
using Spearman rank correlation (r). Note that when
data are binned, such as for the distance from gene
computation, correlations are calculated on the
unbinned data. Statistical significance values for correla-
tions were computed using an approximation to the
Student’s t-distribution with n-2 degrees of freedom
[42].

Additional file 1: Supplementary material. Figures S1-12 and Tables
S1-4 are included in the supplementary material file.
Click here for file
[ http://www.biomedcentral.com/content/supplementary/1759-8753-1-2-
S1.PPT ]
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ABSTRACT

Initiation and regulation of gene expression is criti-
cally dependent on the binding of transcriptional
regulators, which is often temporal and position
specific. Many transcriptional regulators recognize
and bind specific DNA motifs. The length and
degeneracy of these motifs results in their frequent
occurrence within the genome, with only a small
subset serving as actual binding sites. By occupying
potential binding sites, nucleosome placement can
specify which sequence motif is available for
DNA-binding regulatory factors. Therefore, the
specification of nucleosome placement to allow
access to transcriptional regulators whenever and
wherever required is critical. We show that many
DNA-binding motifs in Saccharomyces cerevisiae
show a strong positional preference to occur only
in potential regulatory regions. Furthermore, using
gene ontology enrichment tools, we demonstrate
that proteins with binding motifs that show the
strongest positional preference also have a ten-
dency to have chromatin-modifying properties and
functions. This suggests that some DNA-binding
proteins may depend on the distribution of their
binding motifs across the genome to assist in the
determination of specificity. Since many of these
DNA-binding proteins have chromatin remodeling
properties, they can alter the local nucleosome
structure to a more permissive and/or restrictive
state, thereby assisting in determining DNA-
binding protein specificity.

INTRODUCTION

At any given point in time, cells are performing complex
programs of gene expression. The binding of tran-
scriptional regulators to target genes determines their
expression or repression. Many DNA-binding proteins
(DBPs) recognize and bind specific DNA sequence
motifs located within specific regulatory regions of the
gene. However, the length and nucleic acid composition
of these binding motifs frequently enables their random
occurrence within the genome, sometimes up to thousands
of repetitions. Therefore, sequence information alone is
insufficient to completely determine specificity (1,2).

Within the nucleus, DNA exists in complexes with
RNA and proteins called chromatin. Commonly com-
posed of an octamer of histone proteins consisting of
two copies each of histones H2A, H2B, H3 and H4,
nucleosomes are the basic repeating units of chromatin
[for review see ref. (3)]. DNA wraps around the histone
octamer core in approximately two superhelical turns.
These cores are spaced �10–80 bp apart; this inter-
nucleosomal DNA is referred to as linker DNA. This
DNA can vary in length significantly, even between neigh-
boring nucleosomes. DNA within nucleosomes is less
accessible to DBPs, including transcriptional regulators
(4). It has long been thought that by occupying potential
binding sites, nucleosomes play an indirect role in
regulating gene expression (4–7). However, this raises
the question of how the structure of chromatin is con-
structed initially to ensure the availability of sites for
transcriptional regulator binding. It is likely that inherent
signals within the DNA sequence play an important role
in positioning nucleosomes (8,9). Also critical are
chromatin remodeling factors (CRFs) that reposition or
modify nucleosomes (8,10–13), thereby repressing or
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enhancing transcription. Whether and how CRFs act to
modify chromatin structure to a more permissive/restric-
tive state remains unknown. One possibility is that CRFs
rely on the quality and genomic position of their DNA
sequence motifs to help establish specificity. In this study,
we investigated this hypothesis by examining the
positional distribution of predicted binding sites for 184
DBPs in the Saccharomyces cerevisiae genome.

MATERIALS AND METHODS

Calculating promoter enrichment scores

Transcription start sites (TSSs), as well as promoter and
coding sequences, were obtained from the UCSC genome
browser (14). The Mining Yeast Binding Sites (MYBS)
database was used to obtain 666 position weight matrices
(PWMs) (15). The Spt10 PWM was obtained from
ref. (16) for a total of 667 PWMs. Promoters were
defined as regions extending 1000 bp upstream of TSSs,
excluding any coding sequence. Each PWM was used to
score both promoter and coding sequences while looking
for subsequences that closely match the binding motif rep-
resented by the PWM. The score of each subsequence was
derived from the sum of the position-specific score of each
nucleotide composing the subsequence. For a subsequence
of length l(s1. . . sl) with length l equal to the number of
columns in the PWM, the score was calculated as

Score ¼
Xl

j¼1

msj,j 1

where Sj represents the nucleotide at position j of
subsequence s and mi, j represents the score in the PWM
for row i and column j.
We randomized the sequence of interest by shuffling the

nucleotides while retaining the overall nucleotide compo-
sition. Then each set of randomized sequence was scanned
against the set of PWMs and the number of high-scoring
matches was counted. The randomization was performed
800 times, and the mean and standard deviation for the
number of matches expected in the randomized sequence
for a given PWM was calculated. A z-score representing
the degree of sequence motif enrichment was calculated
using

Z ¼
x� ur
�r

, 2

where x is the number of high-scoring matches for the
unshuffled sequence, ur is the mean number of
high-scoring matches for 800 sets of shuffled sequences,
and �r is the standard deviation for the group of 800
sets of shuffled sequences. We then used the calculated
z-scores from the promoter and coding sequence to calcu-
late a promoter enrichment score (i.e. promoter z-score �
ORF z-score) for each PWM.

To perform this analysis, it was necessary to select a
cutoff score. Therefore, similar to other comparable
studies (17), a cutoff score representing 70% of the
maximum possible score for a given PWM was chosen.
Results from analyses using cutoff scores representing 80

and 90% of the maximum possible score showed little
differences.

Gene ontology (GO) analysis

The set of PWMs was filtered using the methods outlined
below and then ranked according to the promoter prefer-
ence score. Finally, using the online David GO tool, we
searched for enriched GO terms (18) in the top 20% of
PWMs (N=37). As a control, we assessed the set of all
proteins (184) represented by the collection of 667 PWMs
used in this study. To avoid the use of an arbitrary per-
centile cutoff, we also applied the online Gene Ontology
enRIchment anaLysis and visuaLizAtion (GOrilla) tool
(19) to our set of ranked proteins. GOrilla uses a flexible
threshold technique to search for GO terms enriched in a
ranked list.
The set of PWMs used contained considerable redun-

dancy (i.e. many DBPs are associated with multiple
PWMs). To perform the GO analysis, it was necessary
to filter the set of 667 PWMs to obtain a unique set of
184 PWMs to pair with the 184 unique proteins. Two
different filtering methods were used to determine which
PWM out of the set of PWMs associated with a given
DBP would be used when ranking the protein. With the
first method, we filtered PWMs based on the promoter
enrichment score. The PWM with the highest promoter
enrichment score from the set of PWMs was selected to
pair with that protein. Each protein was then ranked
according to the promoter enrichment score of its paired
PWM and GO analysis performed as outlined above.
Using this method, both analysis tools identified GO
terms related to chromatin modification for the highly
ranked proteins. With the second method, we filtered the
PWMs according to information content. The PWM with
the highest information content was selected to pair with
its associated protein. We repeated the above analysis
using both GO tools. Using the David tool, we again
identified an enrichment of chromatin modifying GO
terms for highly ranked proteins (P<0.05). However,
GOrilla did not reveal any GO terms possibly due to the
stringent cutoff (P<0.001) of this tool.

Nucleosome overlap score

With the set of high-scoring matches in promoter regions
and a map of nucleosome positions produced in a recent
study (20), we calculated the fraction of predicted binding
sites that overlapped with a well-positioned nucleosome
for each PWM. Nucleosomes, unlike many DBPs, do
not necessarily have a well-defined binding site. Instead,
they may have multiple binding locations in different cells
for the same nucleosome. For each nucleosome, Mavrich
et al. (20) calculated a ‘fuzziness score’ that represented
the extent a nucleosome varies its binding location. To
obtain a list of well-positioned nucleosomes we ranked
all nucleosomes by their fuzziness score and took the
top 15%.
To calculate the significance of the observed overlap of

predicted binding sites with well-positioned nucleosomes,
we randomly changed the positions of the predicted
binding sites within a 1000-bp window and calculated
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the fraction of randomized sites that overlapped with a
well-positioned nucleosome. After 1000 iterations, the
mean and standard deviation of nucleosome overlap
were estimated. In addition, a concurrent z-score repre-
senting the degree of nucleosome overlap above or
below random chance was calculated according to
Equation (2), where x was the fraction of high-scoring
matches that overlapped a nucleosome, ur was the mean
fraction of high-scoring matches that overlap a
nucleosome calculated based on 1000 random permuta-
tions, and �r represented the standard deviation of the
fractional overlap of the randomly moved high-scoring
matches.
Promoter regions have a tendency to contain

nucleosome-depleted regions (21). To control for potential
bias, we randomly changed the predicted binding site loca-
tion within a 1000-bp window that was centered on the
binding site. In doing so, the randomly permuted binding
sites were still mostly positioned within the same local
chromatin structure. A 1000-bp window will almost
always include some of the neighboring ORF sequences.
Thus, while restricting the randomization to a defined
window reduces the effect of simply being within a pro-
moter region, it does not eliminate it entirely. One could
argue that our results indicating a strong bias toward pro-
moter regions for some motifs exacerbate this issue.
However, in our calculation of nucleosome occupancy,
we only used those sites found in promoter regions.
Hence, promoter bias should not play a significant role
in these analyses. For each PWM we paired its promoter
enrichment score with its nucleosome overlap score and
calculated the correlation using Spearman rank correla-
tion. Correlation coefficients were calculated using those
PWMs with at least 50 predicted binding sites.

Within promoter positional analysis

For each high-scoring promoter region match, we
calculated the distance to the closest TSS. Predicted
binding sites that could not be mapped to a TSS were
discarded. Sequence motifs that were highly ‘location con-
strained’ within promoter regions clustered together. For
every PWM that had at least 50 predicted binding sites
within promoter regions, we obtained the distance from
the TSS for every high-scoring match (i.e. predicted
binding site) and then calculated the mean, median and
semi-interquartile range for the distance distribution. The
smaller the semi-interquartile range, the more clustered
the predicted binding sites were and the stronger the loca-
tion constraint within promoter regions.

RESULTS

Many DBP sequence motifs displayed strong preferences
for promoter regions as opposed to coding regions

Sequence motifs for DBPs are commonly represented by a
position weight matrix (PWM) (1,22). We obtained a set
of 667 PWMs representing binding motifs for 184 DBPs
from the MYBS database (15). For each PWM we
calculated a promoter enrichment score. The larger the

score, the more enriched the sequence motif was in pro-
moter regions relative to coding regions.

Not surprisingly, most sequence motifs showed dramat-
ically greater enrichment in promoter regions than in
coding regions (Figure 1). For example, Orc1p, which
has been demonstrated to function in chromatin modifi-
cation (23), displayed the greatest difference in enrichment
between promoter and coding sequence. For this sequence
motif, the number of high-scoring matches within the pro-
moter region was 1240, corresponding to a z-score of 261.
Meanwhile, the number of high-scoring sequence motif
matches within coding sequence was 38, corresponding
to a z-score of �0.88. Yeast contains �8.4Mb of coding
sequence compared to �2.5Mb of promoter sequence.
Despite this, the Orc1p motif occurred far more often in
potential regulatory, but not coding, sequence in the yeast
genome.

Sequence motifs showing a strong positional preference
were also enriched for CRFs

We then investigated whether proteins whose sequence
motifs showed a high positional preference for promoter
regions also shared common biological functions. To
explore this question, the set of 184 proteins was sorted
according to the promoter enrichment score from largest
to smallest (‘Materials and methods’ section). Then the
online David bioinformatics resource tool (http://david
.abcc.ncifcrf.gov/home.jsp) (18) was used to assess GO
terms associated with the top 20% of ranked proteins.
Chromatin remodeling-related terms were highly repre-
sented among these highly ranked proteins (P< 0.05),
including chromatin modification, establishment and/or
maintenance of chromatin architecture, DNA packaging,
gene silencing, negative regulation of gene expression
epigenetic, chromatin silencing and heterochromatin
formation.

To verify these results, we performed a similar analysis
using the GOrilla tool (http://cbl-gorilla.cs.technion.ac.il/)
(19). When given a ranked list of genes, GOrilla searches
for GO terms that show greater enrichment for items near
the top of the list relative to the rest of the list. Therefore,
it was unnecessary to limit this analysis to the top 20% of
ranked proteins. We submitted to GOrilla a set of proteins
ranked according to their promoter enrichment score and
examined GO term enrichment. Similar to the analysis
using David, many chromatin-associated GO terms were
identified for high-ranking proteins, including histone
modification, covalent chromatin modification, and
chromatin modification. This analysis indicates that
DBPs whose sequence motifs showed the strongest
positional constraint for promoters were also associated
with CRFs.

A negative correlation exists between high positional
preference and nucleosome occupancy

The relationship revealed above between the positional
preference of sequence motifs and CRFs led us to postu-
late that a correlation may also exist between the binding
of proteins exhibiting a high positional preference and
nucleosome occupancy. Based on nucleosome positions
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obtained in a recent Chip-Seq study (20), we calculated a
score to represent nucleosome occupancy (see ‘Materials
and methods’ section) for each PWM.

A large negative score indicated that the overlap
between predicted binding sites and nucleosomes was
much less than would be expected by random chance.
Conversely, a large positive score suggested that the like-
lihood of an overlap was greater than random chance. The
Spearman rank correlation coefficient between the pro-
moter enrichment score and the score representing
nucleosome occupancy of predicted binding sites was
then calculated. Indeed, there was a negative correlation
between positional preference and nucleosome occupancy
(rs=�0.39, P< 1e�16) (Figure 2A). The P-values for
correlation coefficients were calculated according to Best
and Roberts (24). This result, combined with those from
the GO analysis, suggests that DBPs whose binding sites
show strong positional preference may act in part to
remove or shift nucleosomes upon binding to allow
entry by other transcriptional regulators (10), thereby
playing a role in determining specificity.

To further confirm these results, we repeated the corre-
lation analysis using a different measure of nucleosome
occupancy. Kaplan et al. (8) produced a high-resolution
map of nucleosome occupancy across the yeast genome.
For each position in the genome, a nucleosome occupancy

score was calculated. A negative number indicated that
nucleosome occupancy was below the genome average,
while a positive number represented an above average
likelihood for occupancy. We obtained the data set from
Kaplan et al. (8) and averaged the nucleosome occupancy
score for the set of predicted binding sites in promoter
regions for a given PWM. Then, the Spearman rank cor-
relation between the promoter enrichment score and the
average nucleosome occupancy was calculated. With this
method, we again observed a correlation between nucle-
osome occupancy and promoter preference (rs=�0.44,
P< 1e�16) (Figure 2B).
Kaplan et al. also produced a map of nucleosome occu-

pancy for chromatin that was reconstituted in vitro. Our
results suggest that the trend toward lower nucleosome
occupancy for motifs with a high positional preference
may be due to active chromatin remodeling by the tran-
scription factors that bind those motifs. As such, we would
expect to observe a positive correlation between positional
preference and those motifs that showed the largest differ-
ence between in vitro and in vivo nucleosome occupancy.
To test this hypothesis, we calculated the correlation
between the promoter enrichment score and the difference
in nucleosome occupancy in vitro and in vivo for the set of
predicted binding sites in promoter regions for each
PWM. As anticipated, promoter enrichment and the
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right, the first graph is a random example from the top 50 PWMs (REB1). The second graph (RLM1) is a random example selected from PWMs
ranked 300–400. The third graph (ADR1) is a random example taken from PWMs ranked 600–667. Plotted in (B) is the z-score for each PWM
indicating over- or under-representation in the given class of sequence elements. A positive z-score denotes over-representation while a negative
z-score signifies under-representation.
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Figure 3. Distribution of high-scoring matches in promoter regions. (A) Example of a sequence motif (ABF1) that is location constrained within
promoter regions. Plotted are histograms of distances from the TSS for all predicted binding sites for the indicated DNA-binding protein. The TSS is
marked by position zero and the black line represents the median (x-axis units are in bps). (B) Example of a sequence motif that is not location
constrained within promoter regions (STE12). (C) All sequence motifs that had at least 50 predicted binding sites were ranked on the basis of
semi-interquartile range. Plotted are the medians of the distance distributions for the top 15% (N=83), representing the sequence motifs with a
strong promoter positional bias.
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Figure 2. Scatter plots showing the correlation between promoter enrichment and nucleosome occupancy for predicted sites in promoter regions. The
y-axis represents promoter enrichment (the larger the value, the stronger the positional preference for promoter regions). The x-axis is a score
representing the degree of nucleosome occupancy. For each PWM with at least 50 predicted binding sties in promoter regions, the promoter
enrichment score was plotted against the degree of nucleosome occupancy for predicted binding sites using that PWM. (A) A scatter plot using
the overlap of predicted transcription factor binding sites with well-positioned nucleosomes as the measure of nucleosome occupancy. (B) The
method for measuring nucleosome occupancy as described by Kaplan et al. (8).
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difference between in vitro and in vivo nucleosome occu-
pancy was positively correlated (rs=0.46, P< 1e�16, see
Supplementary Figure 1).

A correlation exists between high promoter enrichment
and strong location constraint within promoters

Previous studies have shown that motif context, including
distance from the TSS, likely plays a role in gene regula-
tion in yeast and humans (25,26). This prompted us to

investigate whether sequence motifs showing strong
promoter enrichment also display a strong positional con-
straint within promoter regions. To answer this question,
we calculated the distance to the TSS for predicted binding
sites in yeast promoters. Sequence motifs that demon-
strated significant location constraint within promoter
regions clustered together at similar distances from the
TSS corresponding to a narrow distribution of distances
(Figure 3A). Sequence motifs that were not constrained
within the promoter exhibited distance distributions with
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Figure 4. Plot of positional preference within promoter regions. (A) The semi-interquartile range for the set of PWMs with at least 50 predicted
binding sites within promoter regions (N=551) sorted by increasing semi-interquartile range. The semi-interquartile range measured the distribution
dispersion. The larger the value, the greater the distribution spread. A smaller semi-interquartile range indicates more location constraint within
promoter regions for the predicted binding sites. (B) A scatter plot depicting the correlation between promoter enrichment and positional preference
within promoter regions. The y-axis represents promoter enrichment in which larger values signify greater enrichment in promoter regions relative to
coding regions. The x-axis represents the degree of positional preference within promoter regions. The smaller the value the more clustered the
predicted binding sites are within promoter regions, and the higher the degree of positional preference within promoter regions.
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a larger spread (Figure 3B). We noticed with interest that
sequence motifs with a strong positional bias within pro-
moter regions seem to cluster �100–300 bp upstream of
the TSS (Figure 3C).
The semi-interquartile range was calculated to measure

the distribution spread statistically. Because many of the
distance distributions were skewed (see Figure 3a), the
semi-interquartile range was a better measure of spread
than standard deviation. The Spearman rank correlation
coefficient between the positional preference score and the
semi-interquartile range was calculated. Indeed, a cor-
relation between positional preference for promoter
regions (high promoter enrichment) and positional prefer-
ence within promoter regions (rs=�0.29, P=2.4e�12)
(Figure 4) was revealed.

DISCUSSION

Recent work elucidating nucleosome positioning in yeast
has revealed a common chromatin architecture around
TSS’s consisting of a nucleosome covering the TSS, an
immediate upstream nucleosome-free region (NFR) of
�140 bp, and a well-positioned nucleosome (‘�1’ nucle-
osome) on the upstream border of the NFR (7,27).
Veners et al. (28) demonstrated that the �1 nucleosome
is evicted upon recruitment of RNA polymerase II.
Additionally they showed that a number of chromatin
remodeling complexes were selectively associated with
the �1 nucleosome. Furthermore, a number of sequence-
specific experimentally determined binding sites over-
lapped the �1 nucleosome. These results support the
idea that the positioning of the �1 nucleosome may be
strongly regulated.
Here we show that sequence motifs with a strong

positional bias within promoter regions cluster almost
exclusively �100–300 bp upstream of the TSS
(Figure 3C). This localization places them in a prime loca-
tion to regulate or be regulated by the �1 nucleosome,
further supporting the idea that positioning of the �1
nucleosome is important in transcriptional regulation.
If CRFs with sequence motifs that exhibit strong

positional preferences are modifying the chromatin struc-
ture in part to provide specificity to other DBPs, what is
the mechanism of action? One possibility is that CRFs
remove and/or shift nucleosomes to open up binding
sites for other transcriptional regulators. For example,
Rap1p, Abf1p and Reb1p are all highly abundant
sequence-specific general regulatory factors that bind
motifs with a strong preference for promoter regions.
There is good evidence that all three play a role in
influencing chromatin structure (10,29,30). Additionally,
these proteins appear to act in part by creating bubbles
of open chromatin (8,31–33). In the case of Rap1p and
Abf1p, creating a region of open chromatin appears to
facilitate the binding of additional regulatory factors,
leading to transcription enhancement (31). In many
cases, Rap1p and Abf1p are unable to activate robust
transcription alone (34,35) and require additional regula-
tory factors. Further support is provided by the observa-
tion that Rap1p- and Abf1p-binding sites can be

substituted for one another without a loss in function
(31,35).

However, both Rap1p and Abf1p are involved in many
functions, including repression (36–38). Rap1p initiates a
repressive chromatin structure by interacting directly with
the chromatin modifying factors Sir3p and Sir4p (37).
Therefore, in addition to making binding sites accessible,
it is likely that DBPs whose sequence motifs show a strong
positional preference can increase specificity by directly
interacting with chromatin modifiers or transcriptional
regulators.

A question that immediately presents itself is whether or
not the pronounced preference for promoter regions is
sufficient to determine specificity. Is the positional distri-
bution sufficient to fully explain binding in vivo? In a
genome-wide location analysis, Lieb et al. (39) noted the
strongly skewed positional preference of Rap1p-binding
motifs and concluded that the positional distribution of
potential Rap1p-binding sites may account for much of
the specificity in Rap1p binding. However, the skewed
positional distribution of these potential binding sites
was insufficient in fully explaining the pattern of Rap1p
binding. For the case of Rap1p, additional genome-wide
mechanisms also appear to be at work.
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Supplementary Data are available at NAR Online.
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Transposable elements (TEs) can donate regulatory sequences that help to control the expression

of human genes. The oncogene c-Myc is a promiscuous transcription factor that is thought to

regulate the expression of hundreds of genes. We evaluated the contribution of TEs to the c-Myc

regulatory network by searching for c-Myc binding sites derived from TEs and by analyzing the

expression and function of target genes with nearby TE-derived c-Myc binding sites. There are

thousands of TE sequences in the human genome that are bound by c-Myc. A conservative

analysis indicated that 816-4564 of these TEs contain canonical c-Myc binding site motifs. c-Myc

binding sites are over-represented among sequences derived from the ancient TE families L2 and

MIR, consistent with their preservation by purifying selection. Genes associated with TE-derived

c-Myc binding sites are co-expressed with each other and with c-Myc. A number of these putative

TE-derived c-Myc target genes are differentially expressed between Burkitt’s lymphoma cells

versus normal B cells and encode proteins with cancer-related functions. Despite several lines of

evidence pointing to their regulation by c-Myc and relevance to cancer, the set of genes identified

as TE-derived c-Myc targets does not significantly overlap with two previously characterized

c-Myc target gene sets. These data point to a substantial contribution of TEs to the regulation of

human genes by c-Myc. Genes that are regulated by TE-derived c-Myc binding sites appear to

form a distinct c-Myc regulatory subnetwork.

Introduction

Almost half of the human genome sequence is made up of

interspersed repeat sequences, which are remnants of formerly

mobile transposable elements (TEs).1,2 These TE sequences

have shaped the structure, function and evolution of their host

genomes in a number of ways.3,4 For example, TEs are the

source of a variety of regulatory sequences, including

transcription factor binding sites (TFBS), alternative

transcription start sites and small RNAs, that help to control

the expression of host genes.5 The gene regulatory properties

of TEs have received a great deal of attention in recent years,

particularly since eukaryotic genome sequences and functional

genomic datasets began accumulating over the last decade.

The ability of TEs to donate sequences that regulate nearby

genes was first noticed in individual molecular genetic studies

where regulatory elements were found to be located inside of

repetitive sequence elements. In perhaps the first example of

this kind of study, the sex-limited protein (Slp) encoding gene

in mouse was shown to be regulated by androgen response

elements located in the long terminal repeat sequence of an

upstream endogenous retrovirus.6 An accumulation of such

anecdotal cases was taken to support the possibility that TEs

may have broad genome-scale effects on gene regulation.7,8

In the genomics era, three distinct classes of approaches have

been taken to elucidate the regulatory contributions of TEs on

the genome scale: (i) computational prediction of TE-derived

regulatory sequences, (ii) identification of highly conserved TE

sequences with comparative genomics and (iii) co-location of

experimentally characterized regulatory sequences and TEs.

Computational analyses of TE sequences using position

weight matrices that represent cis-regulatory sequence motifs

have shown that TEs harbour numerous putative TFBS.9,10

These data, taken together with the genomic abundance of

TEs, underscore their potential ability to regulate the expression

of numerous host genes. A problem with this approach is that

the ab initio prediction of cis-regulatory sequence motifs is

prone to numerous false positives. To overcome this limitation,

authors have used sequence shuffling, or simulation, to build

null background sequence sets and then find TFBS that are

over-represented among TE sequences relative to the background

sets.10 Even with such a control for sequence composition in
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place, it is still difficult to know which of these TE-derived

TFBS may actually be functionally relevant in terms of

regulating the expression of host genes. It can also be difficult

to distinguish between sequences that regulate the expression

of the element itself versus those that regulate nearby

host genes.

Comparative genomics studies have been used to help

identify TE sequences that are likely to encode functions for

their host genomes. The rationale behind this approach is that

conserved TE sequences have been preserved by purifying

selection because of their functional, presumably regulatory,

importance to the host organism.11 The comparative genomics

approach to the identification of TE-derived regulatory

sequences was pioneered by Silva et al. who identified

numerous ancient L2 and MIR intergenic TE sequences that

were highly conserved among mammals and therefore likely

to be functionally important.12 Since that time, a number of

studies have turned up thousands of conserved non-coding

sequences that are derived from TEs.13–17 These findings

indicate that a substantial fraction of TE sequences in

mammalian genomes have been conserved by virtue of their

functional (regulatory) relevance.18 However, this evolutionary

approach to the identification of TE-derived regulatory

sequences is overly conservative in some cases because it will

not detect regulatory sequences that are derived from

relatively recently inserted, or lineage-specific, TEs. Indeed,

TEs are the most dynamic and rapidly evolving sequences in

eukaryotic genomes, and most TE insertions are not shared

between evolutionary lineages.19 Accordingly, it has been shown

that numerous experimentally characterized TE-derived

regulatory sequences are not conserved between species.19–21

One of the most promising genome-scale approaches for the

characterization of TE-derived regulatory sequences involves

co-locating experimentally characterized regulatory elements

and TE annotations on genomic sequences. This approach was

first used on a relatively small scale by mapping the locations

of hundreds of TFBS characterized in individual experiments

to human TEs and then extrapolating to the entire human

genome.22 This study suggested that thousands of human

genes may be regulated by TE-derived regulatory sequences,

but it was not possible to know whether this was actually the

case. In order for the co-localization approach to really work

on the genome-scale, high-throughput experimental data on

the locations of regulatory sequences are needed. These data

have become widely available in the last few years thanks to

the invention of techniques like chromatin immunoprecipitation

followed by microarray, ChIP-chip, or high-throughput

sequencing, ChIP-Seq, analysis.23 There are now hundreds-

of-thousands of experimentally characterized TFBS that have

been mapped to the human genome using these techniques,

and recent studies have shown that many of these sites are

derived from TEs.24,25 Many of these TE-derived TFBS are

lineage-specific and may define recently evolved regulatory

subnetworks that elaborate on previously existing networks

as is the case for p53 binding sites derived from human

endogenous retroviruses.25

One particularly interesting transcription factor for which

there is a human genome-wide map of binding sites is c-Myc.26

c-Myc has been reported to regulate a large set of genes,27–29

and it is considered an oncogene by virtue of its deregulation

in a variety of cancers. For instance, c-Myc is markedly

deregulated in lymphomas where it is over-expressed relative

to normal B cells. A recent report evaluated the contribution

of TEs to c-Myc binding sites on the human genome.24 These

authors found that c-Myc bound regions were not statistically

enriched for co-localization with any particular TE family, and

based on this observation concluded that c-Myc TFBS do not

reside on repeats. However, our own preliminary data revealed

that numerous c-Myc bound regions were in fact derived from

human TE sequences, and we wanted to further explore the

relationship between c-Myc binding and TEs to address this

discrepancy.

Despite the lack of enrichment for c-Myc binding sites in a

particular TE class or family observed previously, we found

thousands of TE-derived c-Myc binding sites in the human

genome using a conservative approach that integrated data

from the experimental characterization of c-Myc bound

regions with c-Myc binding site motif prediction. Gene

expression and gene set enrichment analyses indicate that

many of these TE-derived c-Myc binding sites are likely to

be functionally relevant with respect to the regulation of

human gene expression. However, most genes associated with

TE-derived c-Myc binding sites do not correspond to genes

previously characterized as targets of c-Myc regulation. This

raises the possibility that TE-derived c-Myc targets define a

distinct c-Myc regulatory subnetwork.

Results and discussion

TE-derived c-Myc binding sites

We integrated experimental data on c-Myc bound genomic

sequences, probabilistic transcription factor binding site

(TFBS) analysis and TE genome-annotations to identify

TE-derived c-Myc binding sites in the human genome. The

locations of c-Myc bound human genome sequences were

previously determined using genome-wide chromatin

immunoprecipitation (ChIP) and paired-end-ditag (PET)

sequencing on P493 B cells.26 We co-located these c-Myc bound

human genome sequences with TE sequences annotated by

RepeatMasker (http://www.repeatmasker.org). This analysis

resulted in a set of 259 294 TE sequences co-located with

c-Myc bound regions. The precise locations of TE-derived

c-Myc binding sites were then determined by running the

program Clover30 on the c-Myc bound TE sequences. Clover

was run using two c-Myc position–frequency matrices

(Fig. S1, ESIz) with P-value thresholds of 0.01 and 0.001.

This analysis resulted in a total of 4564 TE-derived c-Myc

binding sites for P r 0.01 and 816 TE-derived c-Myc sites for

Pr 0.001. Thus, there is a substantial potential for human TE

sequences to contribute to c-Myc gene regulatory networks.

Here it should be noted that the use of Clover for the

identification of specific c-Myc binding sites represents a

conservative approach that eliminates many c-Myc bound

human TE sequences that do not contain canonical c-Myc

binding site sequence motifs. In fact, running Clover resulted in a

two orders-of-magnitude reduction in the number of

TE-derived c-Myc bound regions identified in the human genome.
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While this approach may result in the loss of some bona fide

TE-derived c-Myc binding sites, it also yields increased

confidence in the functional relevance of the smaller set of

TE-derived sites we identified.

In order to evaluate the contribution of distinct TEs to

c-Myc binding sites, we divided human TEs into 8 classes/

families based on the Repbase database31 classification system:

L1, L2, LINE other, Alu, MIR, SINE other, DNA and LTR.

The observed numbers of individual TE insertions with c-Myc

binding sites for each class/family are shown in Table 1

(P r 0.01) and Table S1, ESIz (P r 0.001), and a comparison

of the observed versus expected percentages for each TE

class/family are shown in Fig. 1A (P r 0.01) and Fig. S2,

ESIz (P r 0.001). Members of the abundant L1 and Alu

element families have lower observed than expected percentages,

while L2 and MIR elements have higher than expected

percentages. The relative ages of these families can be estimated

by calculating the sequence divergence between individual

elements and subfamily consensus sequences; younger elements

have lower divergence since they inserted in the genome more

recently. L1s and Alus are younger element families, many of

which are primates-specific, whereas L2 and MIR are more

ancient families that radiated early in mammalian evolution

(Fig. 1B). In other words, relatively older TE families contribute

more c-Myc binding sites than expected based on their

percentage in the genome, whereas younger families contribute

fewer c-Myc binding sites than expected. A similar pattern

was found in a recent study that analyzed experimentally

characterized human TE-derived binding sites from numerous

distinct transcription factors.21 The enrichment of c-Myc

TFBS in more ancient TEs is consistent with the notion that

these sequences have been conserved in the genome by purifying

selection based on their functional relevance.12 Nevertheless,

Alu elements show the highest number of c-Myc binding sites,

since they are the most numerous elements in the genome.

TFBS derived from relatively young, even polymorphic in

some cases, elements like Alu are of interest since they may

impart lineage- or condition-specific regulatory properties on

nearby genes.18–21,25 We explore this possibility later in the

manuscript.

Regulatory effects of TE-derived c-Myc binding sites

In order to evaluate the potential regulatory effects of

TE-derived c-Myc binding sites, we mapped the TE-derived

sites to the vicinity of human genes and analyzed these genes’

tissue-specific expression patterns. Human genes with

TE-derived c-Myc binding sites within�10 kb were considered

as potential c-Myc regulated target genes. This resulted in a

Table 1 Number of TEs that contain c-Myc binding sites for each TE class/family

TE class/familya Observed numberb Observed percentc (%) Expected percentd (%)

L1 940 20.60 21.9
L2 546 11.96 9.7
LINE other 47 1.03 1.6
Alu 994 21.78 28.1
MIR 733 16.06 13.9
SINE other 27 0.59 0.1
DNA 411 9.01 9.3
LTR 866 18.97 15.5
Total 4564 100.00 100.0

a Name of TE classes or families. b Observed number of TEs in each class/family. c Observed percent: the observed number of TEs in each class/

family divided by the total observed number (4564) of TEs containing c-Myc binding sites. d Expected percent: the total number of TEs in each

class/family in human genome divided by the total number of all TEs in human genome.

Fig. 1 Family origins and relative ages for human TEs bound by c-Myc. Observed versus expected percentages of c-Myc binding sites derived

from different TE classes/families. (A) The observed percentages (blue) of TEs containing c-Myc binding sites in each TE class/family are plotted

along with the expected percentages (maroon) of TEs in each class/family based on their background percentages in the human genome.

(B) Percent divergence from subfamily consensus sequences for human TEs that are bound by c-Myc. The relative percentages of each of the six

TE families are shown for each percent divergence bin. Younger elements have lower divergence from their consensus sequences, and older

elements have higher divergence.
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total set of 1550 human genes with proximal TE-derived

c-Myc binding sites. The expression patterns of these putative

target genes over 79 human tissues and cell lines were

compared to each other, and to the expression patterns of

c-Myc, using the Novartis human gene expression atlas of

Affymetrix microarray data.32

For each class/family of TEs, the expression patterns of all

putative c-Myc target genes were compared using the Pearson

correlation coefficient (PCC). Table 2 shows the number of

target gene Affymetrix probes for each TE class/family along

with the average PCCs, Z scores and P-values. All 8 TE

classes/families have sets of putative c-Myc target genes that

are positively and significantly co-expressed, on average,

across human tissues. Target genes with Alu-derived c-Myc

binding sites, the most numerous class, show the highest levels

of average co-expression and the greatest statistical significance.

It should be noted that while the average co-expression levels

for the distinct TE class/family target gene sets are all positive

and, for the most part, highly statistically significant, the

average PCC values are still quite low (i.e. close to 0).

This suggests that while there is certainly an enrichment for

co-expressed gene pairs among the TE-derived c-Myc target

genes, the total set of target genes for each class has a broad

range of tissue-specific expression patterns. This is consistent

with the fact that genes with proximal TE-derived c-Myc

binding sites are also likely to be regulated by additional

transcription factors as well as different classes of regulators

such as epigenetic modifications and/or small RNAs.

In order to further explore the relationship between human

gene expression and the presence of TE-derived c-Myc binding

sites, tissue-specific expression levels of putative target genes

were compared to the expression of the regulator c-Myc. This

allowed us to more directly investigate whether those target

genes are actually regulated by c-Myc. To do this, we

calculated the target genes’ average expression levels in each

tissue and compared them with the c-Myc expression data by

calculating pairwise PCCs across tissues between the TE

classes/families and c-Myc. The results of the PCC analysis

are shown in Table 3, and the average expression levels for TE

classes/families and c-Myc across 79 tissues are shown in

Fig. 2. 7 out of 8 TE class/family target gene sets show

statistically significant co-expression with c-Myc. Furthermore,

for these 7 TE classes/families, the average PCC values

between the putative target genes with TE-derived binding

sites and c-Myc are an order of magnitude greater (Table 3)

than the average PCC values among all pairs of target genes

(Table 2). This indicates that the target genes’ tissue-specific

expression patterns are distributed around the expression

pattern of c-Myc in such a way as to be more similar to

c-Myc, on average, than they are to each other. This can be

visually appreciated by comparing the average tissue-specific

expression levels of the TE class/family target genes to the

expression pattern of c-Myc (Fig. 2). Target genes with

TE-derived c-Myc binding sites are clearly more highly

expressed, on average, in the same tissues where c-Myc is also

highly expressed. The most striking cases of c-Myc-to-target

gene co-expression can be seen for both normal and cancerous

T cells and B cells, including CD4+ and CD8+ T cells, CD19+

B cells and several lymphoma and leukemia cell lines (Fig. 2).

We performed a permutation test to more precisely identify

the specific tissues where both c-Myc and the target genes with

TE-derived c-Myc binding sites are over-expressed. To do this,

the average tissue-specific expression levels of all target genes

were computed and compared to 1000 randomly permuted

(over the same gene set) tissue-specific average expression level

vectors. The same analysis was done using c-Myc tissue-

specific expression levels as the test set. For each tissue, the

observed test set average, or c-Myc, expression level was then

compared to the distribution of permuted values. There are

22 significantly (P o 0.05) over-expressed tissues among the

TE c-Myc binding site target genes including the aforementioned

normal and cancerous T and B cells as well as several brain

Table 2 Pearson correlation coefficients (PCC) of gene expression within each target gene class

Target gene classa Number of probesb Average PCCc Z scored P-valuee

L1 357 0.027 31.17 3.85 � 10�213

L2 297 0.031 29.63 7.96 � 10�193

LINE other 20 0.033 2.29 0.022
Alu 550 0.044 73.06 0
MIR 390 0.021 26.10 4.64 � 10�150

SINE other 17 0.055 2.32 0.021
DNA 205 0.028 17.57 4.04 � 10�69

LTR 257 0.021 16.63 4.13 � 10�62

a Name of TE classes or families. b Number of Affymetrix probes corresponding to genes with c-Myc binding sites derived from TE of specific

classes/families. c Average of Pearson correlation coefficients (PCC) of each pair of probes within specific TE classes/families. d Z-transformation

of PCC values. e P-values indicate the significance levels of Z scores.

Table 3 Pearson correlation coefficients (PCC) between expression
levels of TE-derived target genes and c-Myc

Target gene classa PCCb tc P-valued

L1 0.37 3.45 9.18 � 10�04

L2 0.35 3.28 1.57 � 10�03

LINE other �0.10 �0.87 0.39
Alu 0.48 4.79 7.95 � 10�06

MIR 0.41 3.93 1.86 � 10�04

SINE other 0.62 7.00 8.17 � 10�10

DNA 0.34 3.14 2.41 � 10�03

LTR 0.32 2.94 4.36 � 10�03

a Name of TE classes or families. b Pearson correlation coefficients

(PCC) between the average tissue-specific expression levels of all target

genes with a TE class/family and c-Myc. c PCC transformed into

t-values by t = PCC � sqrt(df/(1�PCC2)) where df = 77. d P-values

indicate the significance levels of t scores (following Student’s

t distribution).
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tissues (Table S2 and Fig. S3, ESIz). When the c-Myc expression

levels were similarly compared to the permuted expression

levels, 6 tissues were identified as significantly over-expressed,

all of which were over-expressed in the TE-derived c-Myc

target gene set. Taken together, the data comparing the

expression patterns of the target genes and c-Myc provide an

additional, and more compelling, line of expression evidence in

support of the functional relevance of TE-derived c-Myc

binding sites.

A TE-specific c-Myc regulatory network

To further explore the functional relevance of the human genes

with TE-derived c-Myc binding sites, we compared the set of

putative TE-derived c-Myc target genes to two previously

published sets of genes identified to be regulated by c-Myc.

Basso et al. characterized a set of 2063 c-Myc target genes

by reverse engineering a c-Myc regulatory network from

high-throughput gene expression data.27 Zeller et al. used

literature mining to create the Myc target gene database

(http://www.myccancergene.org) reporting 1697 experimentally

characterized c-Myc target genes.29 We computed the overlap

of these two c-Myc target gene sets with each other and the

overlap of each with our own TE-derived target gene set; the

statistical significance levels of the c-Myc target gene set

overlaps were assessed using the hypergeometric distribution

(Fig. 3). The two previously available c-Myc target gene

sets have a substantial, and highly statistically significant

(P o 1.8 � 10�112), overlap of 434 genes. This indicates that

the distinct expression and literature-based c-Myc target gene

search protocols converge on a shared core of c-Myc regulated

target genes. On the other hand, the 1550 TE-derived c-Myc

target genes we identified have a low, and non-significant

(0.81 o P o 0.99), overlap with the previously characterized

sets of genes. This result can be interpreted in two ways. It

could mean that the TE-derived c-Myc target genes we

identified do not represent a functionally relevant set of genes

that are in fact regulated by c-Myc. This interpretation is not

consistent with the expression data we report here indicating

that genes with TE-derived c-Myc binding sites are

co-expressed with each other and with c-Myc. The low overlap

between our TE-derived target gene set and the previously

published sets could also be taken to indicate that TE

sequences yield a distinct and specific c-Myc regulatory

network. This interpretation is consistent with previously

published results indicating that TEs can provide lineage-

specific regulatory sequences.18–21,25

In order to try and discriminate between these two possible

scenarios, (i) functional irrelevance of the TE-derived c-Myc

binding sites versus (ii) a TE-specific c-Myc regulatory network,

we evaluated the overlap of the TE-derived c-Myc target gene

set with a series of gene set collections from the molecular

signatures database (MSigDB) (http://www.broad.mit.edu/

gsea/msigdb/index.jsp). The MSigDB gene sets represent

groups of genes with similar features or properties such

as co-regulated genes, genes with similar cis-regulatory motifs

and genes with similar gene ontology (GO) functional

annotations.33 Thus, gene set enrichment analysis with the

MSigDB can be used to evaluate whether the TE-derived

c-Myc target genes have similar biological functions or

regulation. The TE-derived c-Myc target genes were broken

down into class/family-specific sets and run against MSigDB.

Fig. 2 Average expression levels of TE-derived c-Myc target genes, and c-Myc expression levels, across 79 tissues/cell lines. Average tissue-specific

expression levels are shown for TE-derived c-Myc target genes from 8 TE classes/families, and tissue-specific gene expression levels are shown for

c-Myc. High expression levels are shown in red and low expression levels are shown in blue.

Fig. 3 Overlap between TE-derived c-Myc target genes identified

here and two previously characterized c-Myc target gene sets. Circle A

represents the c-Myc target gene dataset from Basso et al.,27 circle B

represents the c-Myc target gene dataset from Zeller et al.,29 and circle

C represents the putative TE-derived c-Myc target genes identified

here. The numbers above the diagonal of the matrix are the number of

genes that overlap between two different datasets, and the numbers

below the diagonal of the matrix are the significance levels (P-values)

of the overlap calculated by the hypergeometric test.
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This analysis resulted in numerous statistically significant gene

set enrichments (Table S3, ESIz), the most relevant of which

include a number of cancer related gene modules. These data

suggest that many of the TE-derived c-Myc target genes are

functionally related and associated with cancer. For instance,

c-Myc target genes with L2-derived binding sites are enriched

for a cluster of genes with expression patterns indicative of

lymphoma and immune response, based on their tissue-specific

expression levels. Both MIR and LTR elements donate c-Myc

binding sites to genes classified as being involved in B cell

lymphoma via so-called clinical annotations, which associate

microarrays with known clinical attributes. In other words,

TE-derived c-Myc target genes that are from different families,

and are identified with different methodologies, converge on

genes that function in B cells and in cancer. In addition, DNA

element-derived c-Myc target genes are enriched for genes

involved in the MAPK signalling pathway, which regulates

cellular response to growth factors and mediates the action of

many oncogenes.

Differential expression in Burkitt’s lymphoma versus

normal B cell

c-Myc is a well known oncogene that is over-expressed in a

number of different cancers, particularly lymphomas.28

In light of its role in cancer, we asked whether TE-derived

c-Myc target genes showed differential expression between

cancer and normal cells. To do this, we used a microarray

gene expression dataset, from the Oncomine database,

comparing Burkitt’s lymphoma (n = 31) versus normal B cell

(n = 25).27 We identified 53 TE-derived c-Myc target genes

that show statistically significant (P o 0.05) differential

expression between normal and cancer (Fig. 4); 16 of the

c-Myc binding sites that map to these genes are derived from

Alu elements. c-Myc is also known to be over-expressed in

Burkitt’s lymphoma cells, and we calculated the PCC across

the 56 cancer and normal cell lines for these 53 genes’ expression

data with c-Myc’s to see if the differentially expressed target

genes are co-regulated with c-Myc (Table S4, ESIz). There are
32 TE-derived c-Myc target genes that show positive correlations

(0.23 r PCC r 0.80) with c-Myc and 21 target genes with

negative correlations (�0.66 r PCC r �0.38); all PCC are

statistically significant (P o 0.05). These data indicate

that TE-derived c-Myc binding sites contribute to the

cancer-related expression of c-Myc regulated genes. TE-derived

c-Myc target genes are both up-regulated and down-regulated

in cancer, while c-Myc is over-expressed in lymphoma relative

to normal B cells. This finding may be attributed to the fact

that c-Myc can both positively and negatively regulate the

expression of its target genes.28 The fact that the majority of

correlations are positive is consistent with our results showing

the overall average positive correlation between TE-derived

c-Myc target genes and c-Myc (Table 3 and Fig. 2).

In order to further evaluate the function of these differentially

expressed genes, gene set enrichment analysis was performed

on the set of 53 TE-derived c-Myc target genes that are

deregulated in Burkitt’s lymphoma. To do this, the genes were

sorted according to the TE class/family of their c-Myc binding

sites and each set was evaluated against the MSigDB gene sets.

A number of statistically significant enrichments for

Fig. 4 Differential expression of TE-derived c-Myc target genes in Burkitt’s lymphoma versus normal B cells. Each row shows the expression

levels of a gene in Burkitt’s lymphoma cells (n = 31 on the left) and normal cells (n = 25 on the right); over-expression is shown in red and

under-expression in green.
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cancer-related gene sets were detected, particularly for MIR

and L1 elements (Table S5, ESIz). For instance, the genes

encoding ITPR1 and AKT2 bear MIR-derived c-Myc binding

sites and show up in several enriched gene sets including

members of the B cell antigen receptor signalling pathway

genes and the gene set related to the PIP3 signalling pathway

in B lymphocytes. For instance, AKT genes encode

serine–threonine protein kinases that promote cell prolifera-

tion by phosphorylating targets that lead to the activation of

the anti-apoptotic transcription factor NF-kB. ITPR1 encodes

an intracellular channel that mediates release of calcium from

the endoplasmic reticulum, which can also lead to cell proliferation

via stimulation of theCALML6 protein upstream in the

calcium signalling pathway. In addition, the genes LRPPC

and PRKCB1 both have L1-derived c-Myc binding sites and

are known to be deregulated in B cell lymphoma.

Alu elements are the single most abundant class/family of

TEs that provide c-Myc binding sites to human genes, and

Alu-derived c-Myc binding sites are also over-represented

among the set of target genes differentially expressed between

Burkitt’s lymphoma and cancer. As alluded to previously, we

were particularly interested in Alu elements since they have

inserted relatively recently in the human genome, are poten-

tially polymorphic, and have a known role in several cancers.34

We investigated the Alu-derived c-Myc target genes shown to

be differentially regulated between Burkitt’s lymphoma versus

normal B cells and found a small set of Alu c-Myc target genes

that were tightly coherent with respect to several different

characteristics (Fig. 5). These genes all have Alu-derived

c-Myc binding sites that are located around the 50 transcription

start site, three of which are located within the proximal �2 kb
promoter region (Fig. 5A). All of these genes are up-regulated

in Burkitt’s lymphoma and positively correlated with c-Myc

expression (Table 4 and Fig. 5B). The specific c-Myc binding

sites in these Alu sequences are all derived from one particular

location in the element suggesting that the c-Myc TFBS

evolved in an ancestral sequence and was distributed by

transposition, as opposed to evolving in situ after the elements

inserted (Fig. 5C and Fig. S4, ESIz). Two of the five genes

have c-Myc binding sites derived from AluSg subfamily

sequences and the other three have c-Myc binding sites derived

from the AluSx subfamily. AluSg and AluSx are particularly

young Alu subfamilies that are polymorphic (i.e. show

insertion site differences) among human populations.35 It is

possible that polymorphic Alu elements change the regulatory

network of c-Myc between individual humans and/or between

cell types. Furthermore, if a gene is brought under the control

of c-Myc by an Alu insertion it could lead to changes in

expression of that gene associated with oncogenesis. These

recently evolved Alu-derived c-Myc binding sites exemplify TE

contributions to a specific c-Myc subnetwork, consistent with

our characterization of numerous novel c-Myc target genes

that are associated with TE-derived binding sites.

Materials and methods

Identification of TE-derived c-Myc binding sites

The locations of experimentally characterized c-Myc bound

regions, characterized previously by genome-wide chromatin

immunoprecipitation (ChIP) and paired-end-tag (PET) sequencing

on P493 B cells,26 were taken from the GIS ChIP-PET track

in UCSC genome browser (http://www.genome.ucsc.edu/).36

The positions of TEs were taken from the RepeatMasker

track in UCSC genome browser. TE and c-Myc bound

regions were co-localized using the UCSC table browser

tool.37 TE-derived c-Myc bound regions were analyzed with

the program Clover,30 using two c-Myc binding site motif

Fig. 5 Target genes with Alu-derived c-Myc binding sites. (A) Approximate illustration of relative positions of Alu-derived c-Myc binding sites

compared with target genes’ transcriptional start sites (TSS). (B) Differential expression of Alu-derived c-Myc target genes, and c-Myc, in Burkitt’s

lymphoma versus normal B cells. (C) Multiple sequence alignment of the Alu element insertions with c-Myc binding site locations indicated.
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position–frequency matrices from the TRANSFAC database38

(V$MYC_01 and V$MYC_02 see Fig. S1, ESIz) to precisely

locate c-Myc binding sites. Clover uses non-parametric approach

with 1000 randomizations of the search sequence to generate

a score and associated P-value. Clover was run using a

conservative score threshold of 6 with two P-value thresholds

P o 0.01 and P o 0.001.

Human TE sequences were divided into 8 classes/families

using the Repbase classification system31 implemented with

RepeatMasker: L1, L2, LINE-other (LINE elements excluding

L1 and L2), Alu, MIR, SINE-other (SINE elements excluding

Alu and MIR), DNA and LTR. Alu elements were further

divided into subfamilies and members of individual subfamilies

bound by c-Myc were aligned using ClustalW39 to identify the

relative locations of c-Myc binding sites.

Analysis of TE-derived c-Myc target genes

Human Refseq40 genes were identified as putative TE-derived

c-Myc regulatory targets if they had TE-derived c-Myc

binding sites within 10 kb of the gene boundaries. Microarray

gene expression data were taken from the Novartis mammalian

gene expression atlas version 2 (GNF2),32 and Affymetrix

probes from GNF2 were mapped to TE-derived c-Myc target

genes using the UCSC genome browser annotations.

Co-expression among TE-derived c-Myc target genes, and

between target genes and c-Myc, was evaluated by calculating

Pearson correlation coefficients (PCC) between pairs of genes

across 79 different tissues or cell lines. Statistical significance

levels (P-values) of PCC values, and averages, were computed

using the Z transformation. A permutation test was used to

identify sets of tissues that are over-expressed for c-Myc and

among all TE-derived c-Myc target genes. To do this, tissue-

specific gene expression vectors were randomly shuffled for

each gene and average tissue-specific expression values were

calculated for all randomly shuffled genes. 1000 sets of average

tissue-specific expression values were used to compute null

background expression level distributions for each tissue

against which the observed values were compared. All P-values

were corrected for multiple tests using the Benjamini–Hochberg

false discovery rate.

Differential expression of target genes in cancer versus normal

cells

TE-derived c-Myc target genes were mapped to the Burkitt’s

lymphoma and normal B cell microarray dataset compiled by

Basso et al.27 The Oncomine database41 was used to select genes

from this dataset that were determined to be differentially

expressed between cancer (Burkitt’s lymphoma n = 31) versus

normal B cells (n = 25) using the Student’s t-test. Co-expression

values between these differentially expressed TE-derived

c-Myc target genes and c-Myc, across the 56 cancer and

normal B cell lines, were computed using the PCC as described

previously.

Gene set enrichment and c-Myc target gene analyses

Sets of TE-derived c-Myc target genes for each TE class/family

were searched against a series of gene set collections from the

molecular signatures database (MSigDB)33 to evaluate their

shared functional and/or regulatory features. The extent and

significance of the overlaps between the set of TE-derived

c-Myc target genes identified here and two previously

characterized c-Myc target gene sets were evaluated using

the hypergeometric distribution:

PðX � kÞ ¼
XN
i¼k

n
i

� �
m

N � i

� �

nþm
N

� �

where k = number of overlapping target genes, N = number

of TE-derived c-Myc target genes, n = number of previously

characterized c-Myc target genes, and m = human genes not

previously characterized as c-Myc targets.

Conclusions

Recently, Bourque et al. analyzed the ability of human TEs to

provide transcription factor binding sites genome-wide.24

They considered high-throughput binding site data for seven

transcription factors, including c-Myc analyzed here, and

concluded that five of these transcription factors bind to

distinct families of human TEs. However, c-Myc was not

one of the families identified in their study to bind to human

TEs. This can be attributed to the enrichment criteria used to

characterize transcription factors as binding human TEs.

Specifically, they only considered transcription factors that

bind to families of TEs with higher than expected frequency

based on the abundance of the TE in the genome. This

approach makes sense from a quantitative perspective, but it

may be overly conservative if it misses bona fide functional

transcription factor binding sites derived from TEs. We found

that hundreds-of-thousands of human TEs have experimental

evidence of being bound by c-Myc. Furthermore, many of

these TE sequences harbor canonical c-Myc binding site

sequence motifs, suggesting that the binding of c-Myc to the

Table 4 Differential expression of Alu-derived c-Myc target genes

Gene symbol Differential expression (t-value)a Differential expression (P-value)b Correlation with c-Mycc P-value of correlationd

SLC29A1 11.98 1.4 � 10�16 0.77 1.92 � 10�12

LSM1 6.54 2.3 � 10�8 0.50 4.70 � 10�5

OIP5 5.78 1.9 � 10�6 0.48 9.39 � 10�5

AKAP1 11.21 1 � 10�14 0.79 1.42 � 10�13

DKC1 5.45 1.3 � 10�6 0.64 5.27 � 10�8

a Gene’s differential expression in Burkitt’s lymphoma cells versus normal B cells. T-values computed by the Student’s t-test. b Significance levels

(P-values) of the differential expression. c Pearson correlation coefficients between cancer versus normal expression of Alu-derived c-Myc target

genes and c-Myc. d Significance levels (P-values) of the correlation.
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elements is not spurious. In addition, our own functional

analysis of human genes with proximal TE-derived c-Myc

binding sites suggests that many of these sites may indeed be

functional with respect to mediating gene regulation by c-Myc.

However, definitive proof of such function will have to await

experimental characterization. Hopefully, the list of gene

targets and TE-derived c-Myc binding sites uncovered by

our analysis can be used to stimulate investigation of the

regulatory properties of human TEs.

TE sequences in the human genome provide thousands of

c-Myc binding sites, and genes that bear nearby TE-derived

sites show evidence for regulation by c-Myc. TE-mediated

regulation of human genes by c-Myc includes changes in

expression that are characteristic of the difference between

cancer versus normal B cells, and TE-derived target genes

encode proteins with cancer-related functions. Nevertheless,

the TE-derived c-Myc target genes identified in this study do

not overlap, for the most part, with previously characterized

c-Myc target genes. This suggests that expansion of TE

sequences may provide a mechanism for the emergence of

distinct lineage-specific regulatory subnetworks.25
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c contributions of repetitive DNA elements to human gene regulation. Human
proximal promoter sequences show distinct distributions of transposable elements (TEs) and simple sequence
repeats (SSRs). TEs are enriched distal from transcriptional start sites (TSSs) and their frequency decreases closer
to TSSs, being largely absent from the core promoter region. SSRs, on the other hand, are found at low frequency
distal to the TSS and then increase in frequency starting ∼150 bp upstream of the TSS. The peak of SSR density is
centered around the −35 bp position where the basal transcriptional machinery assembles. These trends in
repetitive sequence distribution are strongly correlated, positively for TEs and negatively for SSRs, with relative
nucleosome binding affinities along the promoters. Nucleosomes bind with highest probability distal from the
TSS and the nucleosomebinding affinity steadily decreases reaching its nadir just upstreamof the TSS at the same
point where SSR frequency is at its highest. Promoters that are enriched for TEs are more highly and broadly
expressed, on average, than promoters that are devoid of TEs. In addition, promoters that have similar repetitive
DNA profiles regulate genes that have more similar expression patterns and encode proteins with more similar
functions than promoters that differ with respect to their repetitive DNA. Furthermore, distinct repetitive DNA
promoter profiles are correlated with tissue-specific patterns of expression. These observations indicate that
repetitive DNA elementsmediate chromatin accessibility in proximal promoter regions and the repeat content of
promoters is relevant to both gene expression and function.

© 2009 Elsevier B.V. All rights reserved.
1. Introduction

The prevalence of repetitive DNA sequences inmammalian genomes
has been appreciated since the classic re-association kinetic (COT-curve)
experiments of the late nineteen-sixties (Britten and Kohne, 1968). The
completion of the human genomeprojects at the turn of themillennium
further underscored the extent towhich thehumangenomesequence is
made up of repetitive DNA elements (Lander et al., 2001; Venter et al.,
2001). There are several distinct categories of repetitive sequence ele-
ments in the human genome. Interspersed repeat sequences, also
known as transposable elements (TEs), make up at least 45% of the
euchromatic genome sequence, and novel human TE families continue
to be discovered and characterized (Wang et al., 2005; Nishihara et al.,
2006). Simple sequence repeats (SSRs) consist of tandem repeats of
exact or nearly exact units of length k (k-mers), with k=1–13 corres-
ponding to microsatellites and k=1–500 for minisatellites. Analysis of
the human genome sequence showed that ∼3% of the euchromatic
sequencewasmade up of SSRs, and both SSRs and TEs are thought to be
imple sequence repeat; TSS,
ne expresssion atlas 2.
+1 404 894 0519.
. Jordan).

l rights reserved.
far more abundant in heterochromatin. Segmental duplications of 1–
200 kb were initially shown to account for ∼3% of the human genome
sequence (Lander et al., 2001), and more recent results reveal that copy
number variants populate the genome to aneven greater extent (Kidd et
al., 2008).

The evolutionary significance and the functional role that repetitive
genomic elements, TEs in particular, play has long been a matter of
speculation and inquiry. Once regarded as selfish, or parasitic, genomic
elementswith little or no phenotypic relevance (Doolittle and Sapienza,
1980;Orgel andCrick,1980), it has since becomeapparent thatTEsmake
substantial contributions to the structure, function and evolution of
their host genomes (Kidwell and Lisch, 2001). Perhaps the most
significant functional effect that TEs have had on their host genomes is
manifest through the donation of regulatory sequences that control the
expression of nearby genes (Feschotte, 2008). Studies of TE regulatory
effects have focused, for the most part, on discrete well characterized
regulatory elements such as transcription factor binding sites (Jordan
et al., 2003; van de Lagemaat et al., 2003; Wang et al., 2007), enhancers
(Bejerano et al., 2006) and alternative promoters (Dunn et al., 2003;
Conley et al., 2008). A number of recent studies have also outlined the
contributions of TEs to regulatory RNA genes (Smalheiser and Torvik,
2005; Borchert et al., 2006; Piriyapongsa and Jordan, 2007; Piriyapongsa
et al., 2007). For this study, we sought to analyze the contribution of

mailto:king.jordan@biology.gatech.edu
http://dx.doi.org/10.1016/j.gene.2009.01.013
http://www.sciencedirect.com/science/journal/03781119
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repetitive DNA to epigenetic aspects of gene regulation, specifically the
relationship between repetitive DNA elements and the chromatin
environment of human promoter sequences.

Genomic DNA in eukaryotes is wrapped around histone proteins
and packaged into repeating subunits of chromatin called nucleo-
somes (Kornberg and Lorch, 1999). The importance of specific
genomic sequences in determining the binding locations of nucleo-
somes has recently been confirmed (Segal et al., 2006). A number of
factors point to a relationship between repetitive DNA elements, the
local chromatin environment and epigenetic gene regulation. Densely
compact heterochromatin is enriched for both TEs and SSRs in a
number eukaryotic organisms (Dimitri and Junakovic, 1999). Hetero-
chromatin functions to mitigate potentially deleterious effects
associated with TEs by repressing both element transcription and
ectopic recombination between dispersed element sequences (Grewal
and Jia, 2007). In fact, it has been proposed that heterochromatin
originally evolved to serve as a genome defense mechanism by
silencing TEs (Henikoff and Matzke, 1997; Henikoff, 2000). In the
plant Arabidopsis, de novo heterochromatin formation can be caused
by insertions of TEs into euchromatin, and TEs are able to
epigenetically silence genes when they are inserted nearby or inside
them (Lippman et al., 2004). In other words, TEs have been shown to
cause specific in situ changes in the chromatin environment that can
spread locally and regulate gene expression in a way that is region-
specific but sequence-independent (i.e. epigenetic).

The previously established connections between genome repeats,
chromatin environment and gene regulation for model organisms,
taken together with the repeat-rich nature of the human genome,
suggest that repetitive sequence elements may play a role in
regulating human gene expression by modulating the local chromatin
environment. Specifically, we hypothesized that gene regulatory
related differences in nucleosome binding at human promoter
sequences are mediated in part by repetitive genomic elements. We
evaluated the relationship between nucleosome binding, repetitive
element promoter distributions and human gene expression to test
this idea. Human proximal promoter sequences were characterized
with respect to both their repetitive DNA architectures and predicted
nucleosome binding affinities, and the repetitive DNA environment of
the promoters was considered with respect to patterns of gene
expression.

2. Materials and methods

2.1. Promoter sequence analysis

Our analysis focused on proximal promoter sequence regions,
which we define for a gene as ranging from−1 kb at the 5′ end to the
transcription start (TSS) at the 3′ end. We relied on the Database of
Transcriptional Start Sites (DBTSS) to identify experimentally charac-
terized TSS, based on aligned full-length cDNA sequences, in the
human genome (Suzuki et al., 2002). These TSS were mapped to the
March 2006 human genome reference sequence (NCBI Build 36.1) and
used to extract 1 kb proximal promoter sequences as described
previously (Marino-Ramirez et al., 2004; Tharakaraman et al., 2005).
This procedure was used to ensure analysis of the most accurate set of
human proximal promoter sequences possible. For the additional
three mammalian species analyzed – chimpanzee (Pan troglodytes),
mouse (Mus musculus) and rat (Rattus norvegicus) – the locations of
proximal promoter sequences were determined based on the 5′ most
position of NCBI Refseq gene models (Pruitt et al., 2007). These
positions were used to download 1 kb proximal promoter sequences
from the latest respective genome builds for each organism from the
UCSC Genome Browser (Karolchik et al., 2003): chimpanzee
n=24,170, mouse n=20,589 and rat n=8737.

The program RepeatMasker (Smit et al., 1996–2004) was used to
detect and annotate repetitive elements in the proximal promoter
sequences. RepeatMasker was run using 500 bp of flanking sequence
on either end of the proximal promoter regions analyzed to avoid edge
effects in the detection of repeats. Repetitive elements detected by
RepeatMasker were broken down into two main categories: inter-
spersed repeats, also known as transposable elements (TEs), and
simple sequence repeats (SSRs). SSRs may be annotated as low
complexity sequences and correspond to runs of repeating k-mers
where k=1–13 bp for microsatellites and k=14–500 for minisatel-
lites. TEs were further divided into specific classes: LINEs, SINEs, LTR
and DNA as well as specific families L1 and Alu.

Proximal promoter sequences, including 500 bp flanks, were
analyzed using the Nucleosome Prediction software developed by the
Segal lab (Segal et al., 2006). This software was used to calculate the
probability of each nucleotide being occupied by a nucleosome in all
promoter sequences. These nucleosome occupancy probabilities are
based on the periodicity of dinucleotides – AA/TT/TA – that are a
characteristic of genomic sequences that have been experimentally
isolated as bound to nucleosomes. Predictions for the relative
placement of nucleosomes along genomic sequence are further
informed by a thermodynamic stability model. The nucleosome
prediction model used in our analysis is based on experimentally
characterized nucleosome bound sequences reported for chicken
(Satchwell et al., 1986). The chicken model has been proven accurate
when used on other vertebrate genomes (Segal et al., 2006). For sets
of promoter sequences, nucleosome occupancy averages were
calculated over each position of the 1 kb proximal promoter regions
and these average values were taken as the position-specific
nucleosome binding affinities (nba) reported here.

Two sets of promoter sequence randomizations were done and
position-specific nucleosome binding affinities were re-calculated on
the randomized sequence sets. The first randomization consisted of
randomly shuffling entire 1 kb proximal promoter sequences. This has
the effect of maintaining overall nucleotide composition of the
promoter sequences while changing the dinucleotide composition as
well as any regional nucleotide biases along the promoters. The
second randomization procedure consisted on randomly shuffling
non-overlapping 100 bp windows along the promoter sequences in
place. This has the effect of maintaining both overall and local
nucleotide compositions of the promoters while changing the
dinucleotide composition.

2.2. Repeat-based promoter clustering

Human proximal promoter sequences were clustered solely based
on their repetitive DNA architectures. To do this, we generated 1000-
unit vectors that represent the position-specific repeat content for
each promoter sequence. A discrete value was assigned to each
promoter sequence position (nucleotide) in the following manner:

Xi =
1 if thenucleotide is part of a TE sequence

−1 if thenucleotide is part of a SSR sequence
0 if thenucleotide is part of a non−repetitive sequence

8<
:

where Xi represents the nucleotide at position i.
Promoter sequence repeat vectors were then clustered using a

combination of k-means clustering (k=5, 10, 20) and Self Organized
Mapping using the program Genesis (Sturn et al., 2002). We found
that using k-means clustering with k=5 followed by a Self Organized
Map generated the most coherent clusters in terms of the repeat
content of the vectors.

2.3. Gene expression analysis

We used version 2 of the Novartis mammalian gene expression
atlas (GNF2), which provides replicate Affymetrix microarray data for
44,775 probes across 79 human tissues (Su et al., 2004). GNF2
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expression data, in the form of Affymetrix signal intensity values, were
obtained from the UCSC Table Browser (Karolchik et al., 2004), and
Affymetrix probes were mapped to NCBI Refseq identifiers using the
UCSC Table Browser tools. For each gene, the average, maximum and
breadth of expression were computed across the 79 tissues in the
GNF2 data set. Expression breadth is taken as the number of tissues
where the gene has a signal intensity value of N350. Co-expression
between gene pairs was measured by computing the Pearson
correlation coefficient (r) between pairs of gene-specific expression
signal intensity vectors:

gi = t1; t2 N t79½ �

where gi is the ith gene and tn is the expression level for that gene in
the nth tissue.

For each repeat-specific promoter cluster, the average r-value for
all pairwise comparisons between genes in the cluster was computed.
In addition, the difference (diff) between the cluster-specific r-value
averages (cluster-r) and all possible pairwise r-values between genes
(all-r) was computed for each cluster:

diff =cluster−r−all−r:

The significance of these differences was computed using the
normal deviate:

z= diff =sediff

where sediff is the standard error of the difference.

2.4. Probabilistic analysis of promoter repeats

We used a probabilistic representation of the repeat content of the
human proximal promoter sequence clusters in order to derive gene
(promoter)-specific similarity scores that indicate the probability that
any human gene (promoter) belongs to a specific repeat cluster. To do
this, each proximal promoter sequence (1 kb upstream of the TSS) in a
cluster was divided into 20 non-overlapping windows of 50 bp each.
For each window (w), the probability (p) of the occurrence of a TE
nucleotide, or SSR nucleotide or a non-repetitive (NR) nucleotide was
calculated separately using the following formula:

p b;wð Þ=
fb;w + s bð Þ

N+
X

bVa T;S;Nf g
s bVð Þ

where fb,w=counts of base b in window w and b represents counts of
either TE nucleotides, or SSR nucleotides or non-repetitive nucleo-
tides, N=number of sites in the window (50) and s(b)=a
pseudocount function. The probabilities thus calculated for each
windowwere averaged for all promoters in the cluster. This procedure
was repeated to yield repetitive DNA probabilistic representation
models for each of the six promoter clusters.

All the proximal promoter sequences analyzed were then scored
against each of the six cluster-specific probabilisticmodels using a log-
likelihood ratio approach illustrated as follows:

LLb;w = ln
X

TE;SSR;NR

fb;wln
fb;w
fb

where fb,w=pb,w×50, which is the model frequency used as back-
ground. Promoter-specific scores (S) were then computed as the sum
of log-likelihood ratios over the 20 windows of 50 bp each:

S=
X20
w = 1

LLb;w:

Using this method, we scored all genes (promoters) against each of
the six cluster models to generate six cluster-specific gene (promoter)
score vectors. This modeling and scoring method is a modification of
the approach used to score sequence motifs, such as transcription
factor binding sites, based on motif-characteristic position-weight
matrices (Wasserman and Sandelin, 2004).

In order to relate promoter sequence repetitive DNA architecture
to tissue-specific gene expression, the gene (promoter)-specific
probabilistic repeat cluster scores were correlated with tissue-specific
gene expression signal intensity values for each of the 79 tissues in
GNF. This was repeated with gene (promoter)-specific scores assigned
to each gene for each of the six repeat clusters. For example, for the
cluster1 (c1) versus tissue1 (t1) comparison:

c1= Sg1; Sg2 N Sg7913
� �

x t1= eg1; eg2 N eg7913
� �

where gi is the ith gene, S is the score for the cluster1 model and e is
the expression level for that gene in tissue1. In other words, each gene
analyzed is assigned a repeat probability score for each of the six
clusters, and these six sets of repeat probability promoter scores are
individually correlated with the GNF2 tissue-specific expression
values for the genes. This procedure resulted in a 6×79 matrix of
correlation values.

2.5. Gene Ontology (GO) analysis

GO annotation terms (Ashburner et al., 2000) for human genes
were obtained from the Gene Ontology Annotation database (http://
www.ebi.ac.uk/GOA/). GO terms were further mapped to higher level
GO slim categories. Expected versus observed frequencies of GO slim
terms were compared using χ2 tests for each promoter repeat cluster,
as well as for the combined TE− and TE+ groups, in order to look for
over-represented GO slim categories. The pairwise similarity between
GO terms was computed using modified semantic similarity method
(Lord et al., 2003; Azuaje et al., 2005) as described previously
(Marino-Ramirez et al., 2006; Tsaparas et al., 2006). The GO similarity
difference (GOdiff) was calculated between the average pairwise
similarity for GO terms from pairs of genes within TE groups (e.g. TE
+) and the average pairwise GO similarity for all possible pairs of
genes:

GOdiff = GOsim− TE+ð Þ−GOsim− allð Þ:

The significance of the difference was measured using the normal
deviate as described for the gene expression analysis.

2.6. Statistical analysis

Standard statistical tests were used to compare population means
for pairwise (Student's t-test) and for multiple comparisons (ANOVA),
to correlated vectors of nucleosome binding affinities, TE and SSR
densities, expression and promoter score values (Pearson correlation
coefficient), to control for the confounding effects ofmultiple variables
on correlation values obtained (partial correlation) and to evaluate the
difference between observed and expected GO terms (χ2) (Zar, 1999).

3. Results and discussion

3.1. Repetitive DNA and nucleosome binding affinity

Experimentally characterized human gene proximal promoter
sequences (n=7913) were taken from the Database of Transcriptional
Start Sites (DBTSS) (Suzuki et al., 2002) and analyzed with respect to
their repetitive DNA content and nucleosome binding affinities. The
locations of repetitive DNA elements along promoter sequences were
determined by the RepeatMasker program and nucleosome binding
affinities were predicted using the method of (Segal et al. (2006). Two
classes of repetitive DNA were analyzed separately: interspersed
repeats, also known as transposable elements (TEs) and simple
sequence repeats (SSRs), which are made up of runs of exact or nearly

http://www.ebi.ac.uk/GOA/
http://www.ebi.ac.uk/GOA/
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exact repeating k-mers. For each promoter position, from 1 kb
upstream to the transcriptional start site (TSS), the average TE and
SSR densities over all promoter sequences were calculated as the
fraction of sequences for which that position was occupied by a TE or
SSR. Average nucleosome binding affinities across promoter positions
were calculated as the fraction of sequences for which a given position
was predicted to be occupied (bound) by a nucleosome. Average
nucleosome binding affinities and the average TE density follow
parallel trends along the proximal promoter regions (Fig. 1a).
Nucleosomes bind more tightly and TEs are found more frequently
distal to the TSS, whereas nucleosomes bind promoter sequencesmost
proximal to the TSSwith lower affinity and TEs are rarely found close to
the TSS. SSRs show a distinctly different trend with a higher density
close to the TSS that corresponds to the decrease in nucleosome
binding affinity. The SSR density matches the nucleosome binding
even more closely than the TE density just upstream of the TSS.
Nucleosome binding affinities decrease steadily from distal regions
until∼35 bp upstreamof the TSS, then the nucleosome binding affinity
increases towards the TSS. Similarly, the SSR density increases to the
same point and then drops off as the nucleosome binding affinity
increases (Fig. 1a). This core promoter region where nucleosome
binding affinity is at its lowest and SSR density is at its highest
corresponds to the locationwhere the basal transcriptional machinery
assembles, and RNA polymerase II binds, to initiate transcription.

The correlations between nucleosome binding affinities with TE
and SSR densities along human proximal promoter regions are robust
and highly statistically significant (Fig. 1b). Previously, we observed
Fig. 1. Repetitive DNA density and nucleosome binding affinity along human proximal
promoter sequences. (a) Average nucleosome binding affinities (green line, values on
left y-axis) along with average TE densities (blue line, values on right y-axis) and
average SSR densities (pink line, values on right y-axis) over 7913 human proximal
promoter sequences are plotted over each promoter position starting from −1000 bp
upstream and progressing to the transcriptional start site (TSS at position 0). (b) Linear
trends and correlations relating position-specific nucleosome binding affinities (y-axis)
to TE (blue) and SSR (pink) densities (x-axis) are shown. Statistical significance levels
of the r-values are based on the Student's t-distribution with df=n−2=998 where
t= r⁎sqrt((n−2)/(1−r2)).

Fig. 2. Nucleosome binding properties for repetitive versus non-repetitive DNA. (a)
Average predicted nucleosome binding affinities are shown for TE, SSR and non-
repetitive human promoter sequences. (b) Periodicity of the nucleosome binding
(wrapping) characteristic dinucleotides AA/TT/TA are shown for 39 experimentally
characterized nucleosome bound TE sequences from chicken. (c) Histogram showing
the inter-peak distances for AA/TT/TA dinucleotides.
that nucleotide composition changesmarkedly along human proximal
promoter sequences with an increase in CpG frequency close to the
TSS (Marino-Ramirez et al., 2004), while the nucleosome binding



Table 1
Average⁎ nucleosome binding affinities for TE classes (families)

TE class (family)a Avg nba±s.e.b

L1 0.849±6.8e–4
LINE other 0.805±7.6e–4
Alu 0.510±5.2e–4
SINE other 0.789±7.0e–4
LTR 0.807±7.9e–4
DNA 0.802±9.8e–4

a TEs are broken down by class (family) using RepeatMasker. The L1 and Alu families
are considered separately from all other LINEs and SINEs respectively. All LTR and DNA
elements are considered together as classes.

b Average nucleotide binding affinities±standard errors.
⁎ All differences are statistically significant (ANOVA, F=2.8e4, P≈0).
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prediction method we employed in this analysis relies on the
periodicity of AT-rich dinucleotides (Segal et al., 2006). Thus, it is
possible that the high (low) nucleosome binding affinity of TE (SSR)
sequences in proximal promoter regions is a corollary effect of local
differences in nucleotide composition. We attempted to control for
this possibility in several ways. First of all, average nucleosome
binding affinities were computed for all TE, SSR and non-repetitive
sequences irrespective of their locations along proximal promoter
regions. On average, TE sequences bind nucleosomes most tightly,
followed by non-repetitive DNA and SSRs, which have the lowest
nucleosome affinities (Fig. 2a); all differences are highly statistically
significant (ANOVA, F=4.5e11, P≈0).

In addition to the binding affinity observations that are based on
the nucleosome prediction software, we also analyzed the nucleo-
some wrapping characteristic AA/TT/TA dinucleotide frequencies
along experimentally characterized nucleosome bound sequences
from chicken (Satchwell et al., 1986) that we identified as being
derived from TEs (n=39). The chicken TE sequences show the
characteristic AA/TT/TA dinucleotide periodicity expected of nucleo-
some bound sequences (Fig. 2b); in fact, the average distance between
dinucleotide peaks for these TE sequences is ∼10.3 bp, which is close
to the expected distance of 10.2 bp corresponding to one turn of the
Fig. 3. Clusters of human proximal promoters based on their repetitive DNA sequence di
−1000 bp upstream to the transcriptional start site (TSS). Promoter sequences are color c
positions occupied by TEs are shown in blue, SSR positions are shown in yellow and non-rep
number of sequences in each cluster. There are two (c1 and c2) clusters that contain promot
four clusters (TE+, c3–c6) contain increasing numbers of TEs.
DNA helix (Fig. 2c). This is significant because DNA sequences are
thought to wrap around nucleosomes by bending sharply at each
repeating turn of the DNA helix, and this sharp bending is facilitated
by the specific AA/TT/TA dinucleotides (Widom, 2001).

We also attempted to control for nucleotide composition effects by
randomizing promoter sequences and re-calculating nucleosome
binding affinities. First, entire 1 kb promoter sequences were
randomized and nucleosome binding affinities were re-calculated.
This control procedure has the effect of eliminating both native
dinucleotide occurrences and local nucleotide composition biases. The
average nucleotide binding affinity for such randomized promoter
sequences (nba=0.16) is ∼3× lower than seen for the observed
promoter sequences (nba=0.49), and the difference between
random and observed affinities is highly significant (t=23,
P=5.3e–100). In addition to differences in the magnitude of the
nucleosome binding affinities, the relative affinity trends along the
promoters were compared for the random versus observed sets.
Partial correlation was used to control for the effects of the random
sequences on the observed relationship between nucleosome binding
affinity with TE and SSR densities along proximal promoters. The
positive (negative) correlations between nucleosome binding for TE
(SSR) do not change when the correlations between random
sequences and nucleosome binding along the promoters are
accounted for [rnba·TE|random1=0.99 and rnba·SSR|random1=0.85].

A second randomization procedure was done to account for local
differences in nucleotide composition along proximal promoter
sequences. In this case, sequences were randomized within non-
overlapping 100 bpwindows along thepromoters. This had the effect of
eliminating native dinucleotide occurrences while maintaining local
nucleotide composition. Aswith the complete sequence randomization
procedure, the locally randomized sequences have significantly lower
nucleosome binding affinities (nba=0.23) than the observed
sequences (nba=0.49), and this 2.1× difference is highly statistically
significant (t=17, P=5.0e–55). Clearly, local nucleotide composition
alone cannot explain the observed nucleosome binding affinities.
However, the relative trends in nucleosome binding show different
stributions. Proximal promoter sequences are represented left-to-right from position
oded according to their repeat element distributions. Individual promoter nucleotide
etitive positions are shown in black. The vertical size of the clusters corresponds to the
ers largely devoid of TE sequences (TE−), and the promoter sequences of the remaining



Fig. 4. Gene expression comparison for TE− versus TE+ promoter clusters. Human
gene expression data are from the Novartis mammalian gene expression atlas version
2 (GNF2). (a) Average level of expression, (b) maximum level of expression and (c)
breadth of expression across 79 human tissues (cells) are compared for genes that
have TE− versus TE+ promoter sequences. Statistical significance levels are based on
the Student's t-test.

Fig. 5. Gene co-expression for repeat-specific proximal promoter clusters. Average
pairwise Pearson correlation coefficients (r) for gene expression across 79 human
tissues are shown for clusters 1–6 (see Fig. 3) as well as for the TE− versus TE+ clusters
(inset). Statistical significance levels are based on ANOVA for multiple comparisons and
on the Student's t-test for the TE− versus TE+ comparison.
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local nucleotide composition effects for TEs versus SSRs. The partial
correlation controlling for the effects of local nucleotide compositionon
the relationship between TE density and nucleosome binding elim-
inates the positive correlation seen across the entire promoter for the
observed data [rnba·TE|random2=−0.14]. This suggests that local
nucleotide composition bias influences the decreasing trend in
nucleosome binding affinities along proximal promoters irrespective
of TE density. Interestingly, this same mitigating effect of local
nucleotide composition is not seen for the relationship between SSRs
and nucleosome binding [rnba·SSR|random2=−0.53]. This suggested the
possibility that most of the local nucleotide composition bias effect on
the relationship betweenTEs and nucleosome bindingmay be confined
to the region closest to the TSS where TEs are largely absent and SSRs
are at their most dense (Fig. 1a). Indeed, when partial correlation
controlling for local nucleotide bias is done excluding 150 bp upstream
of the TSS, the positive correlation between TEs and nucleosome
binding affinity remains [−1000 to −150 rnba·TE|random2=0.76]. In
other words, positive TE effects on nucleosome binding are most
evident away from the TSS, while the SSRs that inhibit nucleosome
binding act closest to the TSS.

Taken together, these data suggest the intriguing possibility that
the human genome utilizes repetitive DNA content along promoter
regions to tune nucleosome binding in such a way as to facilitate
maximum access of the basal transcriptional machinery just upstream
of TSS. Furthermore, different classes of repeats play distinct roles in
this process; TEs bind nucleosomes tightly yielding compact less
accessible DNA, while SSRs extrude nucleosomes creating a relatively
open chromatin environment.

3.2. Cross-species comparison

In addition to the human genome analysis, the relationship
between nucleosome binding and repetitive DNA content of
proximal promoter regions was evaluated for four additional mamma-
lian species with complete genome sequences available: chimpanzee
(P. troglodytes), mouse (M. musculus) and rat (R. norvegicus). For these
species, NCBI Refseq genemodelswere used to define TSS andproximal
promoter regions, while TE and SSR repeats and nucleosome binding
were analyzed aswasdone for thehumangenome. The trends observed
for human are highly similar to those seen for the other mammalian
species (Supplementary Fig. 1). In chimpanzee, mouse and rat,
nucleosome binding affinities decrease steadily along the proximal
promoter region until the core promoter, b50 bp from the TSS, where
nucleosome binding begins to increase. For these three species, TE
density drops precipitously and steadily along the proximal promoter
while SSR density increases sharply at first in the core promoter near
the TSS and then drops off again as nucleosome binding affinity
increases. Thus, repeat-rich mammalian genomes appear to use
repetitive DNA elements to tune nucleosome binding and core
promoter accessibility in similar ways. The conservation of the
relationship between repetitive DNA and nucleosome biding in core
promoters of severalmammalian species suggests that thismechanism
may have evolved early in the mammalian radiation as repetitive



Fig. 6. Differences in gene co-expression between cluster-specific gene pairs versus all
possible pairs of genes. Average pairwise Pearson correlations (r) for gene expression
across 79 human tissues were measured for all possible gene pairs and this value was
subtracted from the average pairwise r-values for genes within each repeat-specific
cluster (c1–c6). A negative value indicates that genes within the cluster have less
similar co-expression than background, whereas a positive value indicates that genes
within a cluster are more highly co-expressed than expected.
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elements were proliferating within genomes. However, many of the
repetitive elements that yield these patterns evolve rapidly and are
lineage-specific. Accordingly, there may be an ongoing dynamic
between repeat generation bymutation and/or transposition followed
by selection based on the promoter location of the repeat and specific
requirements for chromatin accessibility. For TEs in particular, this
could simply mean that the elements are eliminated from core
promoter regions close to the TSS by purifying selection. Indeed,
negative selection against TE insertions closest toTSSwould seem to be
the easiest way to explain the observed pattern of TE density (Fig. 1a
and Supplementary Fig. 1). However, our analysis of gene expression
data, described in following sections, suggests that this is not the case.
SSRs, on the other hand, appear to be favored in core promoter regions.

3.3. TE-specific effects on nucleosome binding affinity

The Repbase library of repetitive DNA elements used by the
program RepeatMasker can be used to annotate TEs into different
classes and families (Jurka et al., 2005; Kapitonov and Jurka, 2008).
Using this approach, humanTE sequences were divided into LINEs, (L1
and other LINES), SINEs (Alu and other SINEs), LTR retrotransposons,
and DNA transposons to determine if different classes (families) of
elements show differential nucleosome binding affinities (Table 1). In
general, LINEs, LTR retrotransposons and DNA transposons have
higher affinities for nucleosomes compared to SINEs. Specifically, L1
elements exhibit the highest nucleosome binding affinities while Alu
elements display the lowest affinity for nucleosomes. All differences
are statistically significant (Table 1, ANOVA).
Fig. 7. Promoter repetitive DNA architecture and tissue-specific gene expression. Probabilistic
cluster (see Fig. 3 and Supplementary Fig. 2). Cluster-specific probabilistic models were used
cluster (Materials and methods). Vectors of cluster-specific gene scores were correlated with
relative correlation values between gene (promoter)-specific scores for each cluster and tissu
version 2 (GNF2). Relatively high (positive) correlations between gene-cluster scores and gen
Two specific examples of such correlations are shown in panels b and c. (b) Gene (promoter
with gene expression levels in a B lymphoblast cell line. (c) Gene (promoter)-specific sco
expression levels in a B lymphoblast cell line. In other words, genes with repetitive DNA pro
lymphoblast cell line, whereas genes with repetitive DNA promoter profiles that resemble c
The differences in nucleosome binding affinities between L1 and
Alu are consistent with their respective nucleotide compositions and
perhaps also relevant to their genomic distributions. L1 elements, and
LINEs in general, are more AT-rich than Alus (SINEs), and AT-rich
sequences are more likely to bind nucleosomes tightly as discussed
previously. L1 elements are also biased towards intergenic regions in
their distribution, while Alu elements are found primarily in gene rich
regions. In fact, it has been shown that Alus are preferentially retained
in GC- and gene-rich regions of the genome, and this has been taken to
suggest that they may be selectively fixed therein by virtue of some
gene-related function that they play (Lander et al., 2001). Our data
showing lower nucleosome binding for Alu elements suggests that
they may be retained in gene regions by virtue of their ability to
maintain a relatively open chromatin environment. Conversely, L1
elements may help to maintain compact chromatin structure
characteristic of intergenic regions.

3.4. Promoter repeat architecture and gene expression levels

In light of the observed relationship between repetitive DNA
elements and nucleosome binding, we used the repetitive DNA
content of proximal promoter regions to group human genes into
related clusters. The gene expression and functional properties of the
clusters were then compared to their characteristic repeat architec-
tures. To cluster human genes using their promoter repeat distribu-
tions, proximal promoter sequences were represented as 1000-unit
vectors with each position in a sequence-specific vector receiving a
score indicating whether that particular nucleotide is part of a TE, SSR
or non-repetitive sequence. These gene-specific promoter repeat
vectors were then compared using a distance metric and clustered as
described (Materials and methods). This approach ensured that the
clusters reflect both the abundance, or lack thereof, and the location of
distinct repetitive DNA elements in human promoter sequences. In
other words, this scheme relates human genes solely by virtue of their
promoter repeat distributions.

We obtained six repeat-specific clusters of human genes in this
way (Fig. 3), each cluster representing a distinct overall pattern of TE
and/or SSR content and distribution. Two of these clusters (c1 and c2,
TE−) consist of genes that are largely devoid of TEs, while four consist
of genes with increasing TE densities (c3–c6, TE+). c1 does not
contain any repetitive DNA, while c2 is enriched in SSR sequences and
has very low TE content. c3–c6 have progressively more TE content
with locations shifting slightly towards the TSS.

The gene expression properties of the human genes in these
clusters were analyzed using version 2 of the Novartis mammalian
gene expression atlas (GNF2) (Su et al., 2004). This data set consists of
Affymetrix microarray experiments, performed in replicate, on 79
different human tissue (cell) samples. For each human gene, over 79
tissues, we computed the average expression level, maximum
expression level and breadth of expression as described (Materials
and methods); cluster-specific averages for each of these parameters
were then compared (Fig. 4). We were surprised to find that clusters
that contain TEs (c3–c6, TE+) have higher average, maximum and
breadth of expression than clusters that are largely devoid of TEs (c1
and c2, TE−). Gene expression levels are known to correlate with a
models were used to represent the repetitive DNA architectures of each repeat-specific
to score individual promoter sequences in terms of how closely they resemble a given
vectors of gene expression values specific human tissues. (a) A heat map illustrating the
e-specific gene expression values for the 79 tissues in the Novartis gene expression atlas
e expression levels are shown in red and low (negative) correlations are shown in blue.
)-specific scores based on the probabilistic model for cluster 2 are negatively correlated
res based on the probabilistic model for cluster 6 are positively correlated with gene
moter profiles that most closely resemble cluster 6 are more highly expressed in the B
luster 2 have lower levels of B lymphoblast expression.
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number of measures of gene ‘importance’ such as sequence and
phylogenetic conservation, fitness effects, numbers of protein inter-
actions, etc. (Duret and Mouchiroud, 2000; Pal et al., 2001; Krylov
et al., 2003; Zhang and Li, 2004; Wolf et al., 2006). In other words,
genes that are more highly and broadly expressed are under greater
purifying selection than genes with lower expression levels. If TEs are
eliminated from proximal promoter sequences by purifying selection,
then one may expect that TE+ promoters would have lower, and not
higher as we observe, levels of gene expression than TE− promoters.
In other words, our analysis of repeat cluster gene expression levels
argues against the straightforward interpretation that the paucity of
TEs in proximal promoter sequences, and their decreasing frequency
closer to TSS, is a result of purifying selection against disruptive
insertions in core promoters.

On the other hand, one may expect that genes with more
restricted and more tightly regulated expression, such as develop-
mental genes, would have more TE sensitive promoters than genes
that are highly and broadly expressed. In fact, developmental genes
are known to have promoters that are largely devoid of TEs (Simons
et al., 2006, 2007). This may reflect the fact that such genes are
more finely and tightly regulated and accordingly contain more
complex promoters with higher numbers of cis-regulatory elements.
If this is indeed the case, then the paucity of TEs in proximal
promoter regions may still be explained, to some extent, by
purifying selection against disruptive insertions. Discrimination
between these two hypotheses regarding the selective elimination,
or lack thereof, of proximal promoter TE sequences awaits further
analysis.

3.5. Promoter repeat architecture and tissue-specific gene co-expression

In addition to analyzing repeat cluster gene expression levels, we
also evaluated the relationship between the tissue-specific expression
patterns of genes across the 79 tissues from GNF2 and their promoter
repeat content. To do this, gene-specific vectors of expression levels
across tissues were compared using the Pearson correlation coeffi-
cient (r); positive values of r indicate gene pairs that are co-expressed
across tissues. For each cluster, average r-values were computed based
on all pairwise comparisons within the cluster (Fig. 5). Higher average
r-values are associated with increasing TE promoter content of the
clusters. For instance, there is a positive (R=0.77), albeit marginally
significant (z=1.72, P=0.1), rank correlation between cluster TE
content and co-expression. In addition, all four TE+ clusters have
greater average co-expression than either of the TE− clusters, and the
average r-value for TE+ clusters together is significantly greater than
seen for the combined TE− clusters (Fig. 5).

The possibility of gene co-regulation within repeat clusters was
also evaluated by taking the difference between the average r-value
for all pairwise comparisons within clusters to average pairwise r-
value for all gene comparisons (Materials and methods) (Fig. 6). If
genes within clusters are co-regulated, then the value of this
difference should be positive, whereas no co-regulation will yield a
negative difference value. The TE− clusters 1 and 2 have negative
difference values indicating that genes with no TEs in their promoters
are less co-expressed with other genes possessing a similar lack of
repeats than they are with all genes. On the other hand, the TE+
clusters 3–6 all have positive difference values further demonstrating
that genes with similar repetitive DNA profiles in their promoters are
more closely co-expressed than random pairs of genes. The difference
values for each cluster are statistically significant (7.3NzN100.6, 1.4e–
13bPb0).

Taken together, these observations on gene co-expression also argue
against the notion that TE insertions in proximal promoter sequences
are basically disruptive or deleterious, since the presence of similar TE
promoter distributions implies a higher level of gene co-regulation than
the absence of TEs does. This is not to say that themajority of de novoTE
insertions in and around functional promoter sequences are not
deleterious, clearly they are. However, the repeat sequences that have
been fixed in proximal promoter sequences do appear to make
functionally relevant contributions to chromatin accessibility and help
to regulate levels and specific patterns of gene expression.

3.6. Probabilistic analysis of promoters and gene expression

Given the relationship between gene expression and the repetitive
DNA architecture of human promoters we observed, we wanted to
further evaluate the propensity of human genes to be expressed in
specific tissues based on the repetitive DNA content of their promoters.
To do this, we used a probabilistic representation of cluster-specific
promoter architectures together with the GNF2 expression data. This
involved partitioning 1 kb proximal promoter sequences into 20 non-
overlapping windows of 50 bp each, and for a given cluster,
representing the probability of observing TE, SSR or non-repetitive
nucleotides in each window (Materials and methods). The proba-
bilistic representation of promoter repeat architectures we employed
is mathematically analogous to the probabilistic representations of
positionweightmatrices (PWMs) used to summarize position-specific
residue frequencies among collections of sequence motifs such as
transcription factor biding sites (Wasserman and Sandelin, 2004).
Accordingly, promoter repeat profiles can be represented as sequence
logos showing the probability and distribution for sites of different
repeat classes (Supplementary Fig. 2). The cluster-specific promoter
repeat profiles can then be used to score individual promoter
sequences just as PWM representations can be used to score putative
motif sequences. Connecting these cluster- and position-specific
promoter repeat profiles to tissue-specific gene expression profiles
was done in a way that is similar to the methodology used to connect
the presence of transcription factor binding sitemotifs to specific gene
expression patterns (Conlon et al., 2003).

For each of the 79 tissues in GNF2, each promoter sequence was
given six cluster-specific scores, and for each cluster, the gene-specific
scores were correlated with the tissue-specific gene expression levels
(Materials and methods). This resulted in a 6-by-79 matrix of cluster-
by-tissue correlations (Fig. 7). The TE+ clusters 4 and 6 show
particularly high correlations with a number of tissues, such as B
lymphoblasts (Figs. 7b and c), whereas the TE− clusters 1 and 2 show
low correlations with the same tissues and lower correlations overall.
This indicates that certain repeat-rich promoter architectures play a
role in driving tissue-specific expression, while repeat poor promoters
have less coherent regulatory properties. In addition, the differences in
promoter score-expression level correlations across tissues and
between clusters indicate that different repeat contexts are likely to
have tissue-specific regulatory functions. Hierarchical clustering of the
tissues and the clusters, according to the promoter score-expression
level correlations, group related tissues together including reproduc-
tive tissues, immune related cells and cancer samples (Fig. 7a). This
indicates that TE-rich promoters may help to regulate genes that
function specifically in these tissues further underscoring the biological
significance of promoter sequence repetitive DNA profiles.

3.7. Gene Ontology analysis

Having established a connection between repetitive DNA promoter
architectures and gene regulation, we wondered whether genes with
similar promoter repeat distributions encoded proteins with related
functions. In order to test this, we used analysis of Gene Ontology (GO)
terms for genes within and between the TE− versus the TE+ repeat-
specific promoter clusters (Fig. 3). A modified version of the GO
semantic similarity measure (Lord et al., 2003; Azuaje et al., 2005) was
used to compare the similarities between GO terms within clusters
versus the background GO similarity among all pairs of genes. As
described previously (Marino-Ramirez et al., 2006; Tsaparas et al.,



Table 2
Over-represented⁎ GO slima terms for repeat-specific promoter clusters

Groupb Molecular functionc Cellular componentc Biological processc

TE− GO:0030528: transcription regulator activity – GO:0007154: cell communication
GO:0007275: multicellular organismal development
GO:0050789: regulation of biological process

TE+ GO:0003824: catalytic activity GO:0005737: cytoplasm GO:0006810: transport
GO:0016491: oxidoreductase activity GO:0007154: cell communication

C1 GO:0005198: structural molecule activity – –

C2 GO:0016301: kinase activity – GO:0007154: cell communication
GO:0016491: oxidoreductase activity GO:0007275: multicellular organismal development
GO:0030528: transcription regulator activity GO:0007610: behavior

GO:0030154: cell differentiation
GO:0050789: regulation of biological process

C3 – – –

C4 GO:0003824: catalytic activity GO:0005737: cytoplasm GO:0006944: membrane fusion
GO:0009056: catabolic process

C5 GO:0004872: receptor activity GO:0009986: cell surface GO:0050896: response to stimulus
GO:0005215: transporter activity
GO:0022857: transmembrane transporter activity

C6 GO:0003824: catalytic activity GO:0005622: intracellular GO:0008152: metabolic process
GO:0005737: cytoplasm GO:0009058: biosynthetic process

a GO slim categories provide a high level view of GO functions and subsume a number of lower (more granular) GO functional annotation categories.
b Repeat-specific clusters 1–6 along with the combined TE+ and TE− groups (see Fig. 3).
c GO functional annotation categories.
⁎ Statistical significance for over-represented terms was evaluated using with χ2 tests with at least χ2N4.2, Pb0.04.
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2006), the GO semantic similarity approach measures the pairwise
similarity between annotation terms along the GO directed acyclic
graph in order to evaluate the functional similarity between pairs of
genes. For TE− and TE+ genes, the GO similarity difference (GOdiff) is
equal to the average GO similarity for all gene pairs within clusters
minus the average GO similarity for all possible gene pairs (Materials
and methods). Negative values of GOdiff indicate that gene pairs are
more similar within clusters than for all possible pairs. Both the TE−
and TE+ gene sets encode proteins that are significantly more
functionally similar than the background comparison set [TE−=
−3.4e–3, z=34, P≈0; TE+=−7.9e–3, z=11, P=4.8e–3]. However,
within the TE+ clusters, pairs of genes encode proteins that are
significantly more functionally similar, on average, than the pairs of
genes found within the TE− clusters (t=5.8, P=6.4e–9). This is
consistent with the stronger signal of gene co-regulation seen for
clusters of promoter sequences that are enriched for TEs and under-
scores the potential biological significance of repeat-rich promoter
sequences in the human genome.

Given the functional coherence of repeat-specific clusters demon-
strated by the GO similarity analysis, we wanted to evaluate whether
certain GO functional categories are over-represented within specific
clusters. To do this,we traced theGO terms represented in thedataset to
GO slim terms (Table 2). GO slim categories provide a higher level view
of more granular individual GO annotations in order to provide an
overview of the kinds of functions that may be over-represented in
different groups. The observed counts of GO slim categories for each of
the six repeat-specific clusters, as well as for the combined TE− and TE
+, groups were compared to their expected values based on the
background GO slim frequencies across all clusters to look for over-
represented terms. Genes in the electron transport, cytoplasm, catalytic
activity and oxidoreductase activity categories were found to be over-
represented in TE+ clusters and accordingly under-represented in the
TE− clusters, whereas genes in cell communication, multicellular
organismal development, regulation of biological process and tran-
scription regulator activity categories are over-represented in TE−
clusters and under represented in TE+ clusters. Evaluation of over-
represented GO terms in individual clusters reveals coherence across
the three categories of GO terms: molecular function, cellular
component and biological process. For instance, the TE+ cluster 5 has
anover-represented receptor and transporteractivities in themolecular
function category that agree with the cell surface cellular component
term and the response to stimulus biological process term. The over-
represented catalytic activity molecular process term for the most TE-
rich cluster 6 corresponds to a cytoplasmic cellular component term
along with metabolic and biosynthetic biological process terms. In a
general sense, the coherence of GO functional annotations within
repeat-specific clusters and the differences between clusters are
consistent with biological significance of the regulatory differences
seen for these clusters.

4. Conclusion

Wehave uncovered a connection between repetitive DNA sequences
and nucleosome binding in human proximal promoter regions along
with an influence of repetitive DNA promoter sequences on specific
patterns of gene expression. Interestingly, different classes of repetitive
elements function differently to mediate nucleosome binding; TEs bind
nucleosomes tightly and are generally excluded from core promoter
regions, while SSRs have a low affinity for nucleosomes and are en-
riched just upstream of TSSs. Thus, it appears that repetitive sequence
elements are differentially utilized to tune the accessibility to promoter
sequences by transcription factors, particularly the basal transcriptional
machinery that assembles just upstream of the TSS, via changes in the
local chromatin environment.
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Chapter 1

Identification of cis-Regulatory Elements in Gene
Co-expression Networks Using A-GLAM

Leonardo Mariño-Ramı́rez, Kannan Tharakaraman, Olivier Bodenreider,
John Spouge, and David Landsman

Abstract

Reliable identification and assignment of cis-regulatory elements in promoter regions is a challenging
problem in biology. The sophistication of transcriptional regulation in higher eukaryotes, particularly in
metazoans, could be an important factor contributing to their organismal complexity. Here we present an
integrated approach where networks of co-expressed genes are combined with gene ontology–derived
functional networks to discover clusters of genes that share both similar expression patterns and functions.
Regulatory elements are identified in the promoter regions of these gene clusters using a Gibbs sampling
algorithm implemented in the A-GLAM software package. Using this approach, we analyze the cell-cycle
co-expression network of the yeast Saccharomyces cerevisiae, showing that this approach correctly identifies
cis-regulatory elements present in clusters of co-expressed genes.

Key words: Promoter sequences, transcription factor–binding sites, co-expression, networks, gene
ontology, Gibbs sampling.

1. Introduction

The identification and classification of the entire collection of
transcription factor–binding sites (TFBSs) are among the greatest
challenges in systems biology. Recently, large-scale efforts invol-
ving genome mapping and identification of TFBS in lower eukar-
yotes, such as the yeast Saccharomyces cerevisiae, have been
successful (1). On the other hand, similar efforts in vertebrates
have proven difficult due to the presence of repetitive elements and
an increased regulatory complexity (2–4). The accurate prediction
and identification of regulatory elements in higher eukaryotes
remains a challenge for computational biology, despite recent
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progress in the development of algorithms for this purpose (5).
Typically, computational methods for identifying cis-regulatory
elements in promoter sequences fall into two classes, enumerative
and alignment techniques (6). We have developed algorithms that
use enumerative approaches to identify cis-regulatory elements
statistically significantly over-represented in promoter regions
(7). Subsequently, we developed an algorithm that combines
both enumeration and alignment techniques to identify statisti-
cally significant cis-regulatory elements positionally clustered rela-
tive to a specific genomic landmark (8).

Here, we will present a systems biology framework to study cis-
regulatory elements in networks of co-expressed genes. This
approach includes a network comparison operation, namely the
intersection between co-expression and functional networks to
reduce complexity and false positives due to co-expression linkage
but absence of functional linkage. First, co-expression (9, 10) and
functional networks (11, 12) are created using user-selected thresh-
olds. Second, the construction of a single network is obtained from
the intersection between co-expression and functional networks
(13). Third, the highly interconnected regions in the intersection
network are identified (14). Fourth, upstream regions of the gene
clusters that are linked by both co-expression and function are
extracted. Fifth, candidate cis-regulatory elements using A-GLAM
(8) present in dense cluster regions of the intersection network are
identified. In principle, the calculation of intersections for other
types of networks with co-expression and/or functional networks
could also be used to identify groups of co-regulated genes of
interest (15) that may share cis-regulatory elements.

2. Materials

2.1. Hardware

Requirements
1. Personal computer with at least 512 MB of random access

memory (RAM) connected to the Internet.

2. Access to a Linux or UNIX workstation.

2.2. Software

Requirements

1. The latest version of the Java Runtime Environment (JRE)
freely available at http://www.java.com/.

2. The latest version of Cytoscape – a bioinformatics software
platform for visualizing molecular interaction networks (13)
freely available at http://www.cytoscape.org/.

3. The latest version of the MCODE plug-in for Cytoscape –
finds clusters or highly interconnected regions in any network
loaded into Cytoscape (14) freely available at http://cbio.mskcc.
org/�bader/software/mcode/.
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4. A modern version of the Perl programming language installed
on the Linux or UNIX workstation freely available at http://
www.perl.com/.

5. The A-GLAM package (8) freely available at ftp://ftp.ncbi.
nih.gov/pub/spouge/papers/archive/AGLAM/.

3. Methods

The size of co-expression networks depends on the number of
nodes in the network and the threshold used to define an edge
between two nodes. There are a number of distance measures that
are often used to compare gene expression profiles (16).

Here we use the Pearson correlation coefficient (PCC) as a
metric to measure the similarity between expression profiles
and to construct gene co-expression networks (17, 18). We
establish a link by an edge between two genes, represented by
nodes, if the PCC value is higher or equal to 0.7; this is an
arbitrary cut-off that can be adjusted depending on the dataset
used. The microarray dataset used here is the yeast cell-cycle
progression experiment from Cho et al. (9) and Spellman
et al. (10). The semantic similarity method (11) was used to
quantitatively assess the functional relationships between
S. cerevisiae genes.

The A-GLAM software package uses a Gibbs sampling algo-
rithm to identify functional motifs (such as TFBSs, mRNA
splicing control elements, or signals for mRNA 3’-cleavage
and polyadenylation) in a set of sequences. Gibbs sampling (or
more descriptively, successive substitution sampling) is a
respected Markov-chain Monte Carlo procedure for discover-
ing sequence motifs (19). Briefly, A-GLAM takes a set of
sequences as input. The Gibbs sampling step in A-GLAM uses
simulated annealing to maximize an ‘overall score’, a figure of
merit corresponding to a Bayesian marginal log-odds score. The
overall score is given by

s ¼
Xw

i¼1

log2

a � 1ð Þ!
c þ a � 1ð Þ!þ

X
jð Þ

log2

cij þ aj � 1
� �

!

aj � 1
� �

!

" #
� cij log2 pj

( )0
@

1
A: ½1�

In Eq. [1], m! ¼ m m � 1ð Þ . . . 1 denotes a factorial; aj , the pseudo-
counts for nucleic acid j in each position; a ¼ a1 þ a2 þ a3 þ a4, the
total pseudo-counts in each position; cij , the count of nucleic acid j in
position i; and c ¼ ci1 þ ci2 þ ci3 þ ci4, the total number of aligned
windows, which is independent of the position i. The rationale behind
the overall score s in A-GLAM is explained in detail elsewhere (8).
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To initialize its annealing maximization, A-GLAM places a single
window of arbitrary size and position at every sequence, generating
a gapless multiple alignment of the windowed subsequences. It
then proceeds through a series of iterations; on each iteration step,
A-GLAM proposes a set of adjustments to the alignment. The pro-
posal step is either a repositioning step or a resizing step. In a
repositioning step, a single sequence is chosen uniformly at random
from the alignment; and the set of adjustments include all possible
positions in the sequence where the alignment window would fit
without overhanging the ends of the sequence. In a resizing step,
either the right or the left end of the alignment window is selected;
and the set of proposed adjustments includes expanding or contract-
ing the corresponding end of all alignment windows by one position
at a time. Each adjustment leads to a different value of the overall
score s. Then, A-GLAM accepts one of the adjustments randomly,
with probability proportional to exp s=Tð Þ. A-GLAM may even
exclude a sequence if doing so would improve alignment quality.
The temperature T is gradually lowered to T ¼ 0, with the intent of
finding the gapless multiple alignment of the windows maximizing s.
The maximization implicitly determines the final window size. The
randomness in the algorithm helps it avoid local maxima and find
the global maximum of s . Due to the stochastic nature of the proce-
dure, finding the optimum alignment is not guaranteed. Therefore,
A-GLAM repeats this procedure ten times from different starting
points (ten runs). The idea is that if several of the runs converge to
the same best alignment, the user has increased confidence that it is
indeed the optimum alignment. The steps (below) corresponding to
E-values and post-processing were then carried out with the PSSM
corresponding to the best of the ten scores s.

The individual score and its E-value in A-GLAM: The
Gibbs sampling step produces an alignment whose overall score
s is given by Eq. [1]. Consider a window of length w that is
about to be added to A-GLAM’s alignment. Let di jð Þ equal 1 if
the window has nucleic acid j in positioni, and 0 otherwise.
The addition of the new window changes the overall score by

Ds ¼
Xw

i¼1

X
jð Þ
di jð Þ log2

cij þ aj

c þ a

� �
=pj

� �� 	
: ½2�

The score change corresponds to scoring the new window accord-
ing to a position-specific scoring matrix (PSSM) that assigns the
‘individual score’

si jð Þ ¼ log2

cij þ aj

c þ a

� �
=pj

� �
½3�

to nucleic acid j in positioni. Equation [3] represents a log-odds
score for nucleic acid j in position i under an alternative hypothesis
with probability cij þ aj

� �
= c þ að Þ and a null hypothesis with
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probabilitypij . PSI-BLAST (20) uses Eq. [3] to calculate E-values.
The derivation through Eq. [2] confirms the PSSM in Eq. [3] as
the natural choice for evaluating individual sequences.

The assignment of an E-value to a subsequence with a particular
individual score is done as follows: consider the alignment sequence
containing the subsequence. Let n be the sequence length, and recall
that w is the window size. If DSi denotes the quantity in Eq. [2] if the
final letter in the window falls at position i of the alignment sequence,
thenDS� ¼ max DSi : i ¼ w; . . . ;nf g is the maximum individual score
over all sequence positions i. We assigned an E-value to the actual
value DS� ¼ Ds�, as follows. Staden’s method (21) yields P DSiDs�f g
(independent of i) under the null hypothesis of bases chosen indepen-
dently and randomly from the frequency distribution pj


 �
. The E-

value E ¼ n � w þ 1ð ÞP DSiDs�f g is therefore the expected number
of sequence positions with an individual score exceeding Ds�. The
factor n � w þ 1 in E is essentially a multiple test correction.

More recently, the A-GLAM package has been improved to
allow the identification of multiple instances of an element within a
target sequence (22). The optional ‘scanning step’ after Gibbs
sampling produces a PSSM given by Eq. [3]. The new scanning
step resembles an iterative PSI-BLAST search based on the PSSM.
First, it assigns an ‘individual score’ to each subsequence of appro-
priate length within the input sequences using the initial PSSM.
Second, it computes an E-value from each individual score to
assess the agreement between the corresponding subsequence
and the PSSM. Third, it permits subsequences with E-values fall-
ing below a threshold to contribute to the underlying PSSM,
which is then updated using the Bayesian calculus. A-GLAM
iterates its scanning step to convergence, at which point no new
subsequences contribute to the PSSM. After convergence,
A-GLAM reports predicted regulatory elements within each
sequence in the order of increasing E-values; users then have a
statistical evaluation of the predicted elements in a convenient
presentation. Thus, although the Gibbs sampling step in
A-GLAM finds at most one regulatory element per input
sequence, the scanning step can now rapidly locate further
instances of the element in each sequence.

3.1. Co-expression

Network Construction

1. The yeast cell-cycle-regulated expression data are obtained
from http://cellcycle-www.stanford.edu/ (see Note 1).

2. Pairwise Pearson correlation coefficient (PCC) values are cal-
culated using a subroutine implemented in the Perl program-
ming language (23) (see Note 2).

3. The co-expression network is constructed with all gene pairs
with a PCC greater or equal to 0.7 and is formatted according
to the simple interaction file (SIF) described in the Cytoscape
manual available at http://www.cytoscape.org/ (see Note 3).
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4. The co-expression network can be loaded in Cytoscape, which
is an open-source software for integrating biomolecular inter-
action networks. Cytoscape is available for a variety of operat-
ing systems, including Windows, Linux, Unix, and Mac OS X.

3.2. Functional

Similarity Network

Construction

1. Gene ontology (GO) annotations for yeast gene products
come from the Saccharomyces Genome Database (SGD) and
were downloaded from http://www.geneontology.org/cgi-
bin/downloadGOGA.pl/gene_association.sgd.gz. The evi-
dence supporting such annotations is captured by evidence
codes, including TAS (Traceable Author Statement) and IEA
(Inferred from Electronic Annotation). While TAS refers to
peer-reviewed papers and indicates strong evidence, IEA
denotes automated predictions, not curated by experts, i.e.,
generally less reliable annotations. For this reason, IEA anno-
tations were excluded from this study.

2. Functional relationships between S. cerevisiae genes were
assessed quantitatively using a semantic similarity method
(11) based on the gene ontology (GO). We first computed
semantic similarity among GO terms from the Biological Process
hierarchy using the Lin metric. This metric is based on infor-
mation content and defines term–term similarity, i.e., the
semantic similarity sim(ci, cj) between two terms ci and cj as

simðci; cj Þ ¼
2� max

c2Sðci ;cj Þ
½logðpðcÞÞ�

logð pðciÞÞ þ logðpðcj ÞÞ
; ½4�

where S(ci,cj) represents the set of ancestor terms shared by
both ci and cj, ‘max’ represents the maximum operator, and
p(c) is the probability of finding c or any of its descendants in
the SGD database. It generates normalized values between 0
and 1. Gene–gene similarity results from the aggregation of
term–term similarity values between the annotation terms of
these two genes. In practice, given a pair of gene products, gk

and gp, with sets of annotations Ak and Ap comprising m and
n terms, respectively, the gene–gene similarity, SIM(gk, gp), is
defined as the highest average (inter-set) similarity between
terms from Ai and Aj:

SIMðgi; gj Þ ¼
1

m þ n
�

X
k

max
p
½simðck; cpÞ�Þ þ

X
p

max
k
½simðck; cpÞ�

( )
; ½5�

where sim(ci,cj) may be calculated using Eq. [1]. This aggre-
gation method (12) can be understood as a variant of the
Dice similarity.

3. The functional similarity network is constructed using
semantic similarity greater or equal to 0.7 and is formatted
according to the simple interaction file (SIF).
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4. Functional relationships in a group of genes can be further
explored in Cytoscape using the BiNGO plug-in (24). Here
we have used the hypergeometric test to assess the statistical
significance (p < 0.05) and the Benjamini & Hochberg False
Discovery Rate (FDR) correction (25).

3.3. Intersection

Network Construction

1. The yeast co-expression and functional similarity networks are
loaded in Cytoscape and the intersection network can be
obtained by using the Graph Merge plug-in, freely available
at the Cytoscape Web site. The nodes that are connected by
having similar expression profiles and GO annotations are
present in the intersection network (Fig. 1.1) (see Note 4).

Fig. 1.1. Yeast cell-cycle gene co-expression and GO intersection network. The intersection network topology is
shown for yeast genes, represented by nodes linked by one or more edges as described in the text. An edge represents
both co-expression and functional linkage between the nodes connected.

TFBS Prediction Using Co-expression and Functional Networks 9



2. The intersection network can be visualized using a variety of
layouts in Cytoscape. A circular layout of the intersection net-
work using the yFiles Layouts plug-in is depicted in Fig. 1.1.

3.4. Identification

of Highly

Interconnected

Regions

1. The identification of dense gene clusters in the intersection
network is done using the MCODE Cytoscape plug-in (14)
(see Note 5). The clusters identified share similar expression
patterns and functions as described by GO (Fig. 1.2).

Time (minutes)
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Fig. 1.2. Core histone gene cluster in the intersection network. A. Highly connected cluster identified by MCODE
corresponds to eight core histone genes present in the yeast genome. The eight nodes are connected by 28 co-expression
and functional edges. B. Expression profiles of the core histone genes over the cell cycle. C. Over-represented GO terms in
the Biological Process category for the core histone genes. The statistical significance of each GO term is related to the
intensity of the colored circles (see Note 5).
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3.5. Identification

of Proximal Promoter

Regions

1. The Saccharomyces Genome Database (SGD) maintains the
most current annotations of the yeast genome (see http://
www.yeastgenome.org/). The SGD FTP site contains the
DNA sequences annotated as intergenic regions in FASTA
format (available at ftp://genome-ftp.stanford.edu/pub/
yeast/sequence/genomic_sequence/intergenic/), indicating
the 5’ and 3’ flanking features. Additionally, a tab-delimited
file with the annotated features of the genome is necessary to
determine the orientation of the intergenic regions relative to
the genes (available at ftp://genome-ftp.stanford.edu/pub/
yeast/chromosomal_feature/). The two files can be used to
extract upstream intergenic regions (26) for the genes present
in the intersection network clusters (see Note 6).

3.6. Identification

of cis-Regulatory

Elements in Promoter

Regions

1. Construct FASTA files for each of the gene clusters identified
by MCODE.

2. Install the A-GLAM package (see Note 7).

3. The A-GLAM package has a number of options that can be
used to adjust search parameters (see Note 8).
$ aglam

Usage summary: aglam [options] myseqs.fa

C

Fig. 1.2. (continued)
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Options:

– h help: print documentation

– n end each run after this many iterations without improve-
ment (10,000)

– r number of alignment runs (10)

– a minimum alignment width (3)

– b maximum alignment width (10,000)

– j examine only one strand

– i word seed query ()

– f input file containing positions of the motifs ()

– z turn off ZOOPS (force every sequence to participate in
the alignment)

– v print all alignments in full

– e turn off sorting individual sequences in an alignment on
p-value

– q pretend residue abundances = 1/4

– d frequency of width-adjusting moves (1)

– p pseudocount weight (1.5)

– u use uniform pseudocounts: each pseudocount = p/4

– t initial temperature (0.9)

– c cooling factor (1)

– m use modified Lam schedule (default = geometric
schedule)

– s seed for random number generator (1)

– w print progress information after each iteration

– l find multiple instances of motifs in each sequence

– k add instances of motifs that satisfy the cutoff e-value (0)

– g number of iterations to be carried out in the post-processing
step (1,000)

4. Run A-GLAM to identify the regulatory elements present in
the gene clusters with similar expression patterns and GO
annotations (see Note 9). A-GLAM correctly identifies an
experimentally characterized element known to regulate
core histone genes in yeast (27). The alignments produced
by A-GLAM can be represented by sequence logos (28, 29)
and the positional preferences of the elements can be eval-
uated by plotting the score against relative positions, nor-
malized by sequence length, in the promoter sequences
(Fig. 1.3).
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4. Notes

1. The yeast cell cycle data from the Web site include the
experiments from Cho et al. (9) and Spellman et al. (10).

2. The following Perl code can be used to calculate the PCC:

my$r = correlation(\@{$values{$probe1}}, \@{$values
{$probe2}});
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Relative Position
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B

Fig. 1.3. Core histone regulatory element identified with A-GLAM. A. Sequence logo representation of the motif
obtained from the ungapped multiple sequence alignment identified by A-GLAM (see Note 9). B. Positional preference plot
for the elements identified by A-GLAM where the score in bits is plotted against the relative position of the element in the
upstream regions of the core histone genes.
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sub covariance {
my ($array1ref,$array2ref) = @_;
my ($i,$result);
for ($i = 0;$i < @$array1ref;$i++) {$result +=$array1

ref->[$i] *$array2ref->[$i];
}
$result /= @$array1ref;
$result -= mean($array1ref) * mean($array2ref);

}

sub correlation {
my ($array1ref,$array2ref) = @_;
my ($sum1,$sum2);
my ($sum1_squared, $sum2_squared);
foreach (@$array1ref) {$sum1 +=$_;$sum1_squared

+=$_ ** 2 }
foreach (@$array2ref) {$sum2 +=$_;$sum2_squared

+=$_ ** 2 }
return (@$array1ref ** 2) * covariance($array1ref,

$array2ref) /sqrt(((@$array1ref *$sum1_squared) -
($sum1 ** 2)) *((@$array1ref *$sum2_squared) -
($sum2 ** 2)));

}

sub mean {
my ($arrayref) = @_;
my$result;
foreach (@$arrayref) {$result +=$_ }
return$result / @$arrayref;

}

3. The simple interaction file (SIF or .sif format) consists of lines
where each node, representing a protein, is connected by an
edge to a different protein in the network. Lines from the
simple interaction file from the co-expression network:
RPL12A pp THR1

RPL12A pp TIF2

RPL12A pp TIF1

RPL12A pp GUK1

RPL12A pp URA5

RPL12A pp RPL1B

RPL12A pp SSH1

RPL12A pp SNU13

RPL12A pp RPL23B

SHU1 pp DON1
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Two nodes are connected by a relationship type that in this
case is pp. The nodes and their relationships are delimited by a
space or a tab (see the Cytoscape manual for more detailed
information).

4. Two or more networks can be used to calculate their
intersection as needed to select for connections that meet
certain criteria. The researcher can overlay protein–protein
interactions, co-expression and functional networks to
identify the protein complexes created under specific
experimental conditions.

5. The MCODE plug-in ranks the clusters according to the
average number of connections per protein in the complex
(Score). The top five clusters identified by MCODE in the
intersection network are shown below:

Cluster Score Proteins Interactions

1 6.6 15 99

2 3.5 8 28

3 2.267 15 34

4 2 5 10

5 2 5 10

The BiNGO plug-in can be used to determine the GO terms
statistically over-represented in a group of genes. Here we
show the results for cluster 2:

Selected statistical test : Hypergeometric test
Selected correction : Benjamini & Hochberg False Dis-
covery Rate (FDR) correction
Selected significance level : 0.05

Testing option : Test cluster versus complete annotation

The selected cluster :
HHT1 HHF1 HTA1 HHT2 HHF2 HTA2 HTB1 HTB2

Number of genes selected : 8
Total number of genes in annotation : 5932

6. There are a number of Web sites that facilitate the extraction
of promoter sequences. A service for the extraction of human,
mouse, and rat promoters is freely available at http://bio
wulf.bu.edu/zlab/promoser/

7. The A-GLAM package is currently available in source
code and binary forms for the Linux operating system
(see ftp://ftp.ncbi.nih.gov/pub/spouge/papers/archive/
AGLAM/).

TFBS Prediction Using Co-expression and Functional Networks 15



Installation of the Linux binary: Get the executable from the
FTP site and set execute permissions.

$chmod +x aglam

Installation from source: Unpack the glam archive and com-
pile A-GLAM.

$tar –zxvf aglam.tar.gz
$cd aglam
$make aglam

8. Possible scenarios and options to modify A-GLAM’s behavior.
$aglam <myseqs.fa>

This command simply uses the standard Gibbs sampling pro-
cedure to find sequence motifs in ‘‘myseqs.fa’’.

$aglam <myseqs.fa> -n 20000 -a 5 -b 15 -j

This tells the program to search only the given strand of the
sequences to find motifs of length between 5 and 15 bp. The
flag n specifies the number of iterations performed in each of
the ten runs. Low values of n are adequate when the problem
size is small, i.e., when the sequences are short and more
importantly there are few of them, but high values of n are
needed for large problems. In addition, smaller values of n are
sufficient when there is a strong alignment to be found, but
larger values are necessary when there is not, e.g., for finding
the optimal alignment of random sequences. You will have to

GO ID P-value
Corrected
P-value Description

6333 4.9168E-15 1.2292E-13 Chromatin assembly
or disassembly

6325 2.2510E-12 1.8758E-11 Establishment and/or
maintenance of
chromatin
architecture

6323 2.2510E-12 1.8758E-11 DNA packaging

7001 2.0415E-10 1.2759E-9 Chromosome
organization and
biogenesis (sensu
Eukaryota)

51276 2.5897E-10 1.2949E-9 Chromosome
organization and
biogenesis

6259 5.9413E-9 2.4756E-8 DNA metabolism

6996 6.9565E-7 2.4845E-6 Organelle
organization and
biogenesis
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choose n on a case-by-case basis. This parameter also controls
the tradeoff between speed and accuracy.

$aglam <myseqs.fa> -i TATA

This important option sets the program to run in a ‘‘seed’’-
oriented mode. The above command restricts the search to
sequences that are TATA-like. Unlike the procedure followed
in the standard Gibbs sampling algorithm, however, A-GLAM
continues to align one exact copy of the ‘‘seed’’ in all ‘‘seed
sequences’’. Therefore, A-GLAM uses the seed sequences to
direct its search in the remaining non-seed ‘‘target sequences’’.
Using this option leads to the global optimum quickly.

$aglam <myseqs.fa> -f <positions.dat>

The above command uses an extra option that allows
A-GLAM to take a set of positions from an input file ‘‘posi-
tions.dat’’. Like with the ‘‘-’’ flag, this option provides ‘‘seeds’’
for the A-GLAM alignment. Using this command restricts
the Gibbs sampling step to aligning the original list of win-
dows specified by the positions in the file. The seed sequences
then direct the search in the remaining non-seed sequences.

$aglam <myseqs.fa> -l –k 0.05 –g 2000

Usable only with version 1.1. This tells the program to find
multiple motif instances in each input sequence, via the scan-
ning step (described above). Those instances that receive an
E-value less than 0.05 are included in the PSSM. The search
for multiple motifs is carried on until either (a) no new motifs
are present or (b) the user-specified number of iterations (in
this case, it is 2,000) is attained, whichever comes first.

9. A-GLAM uses sequences in FASTA format as input. Cluster
number 2, identified by MCODE, is composed of eight genes
linked by 28 co-expression and GO connections. Interest-
ingly, the intergenic regions of the same cluster are shared
between the genes in the cluster:

>B:235796-236494, Chr 2 from 235796-236494,
between YBL003C and YBL002W
TATATATTAAATTTGCTCTTGTTCTGTACTTTCCTAATTCTTATGTA
AAAAGACAAGAAT
TTATGATACTATTTAATAACAAAAAACTACCTAAGAAAAGCATCATGCAG
TCGAAATTGA
AATCGAAAAGTAAAACTTTAACGGAACATGTTTGAAATTCTAAGAAAGC
ATACATCTTCA
TCCCTTATATATAGAGTTATGTTTGATATTAGTAGTCATGTTGTAATCT
CTGGCCTAAGT
ATACGTAACGAAAATGGTAGCACGTCGCGTTTATGGCCCCCAGGTTAAT
GTGTTCTCTGA
AATTCGCATCACTTTGAGAAATAATGGGAACACCTTACGCGTGAGCTGT
GCCCACCGCTT
CGCCTAATAAAGCGGTGTTCTCAAAATTTCTCCCCGTTTTCAGGATCAC
GAGCGCCATCT

TFBS Prediction Using Co-expression and Functional Networks 17



AGTTCTGGTAAAATCGCGCTTACAAGAACAAAGAAAAGAAACATCGCGT
AATGCAACAGT
GAGACACTTGCCGTCATATATAAGGTTTTGGATCAGTAACCGTTATTTG
AGCATAACACA
GGTTTTTAAATATATTATTATATATCATGGTATATGTGTAAAATTTTTT
TGCTGACTGGT
TTTGTTTATTTATTTAGCTTTTTAAAAATTTTACTTTCTTCTTGTTAAT
TTTTTCTGATT
GCTCTATACTCAAACCAACAACAACTTACTCTACAACTA
>D:914709-915525, Chr 4 from 914709-915525, between
YDR224C and YDR225W
TGTATGTGTGTATGGTTTATTTGTGGTTTGACTTGTCTATATAGGATAA
ATTTAATATAA
CAATAATCGAAAATGCGGAAAGAGAAACGTCTTTAATAAATCTGACCAT
CTGAGATGATC
AAATCATGTTGTTTATATACATCAAGAAAACAGAGATGCCCCTTTCTTA
CCAATCGTTAC
AAGATAACCAACCAAGGTAGTATTTGCCACTACTAAGGCCAATTCTCTT
GATTTTAAATC
CATCGTTCTCATTTTTTCGCGGAAGAAAGGGTGCAACGCGCGAAAAAGT
GAGAACAGCCT
TCCCTTTCGGGCGACATTGAGCGTCTAACCATAGTTAACGACCCAACCG
CGTTTTCTTCA
AATTTGAACTCGCCGAGCTCACAAATAATTCATTAGCGCTGTTCCAAAA
TTTTCGCCTCA
CTGTGCGAAGCTATTGGAATGGAGTG
TATTTGGTGGCTCAAAAAAAGAGCACAATAGTTA
ACTCGTCGTTGTTGAAGAAACGCCCGTAGAGATATGTGGTTTCTCATGC
TGTTATTTGTT
ATTGCCCACTTTGTTGATTTCAAAATCTTTTCTCACCCCCTTCCCCGTT
CACGAAGCCAG
CCAGTGGATCGTAAATACTAGCAATAAGTCTTGACCTAAAAAATATATA
AATAAGACTCC
TAATCAGCTTGTAGATTTTCTGGTCTTGTTGAACCATCATCTATTTACT
TCCAATCTGTA
CTTCTCTTCTTGATACTACATCATCATACGGATTTGGTTATTTCTCAGT
GAATAAACAAC
TTCAAAACAAACAAATTTCATACATATAAAATATAAA
>N:576052-576727, Chr 14 from 576052-576727, between
YNL031C and YNL030W
TGTGGAGTGTTTGCTTGGATCCTTTAGTAAAAGGGGAAGAACAGTTGGAA
GGGCCAAAGT
GGAAGTCACAAAACAGTGGTCCTATATAAAAGAACAAGAAAAAGATTATT
TATATACAAC
TGCGGTCACAAGAAGCAACGCGAGAGAGCACAACACGCTGTTATCACGCA
AACTATGTTT
TGACACCGAGCCATAGCCGTGATTGTGCGTCACATTGGGCGATAATGAAC
GCTAAATGAC
CAACTCCCATCCGTAGGAGCCCCTTAGGGCGTGCCAATAGTTTCACGCGC
TTAATGCGAA
GTGCTCGGAACGGACAACTGTGGTCGTTTGGCACCGGGAAAGTGGTACTA
GACCGAGAGT
TTCGCATTTGTATGGCAGGACGTTCTGGGAGCTTCGCGTCTCAAGCTTTT
TCGGGCGCGA
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AATGCAGACCAGACCAGAACAAAACAACTGACAAGAAGGCGTTTAATTTA
ATATGTTGTT
CACTCGCGCCTGGGCTGTTGTTATTCGGCTAGATACATACGTGTTTGTGC
GTATGTAGTT
ATATCATATATAAGTATATTAGGATGAGGCGGTGAAAGAGATTTTTTTT
TTTTCGCTTAA
TTTATTCTTTTCTCTATCTTTTTTCCTACATCTTGTTCAAAAGAGTAGC
AAAAACAACAA
TCAATACAATAAAATA
>B:255683-256328, Chr 2 from 255683-256328, between
YBR009C and YBR010W
ATTTTACTATATTATATTTGTTGCTTGTTTTTGTTTGTTGCTTTAGTAC
TATAGAGTACA
ATAATGCGACGGAAACCATCATATAGAAAAAATATCTCGGTATTTATAG
GAAAAAGAATT
AGACCTTTTCCACAACCAATTTATCCATCAAATTGGTCTTTACCCAATG
AATGGGGAAGG
GGGGGTGGCAATTTACCACCGTATTCGCGGGCATTTGCTAAAGTAAACA
ACTTCGGTTTT
TACCACTAACCATTATGGGGAGAAGCGCTCGGAACAGTTTTACTATGTG
AAGATGCGAAG
TTTTCAGAACGCGGTTTCCAAATTCGGCGGGGAGATACAAAAAAGATTT
TTGCTCTCGTT
CTCACATTTTCGCATTGTCCCATACATTATCGTTCTCACAATTTCTCAC
ATTTCCTTGCT
CTGCACCTTTGCGATCCTGGCCGTAATATCTCTCCTTGACTTTTAGCGT
GGAAGATAACG
AAATGCCCGGGCGATTTTTCTTTTTGGTACCCTCCACGGCTCCTTGTTG
AAATACATATA
TAAAAGACTGTGTATTCTTCGGGATACATCTCTTTCCTCAACCTTTTAT
ATTCTTTCTTT
CTAGTTAATAAGAAAAACATCTAACATAAATATATAAACGCAAACA

A-GLAM has a number of useful command line options that
can be adjusted to improve ab initio motif finding; in this
example we have restricted the search to motifs no larger
than 20 bp.

$aglam -b 20 -l 02.fa

A-GLAM: Anchored Gapless Local Alignment of
Multiple

Sequences Compiled on Jun 2 2006
Run 1... 11724 iterations
Run 2... 10879 iterations
Run 3... 10878 iterations
Run 4... 10336 iterations
Run 5... 10181 iterations
Run 6... 10637 iterations
Run 7... 10116 iterations
Run 8... 11534 iterations
Run 9... 10097 iterations
Run 10... 10239 iterations
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! The sequence file was [02.fa]
! Reading the file took [0] secs
! Sequences in file [4]
! Maximum possible alignment width [1292]
! Score [243.4] bits
! Motif Width [20]
! Runs [10]

! Best possible alignment:

>B:235796-236494, Chr 2 from 235796-236494, between

YBL003C and YBL002W

365 AGGCGAAGCGGTGGGCACAG 346 � (21.29360)

(2.820982e-08)

394 GGGAGAAATTTTGAGAACAC 375 � (13.97930)

(5.205043e-04)

309 ATGCGAATTTCAGAGAACAC 290 � (11.12770)

(5.771870e-03)

314 TTGAGAAATAATGGGAACAC 333 + (9.034960)

(2.714569e-02)

>D:914709-915525, Chr 4 from 914709-915525, between

YDR224C and YDR225W

423 GTGCGAAGCTATTGGAATGG 442 + (18.55810)

(2.256236e-06)

278 GCGCGAAAAAGTGAGAACAG 297 + (13.90430)

(6.495526e-04)

418 AGGCGAAAATTTTGGAACAG 399 � (12.51460)

(2.007017e-03)

262 CCGCGAAAAAATGAGAACGA 243 � (9.499530)

(2.299132e-02)

>N:576052-576727, Chr 14 from 576052-576727,

between YNL031C and YNL030W

294 ATGCGAAGTGCTCGGAACGG 313 + (21.65330)

(1.526033e-08)

367 ATGCGAAACTCTCGGTCTAG 348 � (11.95760)

(2.781407e-03)

399 ACGCGAAGCTCCCAGAACGT 380 � (11.25120)

(5.253971e-03)

288 GCGTGAAACTATTGGCACGC 269 � (8.853600)

(3.961768e-02)

>B:255683-256328, Chr 2 from 255683-256328, between

YBR009C and YBR010W

258 GGGAGAAGCGCTCGGAACAG 277 + (22.13350)

(6.281785e-09)

293 ATGCGAAGTTTTCAGAACGC 312 + (11.81510)

(3.041439e-03)

409 GTGAGAAATTGTGAGAACGA 390 � (8.852760)

(3.780865e-02)

375 ATGCGAAAATGTGAGAACGA 356 � (8.564750)

(4.774790e-02)

20 Mariño-Ramı́rez et al.



! 16 sequences in alignment

! Residue abundances:Pseudocounts

! A = 0.312544:0.468816 C = 0.187456:0.281184

! G = 0.187456:0.281184 T = 0.312544:0.468816

! Total Time to find best alignment [15.87] secs
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Chapter 13

Promoter Analysis: Gene Regulatory Motif Identification
with A-GLAM

Leonardo Mariño-Ramı́rez, Kannan Tharakaraman, John L. Spouge,
and David Landsman

Abstract

Reliable detection of cis-regulatory elements in promoter regions is a difficult and unsolved problem in
computational biology. The intricacy of transcriptional regulation in higher eukaryotes, primarily in
metazoans, could be a major driving force of organismal complexity. Eukaryotic genome annotations
have improved greatly due to large-scale characterization of full-length cDNAs, transcriptional start sites
(TSSs), and comparative genomics. Regulatory elements are identified in promoter regions using a variety
of enumerative or alignment-based methods. Here we present a survey of recent computational methods
for eukaryotic promoter analysis and describe the use of an alignment-based method implemented in the
A-GLAM program.

Key Words: Promoter regions, transcription factor binding sites, enumerative methods, promoter
comparison.

1. Introduction

The establishment and maintenance of temporal and spatial pat-
terns of gene expression are achieved primarily by transcription
regulation. Additionally, the precise control of timing and location
of gene expression depends on the interaction between transcrip-
tion factors and cis-acting sequence elements in promoter regions.
Transcription factors can induce or repress gene expression upon
binding of their cognate sequence element in the DNA. The
discovery and categorization of the entire collection of transcrip-
tion factor-binding sites (TFBSs) of an organism are among the
greatest challenges in computational biology (1). Large-scale
efforts involving genome mapping and identification of TFBS in
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lower eukaryotes, such as the yeast Saccharomyces cerevisiae, have
been successful (2). In contrast, similar efforts in vertebrates have
proven difficult due to the presence of repetitive elements and an
increased regulatory complexity (3–5).

The accurate prediction and identification of regulatory ele-
ments in higher eukaryotes remains a challenge for computational
biology, despite recent progress in the development or improve-
ment of different algorithms (6–19). Different strategies for motif
recognition have been benchmarked to compare their perfor-
mance (20). Typically, computational methods for identifying
cis-regulatory elements in promoter sequences fall into two classes,
enumerative and alignment techniques (21). We have developed
algorithms that use enumerative approaches to identify cis-regula-
tory elements statistically significant over-represented in promoter
regions (22). Subsequently, we developed an algorithm that com-
bines both enumeration and alignment techniques to identify
statistically significant cis-regulatory elements positionally clus-
tered relative to a specific genomic landmark (23,24).

Promoter identification is the first step in the computational
analysis that leads to the prediction of regulatory elements. In
lower Eukaryotes this is a rather simple problem due to a relative
high gene density with respect to the genome size. The yeast
Saccharomyces cerevisiae has �70% of its genome coding for pro-
teins and its intergenic regions are fairly short (�440 bp in length)
(25). In contrast, the human genome has a relative low gene
density, with �3% of the genome coding for proteins (26); this
poses significant challenges for the identification of both the pro-
moter and its regulatory elements. Despite the complexity of gene
expression regulation in higher Eukaryotes (27), we now have a
number of experimental and computational resources that can
assist in the delineation of mammalian promoter regions. The
experimental resources include full-length cDNA collections
(28) and transcriptional start sites (TSS) (29). Additionally, com-
plementary computational resources include the database of tran-
scriptional start sites (DBTSS) (30) and promoter identification
services (31–33). Many regulatory elements are located in the
proximal promoter region (PPR) located a few hundred bases
upstream the TSS (22) and the PPR can be generally defined by
its low transposable element content (34).

The computational methods for the prediction and identifica-
tion of transcription factor binding sites can be divided in two
broad categories: algorithms for de novo identification and algo-
rithms that recognize elements using prior knowledge of the ele-
ments. Enumerative and alignment methods form part of the de
novo algorithms. Enumerative algorithms use exhaustive methods
to examine exact DNA words of a fixed length to rank them
according to a specific function that determine over-representa-
tion relative to a background distribution. An enumerative
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method that estimates p-values with the standard normal approx-
imation associated with z-scores (22) has been successfully applied
for the identification of regulatory elements in higher Eukaryotes
(35). Other enumerative methods include Weeder (16, 17), oli-
gonucleotide frequency analysis (36), and QuickScore (14).

Alignment methods aim to identify functional elements by a
multiple local alignment of all sequences of interest. The most
popular algorithms in this category use an optimization procedure
based in probabilistic sequence models to find statistically signifi-
cant motifs; these include Gibbs sampling (37) or expectation
maximization (11). Approaches that use a combination of enu-
merative and alignment methods have shown a significant
improvement in the identification of regulatory elements in pro-
moter sequences (23, 24).

Algorithms that use prior knowledge of known motifs often
use position frequency matrices (PFMs) that contain the number
of observed nucleotides at each position (38). Methods that assess
statistical over-representation of known motifs in a set of
sequences have been particularly successful (9). Additionally,
motif scores determined by over-representation can be used as a
proxy to perform promoter comparisons (39).

2. Program Usage

2.1. The A-GLAM

Algorithm
The A-GLAM software package uses a Gibbs sampling algorithm
to identify functional motifs in a set of sequences. Gibbs sampling,
also known as successive substitution sampling, is a well-known
Markov-chain Monte Carlo procedure for discovering sequence
motifs (37). In brief, A-GLAM takes a set of sequences in FASTA
format as input. The Gibbs sampling step in A-GLAM uses simu-
lated annealing to maximize an ‘‘overall score,’’ corresponding to a
Bayesian marginal log-odds score. The overall score is given by

s ¼
Xw

i¼1

log2

a � 1ð Þ!
c þ a � 1ð Þ!þ

X
jð Þ

log2

cij þ aj � 1
� �

!

aj � 1
� �

!

" #
� cij log2 pj

( )0
@

1
A

(1)

In equation (1), m! ¼ m m � 1ð Þ . . . 1 denotes a factorial; aj , the
pseudo-counts for nucleic acid j in each position;
a ¼ a1 þ a2 þ a3 þ a4, the total pseudo-counts in each position;
cij , the count of nucleic acid j in position i; and
c ¼ ci1 þ ci2 þ ci3 þ ci4, the total number of aligned windows,
which is independent of the position i. The underlying principle
behind the overall score s in A-GLAM is explained in detail else-
where (23).
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The annealing maximization is initialized when A-GLAM places
a single window of arbitrary size and position at every sequence,
generating a gapless multiple alignment of the windowed subse-
quences. The program then proceeds through a series of iterations;
on each iteration step, A-GLAM proposes a set of adjustments to
the alignment. The proposal step is either a repositioning step or a
resizing step. In a repositioning step, a single sequence is chosen
uniformly at random from the alignment; and the set of adjustments
include all possible positions in the sequence where the alignment
window would fit without overhanging the ends of the sequence. In
a resizing step, either the right or the left end of the alignment
window is selected; and the set of proposed adjustments includes
expanding or contracting the corresponding end of all alignment
windows by one position at a time. Each adjustment leads to a
different value of the overall score s. Then, A-GLAM accepts one
of the adjustments randomly, with probability proportional to
exp s=Tð Þ. A-GLAM may even exclude a sequence if doing so
would improve alignment quality. The temperature T is gradually
lowered to T ¼ 0, with the intent of finding the gapless multiple
alignments of the windows maximizing s . The maximization impli-
citly determines the final window size. The randomness in the
algorithm helps it avoid local maxima and find the global maximum
of s. However, due to the stochastic nature of the procedure,
finding the optimum alignment it is not guaranteed.

In the default mode, A-GLAM repeats the annealing maximi-
zation procedure ten times from different starting points (ten
runs). The rationale behind this is that if several of the runs con-
verge to the same best alignment, the user has increased confi-
dence that it is indeed the optimum alignment.

The individual score and its E-value in A-GLAM: The Gibbs
sampling step produces an alignment whose overall score s is given
by equation (1). Consider a window of length w that is about to be
added to A-GLAM’s alignment. Let �i jð Þ equal 1 if the window
has nucleic acid j in position i, and 0 otherwise. The addition of
the new window changes the overall score by

�s ¼
Xw

i¼1

X
jð Þ
�i jð Þ log2

cij þ aj

c þ a

� �
=pj

� �� 	
(2)

The score change corresponds to scoring the new window
according to a position specific scoring matrix (PSSM) that assigns
the ‘‘individual score’’

si jð Þ ¼ log2

cij þ aj

c þ a

� �
=pj

� �
(3)

to nucleic acid j in position i. Equation (3) represents a log-odds
score for nucleic acid j in position i under an alternative hypothesis
with probability cij þ aj

� �
= c þ að Þ and a null hypothesis with
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probability pij . PSI-BLAST (40) uses equation (3) to calculate E-
values. The derivation through equation (2) confirms the PSSM in
equation (3) as the natural choice for evaluating individual
sequences.

The assignment of an E-value to a subsequence with a parti-
cular individual score is done as follows. Consider the alignment
sequence containing the subsequence. Let n be the sequence
length, and recall that w is the window size. If �Si denotes
the quantity in equation (2) if the final letter in the window falls
at position i of the alignment sequence, then
�S� ¼ max �Si : i ¼ w; . . . ;nf g is the maximum individual score
over all sequence positions i. We assigned an E-value to the actual
value �S� ¼ �s�, as follows. Staden’s method (41) yields
P �Si � �s�f g (independent of i) under the null hypothesis of
bases chosen independently and randomly from the frequency
distribution pj


 �
. The E-value E ¼ ðn � w þ 1ÞP �Si � �s�f g is

therefore the expected number of sequence positions with an
individual score exceeding �s�. The factor n � w þ 1 in E is
essentially a multiple test correction.

More recently, the A-GLAM package has been improved to
allow the identification of multiple instances of an element within a
target sequence (24). The optional ‘‘scanning step’’ after Gibbs
sampling produces a PSSM given by equation (3). The new scan-
ning step resembles an iterative PSI-BLAST search based on the
PSSM (Fig. 13.1). First, it assigns an ‘‘individual score’’ to each
subsequence of appropriate length within the input sequences
using the initial PSSM. Second, it computes an E-value from
each individual score to assess the agreement between the corre-
sponding subsequence and the PSSM. Third, it permits subse-
quences with E-values falling below a threshold to contribute to
the underlying PSSM, which is then updated using the Bayesian
calculus. A-GLAM iterates its scanning step to convergence, at
which point no new subsequences contribute to the PSSM. After
convergence, A-GLAM reports predicted regulatory elements
within each sequence in order of increasing E-values; users then
have a statistical evaluation of the predicted elements in a conve-
nient presentation. Thus, although the Gibbs sampling step in A-
GLAM finds at most one regulatory element per input sequence,
the scanning step can now rapidly locate further instances of the
element in each sequence.

2.2. Hardware The minimum hardware requirements are a personal computer
with at least 512 MB of random access memory (RAM) connected
to the Internet as well as access to a Linux or UNIX workstation
where A-GLAM will be installed. The connectivity between the
personal computer and the workstation is typically established by
the Secure Shell (SSH) protocol, a widely used open source of the
protocol available at http://www.openssh.org/.
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2.3. Software A modern version of the Perl programming language installed on
the Linux or UNIX workstation freely available at http://
www.perl.com/ will allow the user to parse A-GLAM’s output.
The A-GLAM package (23) freely available at http://ftp.ncbi.nih.-
gov/pub/spouge/papers/archive/AGLAM/ is currently available
as source code and binary packages for the Linux operating system.

Installation of the Linux binary: get the executable from the
FTP site and set execute permissions.

$chmod +x aglam

Installation from source: unpack the glam archive in a con-
venient location and compile A-GLAM.

Fig. 13.1. Strategy to find multiple motif instances in A-GLAM. The Gibbs sampling
identifies up to one motif per sequence (indicated by a black box and an arrowhead). The
sequences are then used to construct a position specific score matrix (PSSM) that is used
iteratively to discover multiple motif instances per sequence (indicated by dashed
boxes).
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$tar –zxvf aglam.tar.gz
$cd aglam
$make aglam

Then you could place the binary in your path: $HOME/bin
or /usr/local/bin/.

2.4. Data Files A-GLAM accepts input data in FASTA format containing the
sequences to be analyzed. The FASTA format consists of one or
more sequences identified by a line beginning with the ‘‘>’’ char-
acter that should include a unique identifier and a short description
about the sequence. The next line(s) should contain the sequence
string. A-GLAM expects the standard nucleic acid IUPAC code.

2.5. A-GLAM Options Some important options to modify A-GLAM’s behavior are
described below:

$aglam <fasta_file.fa>

This command simply uses the standard Gibbs sampling pro-
cedure to find sequence motifs in ‘‘fasta_file.fa.’’

$aglam <fasta_file.fa> -n 30000 -a 8 -b 16 -j

These sets of commands instruct the program to search only the
given strand of the sequences to find motifs of length between 8 and
16 bp. The flag n specifies the number of iterations performed in each
of the ten runs. Low values of n are adequate when the problem size is
small, i.e., when the sequences are short and more importantly there
are few of them, but high values of n are needed for large problems.
In addition, smaller values of n are sufficient when there is a strong
alignment to be found, but larger values are necessary when there is
no strong alignment, e.g., for finding the optimal alignment of ran-
dom sequences. You will have to choose n on a case-by-case basis.
This parameter also controls the tradeoff between speed and accuracy.

$aglam <fasta_file.fa> -i TATA

This important option sets the program to run in a ‘‘seed’’
oriented mode. The above command restricts the search to
sequences that are TATA-like. Unlike the procedure followed in
the standard Gibbs sampling algorithm, however, A-GLAM con-
tinues to align one exact copy of the ‘‘seed’’ in all ‘‘seed
sequences.’’ Therefore, A-GLAM uses the seed sequences to direct
its search in the remaining non-seed ‘‘target sequences.’’ Using
this option leads to the global optimum quickly.
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$aglam <fasta_file.fa> -l –k 0.05 –g 2000

Usable only with version 1.1. This set of commands instructs
the program to find multiple motif instances in each input
sequence via the scanning step (described above). Those instances
that receive an E-value less than 0.05 are included in the PSSM.
The search for multiple motifs is carried on until either (a) no new
motifs are present or (b) the user-specified number of iterations (in
this case, it is 2000) is attained, whichever comes first.

3. Example

The A-GLAM package includes documentation and test datasets.
Here, we will use a dataset obtained from a large-scale chromatin
immunoprecipitation in Saccharomyces cerevisiae (2), combined
with DNA microarrays (42) to detect interactions between tran-
scription factors and a DNA sequence in vivo. The DNA sequence
binding specificity of various transcription factors can then be
inferred using A-GLAM on intergenic regions bound by a parti-
cular transcription factor. Here, we will use the intergenic regions
bound by Snt2p (see Note 1).

3.1. Promoter

Identification

The Saccharomyces Genome Database (SGD) maintains the most
current annotations of the yeast genome (see http://www.yeast-
genome.org/). The SGD FTP site contains the DNA sequences
annotated as intergenic regions in FASTA format (available at
ftp://genome-ftp.stanford.edu/pub/yeast/sequence/genomic_
sequence/intergenic/), indicating the 50 and 30 flanking features.
Additionally, a tab delimited file with the annotated features of
the genome is necessary to determine the orientation of the
intergenic regions relative to the genes (available at ftp://gen-
ome-ftp.stanford.edu/pub/yeast/chromosomal_feature/). The
two files can be used to extract upstream intergenic regions.
Additionally, there are a number of Web services that facilitate
the identification of proximal promoter in mammalian genomes;
these include TRED (32), EPD (33), and Promoser (31).

3.2. Identification of

cis-Regulatory

Elements in Promoter

Regions

Construct FASTA files for each of the promoters to be included in
the analysis. The Perl programming language can be used in con-
junction with BioPerl libraries (freely available at http://
www.bioperl.org/) to generate files in FASTA format. In this
particular example all relevant files can be found on the Fraenkel
Web site at http://fraenkel.mit.edu//Harbison/release_v24.
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The A-GLAM package has a number of options that can be
used to adjust search parameters.

$aglam
Usage summary: aglam [options] myseqs.fa
Options:
-h help: print documentation
-n end each run after this many iterations
without improvement (10000)
-r number of alignment runs (10)
-a minimum alignment width (3)
-b maximum alignment width (10000)
-j examine only one strand
-i word seed query ()
-f input file containing positions of the
motifs ()
-z turn off ZOOPS (force every sequence to
participate in the alignment)
-v print all alignments in full
-e turn off sorting individual sequences in an
alignment on p-value
-q pretend residue abundances = 1/4
-d frequency of width-adjusting moves (1)
-p pseudocount weight (1.5)
-u use uniform pseudocounts: each pseudocount =
p/4
-t initial temperature (0.9)
-c cooling factor (1)
-m use modified Lam schedule (default = geo-
metric schedule)
-s seed for random number generator (1)
-w print progress information after each
iteration
-l find multiple instances of motifs in each
sequence
-k add instances of motifs that satisfy the
cutoff e-value (0)
-g number of iterations to be carried out in
the post-processing step (1000)

Run A-GLAM to identify regulatory elements present in the
promoter regions bound by Snt2p. A-GLAM uses sequences in
FASTA format as input. There are 46 intergenic regions bound
by Snt2p that were identified by ChIP-chip in a large-scale study
(2). These regions vary in length from 71 to 1,512 bp with an
average of 398 bp. A-GLAM is able to identify statistically sig-
nificant motifs for Snt2p and rank them according to their

Gene Regulatory Motif Identification with A-GLAM 271



individual p-values. A-GLAM has a number of useful command
line options that can be adjusted to improve ab initio motif
finding; in this example we have restricted the search to motifs
no larger than 20 bp and instructed the program to find multiple
instances of motifs in each sequence using a strategy that resem-
bles an iterative PSI-BLAST search based on the PSSM con-
structed by the Gibbs sampling step (24). The output of the A-
GLAM program is presented in Fig. 13.2. In the default mode,
A-GLAM repeats the annealing maximization procedure ten
times from different starting points (ten runs). The rationale
behind this is that if several of the runs converge to the same
best alignment, the user has increased confidence that it is indeed
the optimum alignment. The user can adjust the number of
alignment runs by setting the –r flag (see Note 2). The number
of iterations can also be adjusted for large datasets. The default
value is set at 10,000 without alignment improvement, using the
–n flag the number of iterations can be increased to extend
coverage of the sequence space.

A-GLAM identifies candidate sequences that could serve as
Snt2p binding sites. The candidate sequences found by A-GLAM
are in agreement with previous findings where other motif finding
algorithms were used (2) and Fig. 13.3. Additional examples
where we have successfully used A-GLAM to complement experi-
mental efforts for the identification of regulatory elements include
motifs for Spt10p in yeast and the CREB-binding protein (34, 35).
In this particular example, the program constructs a PSSM using
the sequences from the optimal alignment to find multiple
instances (see Note 3). The multiple alignments produced by
A-GLAM can be represented graphically by sequence logos
(43, 44) (see Note 4).

4. Notes

1. The primary data can be obtained from the Fraenkel Labora-
tory Web site at http://fraenkel.mit.edu/Harbison/.

2. The number of alignment runs is 10 by default; however, the
user can increase the number of runs to boost the confidence
of the results. The user has the option –v to print all align-
ments generated in each run; by default A-GLAM will report
only the highest scoring alignment.

3. Alternatively, the user could run A-GLAM without the –l
flag and construct a position frequency matrix that in turn
could be used to scan the target sequences for additional
instances of the motif. The TFBS Perl modules for

272 Mariño-Ramı́rez et al.



$ aglam –b 20 -l SNT2_YPD.fsa

A-GLAM: Anchored Gapless Local Alignment of Multiple Sequences
Compiled on Feb 9 2008
aglam -l SNT2_YPD.fsa

Run 1...  25340 iterations
Run 2...  26770 iterations
Run 3...  22597 iterations
Run 4...  17786 iterations
Run 5...  23816 iterations
Run 6...  42556 iterations
Run 7...  19556 iterations
Run 8...  22526 iterations
Run 9...  23310 iterations
Run 10...  21531 iterations

! The sequence file was    [SNT2_YPD.fsa]
! Reading the file took    [0] secs
! Sequences in file    [46] 
! Maximum possible alignment width    [142] 
! Score    [400] bits
! Motif Width      [12]
! Runs    [10]

! Best possible alignment:

>iYNL182C 6.2046e-10 202  ATGGCGCTATCA   213  +    (10.24060) (1.714353e-02) 
>iYBL075C 7.9181e-10 278  GCGGCGCTATCA   267  -    (12.62630) (3.136227e-04) 
>iYIL160C 1.0190e-09 211  ACGGCGCTACCA   222  +    (14.16730) (2.230312e-05) 

208  AAGGCGCTATCA   197  -    (10.97000) (4.259169e-03) 
>iYPR183W 1.6110e-09 237  GCGGCGCTACCA   248  +    (14.39810) (8.284745e-06) 
>iYCR090C-1 2.2463e-09 575  ACGGCGCTATCA   564  -    (12.39550) (1.190739e-03) 
>iYAL039C-0 5.6844e-09 281  GCGGCGCTACCA   292  +    (14.39810) (2.092311e-05) 
>iYPR157W 1.0834e-08 343  GTGGCGCTATCA   332  -    (10.47150) (1.119393e-02) 
>iYOL117W 1.2728e-08 absent  
>iYLR149C 1.4205e-08 252  ATGGCGCTACCA   263  +    (12.01250) (1.704126e-03) 
>iYJL093C 3.7648e-08 279  GCGGCGCTATCA   268  -    (12.62630) (6.283269e-04) 
>iYBR143C 2.6501e-07 202  ACGGCGCTATCA   213  +    (12.39550) (1.581019e-03) 
>iYLR176C 1.6035e-06 221  GTGGCGCTACCA   232  +    (12.24330) (1.517043e-03) 
>iYPR104C 6.0302e-06 420  ATGGCGCTATCA   431  +    (10.24060) (1.333119e-02) 
>iYBR138C 9.2799e-06 203  GCGGCGCTAGCA   214  +    (12.42200) (4.809407e-04) 

206  CCGCCTCGGCCA   195  -    (8.225040) (4.975689e-02) 
>tP(UGG)M 1.4586e-05 26   CCAGCTCGCCCC   15   -    (8.644490) (1.269803e-02) 

99   ACCACTAGACCA   110  +    (7.042530) (4.773258e-02) 
>iYHR217C 1.7438e-05 absent  
>iYHR138C 3.9997e-05 145  TCGGCGCTACCA   134  -    (11.23880) (3.713288e-03) 
>iYKL172W 4.5759e-05 absent  
>IntYGL103W 4.7991e-05 absent  
>tL(UAG)L2 4.9893e-05 21   ACCACTCGGCCA   10   -    (9.819350) (3.647425e-03) 
>iYJR152W 5.1753e-05 absent  
>tS(AGA)M 6.7229e-05 35   CCTGCGCGGGCA   46   +    (9.031130) (6.321172e-03) 
>tW(CCA)P 6.8308e-05 81   AAAGCTCTACCA   92   +    (10.76890) (1.315551e-03) 
>snR128 9.5071e-05 absent  
>tI(UAU)L 9.5693e-05 26   GCAACGCGACCG   15   -   (8.373710) (1.822708e-02) 
>iYCR090C-0 1.0515e-04 absent  
>IntYPL081W 1.1828e-04 absent  
>SNR190 1.1910e-04 162  CCGATTCGACCA   151  -    (7.925580) (4.569485e-02) 
>tL(CAA)C 1.2473e-04 24   ACCGCTCGGCCA   13   -    (11.62350) (5.732354e-04) 
>tP(AGG)C 1.3420e-04 24   CCGGCTCGCCCC   13   - (9.501020) (4.510700e-03) 
>tS(GCU)L 1.9681e-04 absent  
>tH(GUG)M 2.0224e-04 absent  
>SNR43 2.6811e-04  absent  
>tS(CGA)C 3.0856e-04 71   CCAGCGCGGGCA   60   -    (10.69280) (1.375755e-03) 
>tK(UUU)P 3.1249e-04 55   AACGCTCTACCA   66   +    (10.63040) (1.330965e-03) 
>tN(GUU)P 4.7144e-04 32   CCAACTTGGCCA   21   -    (7.907740) (2.015338e-02) 
>tV(AAC)M3 4.8949e-04 60   CCGACTAGACCA   71   +    (7.828140) (1.674674e-02) 
>tA(UGC)O 5.7662e-04 48   AGCGCGCTACCA   59   +    (9.775690) (2.504172e-03) 
>tT(AGU)O2 6.8638e-04 60   CCAACTTGGCCA   71   +    (7.907740) (1.737360e-02) 
>tR(UCU)M2 7.2321e-04 55   GACGCGTTGCCA   66   +    (9.845220) (2.902318e-03) 
>iYLR228C-1 8.1088e-04 absent  
>tQ(UUG)L 8.1134e-04 absent  
>tC(GCA)P2 9.1920e-04 46   GCTGCGCTACCA   57   +    (11.88000) (2.284798e-04) 
>iYDR261C-1 9.4038e-04 absent  
>SNR44 9.4060e-04  absent  
>tG(GCC)P2 9.5116e-04 26   CCAACGTTGCCA   37   +    (9.164880) (5.191352e-03) 

! 34 sequences in alignment
! Residue abundances:Pseudocounts
! A = 0.311204:0.466806 C = 0.188796:0.283194 G = 0.188796:0.283194 T = 0.311204:0.466806 
! Total Time to find best alignment    [13.92] secs

Fig. 13.2. A-GLAM output for a set of sequences containing an SNT2p motif identified using ChIP-chip. A-GLAM
works by analyzing completely random alignment of the sequences and making small refinements over ten alignment
runs with many iterations.
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transcription factor binding detection and analysis provide
a flexible and powerful framework (available at http://
tfbs.genereg.net/).

4. Other Web servers for logo generation include enoLOGOS
(available on the Web at http://biodev.hgen.pitt.edu/
enologos/) and Pictogram (http://genes.mit.edu/pictogram.
html).
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Abstract

Background: Protein kinase (PK) genes comprise the third largest superfamily that occupy ,2% of the human genome.
They encode regulatory enzymes that control a vast variety of cellular processes through phosphorylation of their protein
substrates. Expression of PK genes is subject to complex transcriptional regulation which is not fully understood.

Principal Findings: Our comparative analysis demonstrates that genomic organization of regulatory PK genes differs from
organization of other protein coding genes. PK genes occupy larger genomic loci, have longer introns, spacer regions, and
encode larger proteins. The primary transcript length of PK genes, similar to other protein coding genes, inversely correlates
with gene expression level and expression breadth, which is likely due to the necessity to reduce metabolic costs of
transcription for abundant messages. On average, PK genes evolve slower than other protein coding genes. Breadth of PK
expression negatively correlates with rate of non-synonymous substitutions in protein coding regions. This rate is lower for
high expression and ubiquitous PKs, relative to low expression PKs, and correlates with divergence in untranslated regions.
Conversely, rate of silent mutations is uniform in different PK groups, indicating that differing rates of non-synonymous
substitutions reflect variations in selective pressure. Brain and testis employ a considerable number of tissue-specific PKs,
indicating high complexity of phosphorylation-dependent regulatory network in these organs. There are considerable
differences in genomic organization between PKs up-regulated in the testis and brain. PK genes up-regulated in the highly
proliferative testicular tissue are fast evolving and small, with short introns and transcribed regions. In contrast, genes up-
regulated in the minimally proliferative nervous tissue carry long introns, extended transcribed regions, and evolve slowly.

Conclusions/Significance: PK genomic architecture, the size of gene functional domains and evolutionary rates correlate
with the pattern of gene expression. Structure and evolutionary divergence of tissue-specific PK genes is related to the
proliferative activity of the tissue where these genes are predominantly expressed. Our data provide evidence that
physiological requirements for transcription intensity, ubiquitous expression, and tissue-specific regulation shape gene
structure and affect rates of evolution.
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Introduction

Phosphorylation of serine, threonine and tyrosine residues in

substrate proteins by protein kinases (PKs) provides a fundamen-

tal mechanism for the control of cell division, growth and

apoptosis, metabolic activity, adhesion and migration, and

mediates cell responses upon environmental stimuli [1,2,3]. At

the molecular level, phosphorylation-dephosphorylation allows

fast and sensitive regulation of enzyme activity. It is also a major

mechanism of transmembrane signal transduction and amplifi-

cation in the branching network of intracellular PK cascades that

ultimately control gene expression by phosphorylation of

transcription factors. Phosphorylation of protein substrates

creates binding sites for protein domains which recognize specific

phosphorylated amino acid sequences, thereby mediating pro-

tein-protein interactions [3,4].

The eukaryotic PK superfamily is subdivided into two broad

groups of conventional and atypical kinases. Conventional PKs have

been classified into eight families based on the structure and

sequence similarities of their conserved eukaryotic catalytic domains.

A smaller group of atypical PKs consists of several families that do

not carry well conserved kinase domains. Still, many atypical protein

kinases show evidence for enzyme activity. The number of PK genes

in the animal genome progressively grows from lower to higher

organisms, paralleling the evolutionary increase in the total number

of genes and the complexity of organization. The protein kinase

complement of the human genome (kinome) includes 518 predicted

genes, comprising the third-largest gene superfamily [5]. Compar-
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ative analysis of the mouse genome performed by different research

groups identified 540 to 561 candidate protein kinase genes [6,7].

According to a more recent conservative estimate, the human and

the mouse genomes contain 504 and 508 PK genes, correspondingly

[8]. The majority of the human protein kinases have orthologs in the

mouse, implying similar biological functions in both organisms.

Some of these enzymes are restricted to or predominantly expressed

in specialized tissues or cell types.

Expression of PK genes is subject to complex transcriptional

control, which is not fully understood. Although orthologization and

evolutionary conservation of PK protein sequences has been well

established, little is known about evolutionary conservation and the

function of non-coding DNA sequences of PK genes. Insights into

the function of non-coding DNA can be gained from comparative

analysis. According to estimations by different authors, fraction of

selectively constrained non-coding DNA sequences in mammalian

genomes represent from 3% (when highly conserved sequences

alone are taken into account) to 10% or more (when weaker

conservation is also considered) [9,10]. Evolutionary conservation of

non-coding DNA is controlled, at least in part, by negative selection

and high interspecies homology of non-coding DNA sequences

suggest their important regulatory function. For example, the vast

majority of experimentally defined binding sites for the human

skeletal muscle-specific transcription factors are confined to the

most constrained orthologous sequences in the rodent genome [11].

Because patterns of gene regulation and the corresponding

regulatory controls are often conserved between species, cross-

species sequence comparison, so-called ‘‘phylogenetic footprinting’’,

may identify functional gene regulatory elements. Alignment

algorithms based on interspecies sequence comparison have

successfully been used to identify regulatory sites of genes expressed

in the skeletal muscle [11] and endothelial tissue [12]. Here we

employed a similar approach for identification of regulatory

elements in non-coding regions of mammalian PK genes.

We analyzed 497 orthologous genomic loci of the human and

mouse PK genes with the total length over 64 Mb, constituting about

2% of a mammalian genome. The goals of the present study were: i)

evaluation of sequence conservation and evolutionary rates in non-

transcribed, transcribed and translated regions of PK genes, ii)

evaluation of the gene architecture and features of structural domains

in differentially expressed genes, iii) identification of sequence

elements and regulatory signals associated with transcription levels

and message abundance, iv) evaluation of PK tissue expression

patterns and sequence elements associated with tissue-specific gene

expression. Here we present data on the relative expression levels and

tissue-specific expression for the human kinome. We show that

architecture of regulatory PK genes significantly differs from other

protein coding genes and explore relationships between gene

structure, evolutionary conservation, transcript levels and breadth

of gene expression. We demonstrate that architecture of PK genomic

loci correlates with the mode of gene expression and proliferative

activity of the tissue where these genes are predominantly expressed.

We describe evolutionarily conserved signals associated with

transcript abundance and tissue-specific expression. Our results

suggest that requirements for ubiquitous expression and tissue-specific

regulation affect gene structure and impose selection pressure on the

protein-coding and non-coding gene regions.

Results

Transcription levels and tissue-specific expression of PK
genes

We evaluated expression of PK and non-PK genes based on the

numbers of gene-specific ESTs in GenBank originating from

normal human tissues, which reflect mRNA abundance and

relative gene transcription levels. The vast majority of PK genes

scored moderate EST numbers (84 ESTs average) in contrast with

highly transcribed housekeeping non-PK genes (2000 or more

ESTs). Based on this analysis, PKs fall into a category of

moderately transcribed genes, which is consistent with their

regulatory role. These data are in agreement with overall PK

expression levels presented in the Gene Expression Atlas. For

evaluation of PK expression patterns and the relative abundance

of PK messages in different organs, we sorted gene-specific ESTs

in accordance with their organ and tissue origins. ESTs originating

from the brain and nervous tissue were most numerous in our

dataset, followed by ESTs from testis and placenta (Figure 1).

Distribution of PK-specific ESTs in 20 normal human organs and

tissues is presented in Table S1. Our results showed that the

majority of PK genes were broadly expressed in many tissues. At

the same time, a number of PK genes showed distinct organ-

specific and tissue-specific expression patterns.

Remarkably, EST libraries from nervous and testicular tissues

were enriched with PK tags, relative to libraries from other tissues

(Figure 1A), suggesting increased phosphorylation-dependent

regulation in the brain and testis. Therefore, we focused our

attention on PKs up-regulated in these two tissues. A diverse group

of protein kinases that includes many members of CAMK1,

CAMK2, DCAMKL, Eph, CDK, PKC and other families was

predominantly expressed in the brain and nervous tissue (Table

S1). Expression of VACAMKL, CaMK2 alpha, EphA7, PKC

gamma and PAK5 was effectively restricted to the brain, and

many of the nervous tissue-specific PKs scored high numbers of

ESTs in GenBank, indicating active transcription. A smaller PK

group was preferentially expressed in the testis (BRDT, HIPK4,

MISR2, SgK307, SgK396, SSTK, TSSK1, TSSK2, TSSK4 and

others). Several genes were predominantly expressed in placenta

(TXK, FLT1, ACTR2B), muscle and heart (skMLCK, MSSK1),

and other tissues. In the cases where experimental results are

available, our identification of tissue-specific protein kinases was

supported by data from literature. For example, five testicular

protein kinases,TSSK1, TSSK2, SSTK, CAMK4, and Haspin,

are specifically expressed in haploid germ cells and two of these

enzymes (CAMK4 and SSTK) are indispensable for normal

progression of spermatogenesis and male fertility [13,14,15,16].

Experimental evidence for brain- and neuron-specific expression

was obtained for VACAMKL [17], PAK5 [18], Eph receptor

tyrosine kinase EphA4 [19], CaMK1 gamma [20], CaMK2 alpha

[21], PKC gamma [22], CDK5 [23] and some other kinases

identified in our search.

Structural features of PK genes associated with
expression levels and breadth

For evaluation of gene architecture, we analyzed length and GC

content in different gene functional domains in 510 human PK

genomic loci. To compare structural properties of PK genes with

overall trends for other genes, we used control group of 7,711 well-

annotated human non-PK genes. Genomic architecture of PK and

non-PK genes significantly differed. As seen from Figure 2, PK

genes occupy larger genomic loci, possess significantly longer

exons and spacer regions, and encode larger proteins, relative to

the group of non-PK genes. PK genes also tend to have more GC-

rich UTRs relative to non-PK genes (Table 1). Remarkably,

lengths of gene loci, 59-spacers, introns and UTRs of the human

PK genes were ,15% longer than for the mouse PK genes,

revealing higher gene complexity (Figure S1). Same trend was

observed for non-PK genes (data not shown).

Expression of PK Genes
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To analyze gene structural features associated with transcription

levels, we selected groups of high and low transcribed PK genes. For

both groups, we analyzed length, GC-content, and human-mouse

sequence conservation in gene functional domains. The proximal

3 kb spacer regions immediately upstream from the translation start

site that harbor promoters and the majority of known transcription

factor sites in humans were analyzed separately. Results of this

analysis are presented in Table 1 and Figure 2. Several structural

features were associated with active transcription and elevated

mRNA levels. Primary transcripts and introns of high expression

genes were significantly shorter than primary transcripts and introns

of low expression PK genes (p,0.05). Consistent with published

data [24], this trend was also observed for non-PK genes. High

expression PK genes also possessed longer (p,0.03) and a more

conserved (p,0.02) 59UTRs with significantly higher GC-content,

and significantly more conserved 39UTRs (p,1024) with extended

Figure 1. Relative tissue distribution and abundance of EST for 7,711 non-PK genes and 512 PK genes in GenBank, release 162. A.
Relative tissue distribution of gene-specific EST for non-PK and PK genes. B. Abundance of PK-specific ESTs in libraries from normal human tissues.
The data were graphed as EST number versus PK rank.
doi:10.1371/journal.pone.0003599.g001

Expression of PK Genes
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footprints, relative to low expression genes. We found no association

between expression levels and the length of mature mRNA, the size

of the protein and GC content in distant spacers, introns, and

primary transcripts. Similar results were obtained for the mouse PK

genes (Figure S1 and data not shown).

We analyzed structural features of PK genes associated with

breadth of expression (defined as the number of tissues where a

gene is expressed). We observed strong negative correlation

between the size of pre-mRNA and the number of expressing

tissues (R = 20.67, p = 1.2261026, Figure 3A). We also found

similar correlation for non-PK genes, which was primarily due to

smaller size of introns in broadly expressed genes.

Characteristic features of PK genes associated with
expression in brain and testis

Distribution of ESTs in tissue libraries (Figure 1A) and

expression profiling (Table S1) suggest that the brain and testis

Figure 2. The length of the structural domains in human PK and non-PK genes. The following groups of differentially expressed PK genes
were analyzed: all PK genes, high expression genes (75 genes with highest EST numbers), low expression genes (75 genes with lowest EST numbers),
ubiquitously expressed genes, genes up-regulated in the nervous or testicular tissue, genes down-regulated in the nervous or testicular tissue.
Sequence conservation was evaluated relative to mouse gene orthologs. CDS of extremely large PK titin was excluded from this analysis. Data are
presented as averages.
doi:10.1371/journal.pone.0003599.g002
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possess more complex phosphorylation dependent regulatory

networks, relative to other organs. To identify gene structural

features associated with expression in the nervous and testicular

tissue, we analyzed non-overlapping groups of genes predomi-

nantly expressed in these tissues. PK genes up-regulated in the

brain and testis were compared to control groups of ubiquitously

expressed PK genes, and genes down-regulated in these organs.

Overall gene organization and features of functional domains

significantly differed between these groups (Table 1, Figure 2).

Genomic loci and spacer regions of PK genes up-regulated in the

nervous tissue were generally longer than those of ubiquitously

expressed PKs (p,0.0005) and other analyzed PK groups.

Similarly, primary transcripts and introns of PK up-regulated in

the nervous tissue were dramatically longer than those of

ubiquitously expressed PK genes (p,0.0004 and p,0.0005,

correspondingly) and PK genes of other groups.

In contrast, genes up-regulated in the testis were significantly

more compact than ubiquitously expressed PK genes (p,0.05) and

genes predominantly expressed in nervous tissue (p,0.005), with

shorter transcribed regions and smaller number of introns.

Testicular PK genes had two to three times shorter 59-spacers

(p,0.005) with significantly lower GC content (p,0.02) in the

promoter regions than ubiquitously expressed PKs genes and

genes up-regulated in nervous tissue (Table 1, Figure 2). Testis-

specific PK transcripts carried the shortest and least conserved

UTRs among all analyzed groups of PK transcripts.

Evolutionary divergence of the human and mouse PK
genes

For evaluation of evolutionary divergence, we constructed

detailed alignments for human and mouse PK genomic loci. Here

we present data for 497 orthologous gene pairs that yielded

complete collinear alignments of the transcribed regions, 59- and

39-spacer regions, collectively covering over 64 Mb of the human

genome. Incomplete alignments that missed spacer regions due to

deletions or genomic translocations were not used in our analysis.

To compare evolutionary divergence of PK genes with overall

trends for other genes, we constructed alignments for control

group of 7,711 well annotated orthologous human and mouse

non-PK genes.

Protein coding regions of the human and mouse PK orthologs

were highly conserved (over 80% identity in nucleotide sequences).

To evaluate selection pressure on coding sequences, we calculated

levels of non-synonymous (Ka) and synonymous (Ks) human-

mouse nucleotide substitutions in the protein coding regions of PK

and non-PK genes using Yang’s model [25]. Results of these

Table 1. GC-content and human-mouse sequence conservation in structural domains of human PK and non-PK genes.

Features Non- PK genes PK genes PK expression level PK expression breadth

Ubiqui-tous Nervous tissue Testis

High Low Up-reg Down-reg Up-reg Down-reg

59-spacer

Conservation, % 56.48 55.28 53.62 55.52 55.66 56.59 53.40 58.33 56.60

G+C content, % 45.53 47.39 47.33 47.36 50.65 49.17 49.54 48.05 49.82

Promoter region

Conservation, % 59.97 60.02 58.26 59.63 61.38 61.17 55.96 60.88 60.37

G+C content, % 48.42 50.83 50.25 49.61 56.27 53.19 52.00 48.52 53.10

Primary transcript

Conservation, % 59.88 59.03 59.70 59.28 59.17 58.41 57.78 66.54 61.46

G+C content, % 45.08 45.92 46.65 46.99 49.28 46.92 48.27 46.68 49.65

59UTR

Conservation, % 72.43 73.54 74.2 70.32 76.61 76.76 68.3 71.66 74.77

G+C content, % 61.27 65.32 66.58 61.01 72.39 64.3 67.12 60.49 67.05

Protein coding regions

Conservation, % 85.28 87.08 87.81 84.85 88.80 88.57 85.03 84.83 87.40

G+C content, % 51.96 52.20 52.53 52.65 54.37 54.05 53.68 51.23 54.25

Introns

Conservation, % 56.14 55.03 55.04 54.77 55.05 55.59 53.44 56.10 57.13

G+C content, % 43.64 45.08 45.82 45.96 48.63 46.53 47.40 40.92 48.97

Intron number 9.3 16.3 17 16.8 13.4 18 14 4.5 14.3

39UTR

Conservation, % 68.59 69.48 70.83 64.13 71.69 71.19 64.96 66.19 68.47

G+C content, % 42.90 45.20 46.12 46.43 47.39 46.55 46.55 41.44 47.06

39-spacer

Conservation, % 58.15 58.59 59.52 58.04 57.69 59.87 56.12 56.82 59.40

G+C content, % 44.11 46.44 47.73 46.77 48.87 47.22 48.34 44.33 46.86

Genomic repetitive elements were excluded from computation of sequence conservation. Data are presented as averages. Gene groups are defined in Figure 2 legend.
doi:10.1371/journal.pone.0003599.t001
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calculations are presented in Table 2. The Wilcoxon rank sum test

showed that the average Ka values and Ka/Ks ratios were

significantly lower for PK coding regions, relative to non-PK

genes, indicating stronger purifying selection on PK amino acid

sequences. Evolutionary changes in PK protein-coding regions

were not homogeneous. Kinase modular domains in CDSs were

more conserved than inter-domain regions. Within the group of

PK genes, selective pressure on non-synonymous sites varied

significantly depending on expression levels and the number of

tissues in which genes were expressed. The level of non-

synonymous substitutions in PK genes negatively correlated with

breadth of gene expression (R = 20.82, p = 1.7361029, Figure 3A),

which is consistent with a general trend for non-PK genes and

correlations observed in protein coding regions of non-regulatory

Figure 3. Correlations between the level of human-mouse evolutionarily divergence in protein coding and untranslated regions of
human PK genes, expression breadth, and the size of pre-mRNA. A. Correlation between non-synonymous divergence, PK expression
breadth and the size of pre-mRNA. Breadth of gene expression was estimated as the number of organ and tissue sources of gene-specific ESTs. Data
are presented as averages and SEM. B. Correlations between evolutionarily divergence in protein coding regions and UTRs of PK genes.
doi:10.1371/journal.pone.0003599.g003
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genes [26,27]. The level of non-synonymous substitutions in PK

genes also negatively correlated with gene expression levels

(R = 20.72, p = 7.3561028, Figure S2) and positively correlated

with the size of pre-mRNA (R = 0.39, p,0.01).

On average, protein coding sequences of ubiquitous PKs

evolved slower than those of differentially expressed PKs, as seen

from their low Ka values (Table 2). PKs with restricted tissue

expression (rank of expression breadth#5) evolved significantly

faster (p,0.001) than broadly expressed genes (rank of expression

breadth.30). However, the group of PKs with restricted tissue

expression is evolutionarily diverse, as seen from the high values of

Ka standard errors for these kinases (Figure 3A), indicating strong

variability in rates of their evolution. For example, PKs up-

regulated in the highly proliferative testicular tissue evolved almost

three times faster than PKs up-regulated in the minimally

proliferative nervous tissue which evolved slow, similar to broadly

expressed PKs, as seen from their low Ka values. Contrarily, Ks

values in the protein coding regions did not differ significantly

between ubiquitously and differentially expressed PK groups and

did not correlate with gene expression patterns (Table 2),

indicating similar levels of synonymous mutations. These results

indicate that the differences in Ka values observed between the

groups of ubiquitously and differentially expressed PKs are not

caused by regional variations in the neutral mutation rate and

reflect increased selective pressure on amino acid sequences.

Interestingly, PKs down-regulated in the nervous tissue and PKs

with generally low transcription levels also displayed increased

divergence in amino acid sequences. Same trends were observed in

59 and 39UTRs.

We compared evolutionary rates in transcribed domains of PK

and non-PK genes by evaluating the human-mouse evolutionary

divergence in 59UTRs (K59), CDSs (Ke), introns (Ki), and 39UTRs

(K39) using Kimura’s two parameter model [28]. PK genes are

characterized with lower Ke values, relative to non-PK genes,

reflecting higher constraint on amino acid sequences. We also

observed increased Ki values in PK introns, as compared to non-

PK introns. As shown in Table 2, evolutionary divergence was

significantly lower for both PK and non-PK genes in 59UTRs

(p,1027) and 39UTRs (p,1025), relative to introns. We found

significant positive correlations between levels of evolutionary

divergence in CDSs and 39UTR, in CDSs and 59UTRs of PK

genes (Figure 3B). Similar to Ka values, K39 values inversely

correlated with breadth of gene expression (R = 20.11, p,0.01).

Positive correlation between Ke and K39 values was observed for

PKs predominantly expressed in nervous tissue, and for other

differentially expressed PK groups (Figure 4). This trend was also

observed for slow evolving ubiquitous PKs.

Regulatory signals in PK genes associated with
transcription levels

Taking into consideration strong relationships between gene

transcription levels, evolutionary conservation, and the structure of

regulatory domains, we attempted to identify evolutionary

conserved DNA elements that regulate gene expression. For

regulatory elements associated with transcript abundance, we

searched for motifs over-represented in conserved promoter

regions of high expression PK genes using the discriminating

matrix emulator (DME) program. Conserved promoter sequences

of low expression PK genes were used as a background set in this

analysis. DME search revealed a number of motifs ranging from 6

to 10 nt which were significantly over-represented in promoters of

high expression PK genes. Some of the characteristic over-

represented motifs are shown on Figure S3, and the top 50 over-

represented motifs are presented in Table S1. Promoters of high

expression, actively transcribed PK genes were enriched with GC-

rich motifs. In contrast, promoter regions of low expression PK

genes were dominated by AT-rich low complexity motifs (data not

shown). To identify potential binding sites for transcription factors,

we searched through TRANSFAC database for position frequency

matrices that match the motifs found by DME. Most common

motifs were identified as conserved and degenerate binding sites

for transcription stimulating proteins Sp1 and Sp3, core binding

sequences for activator protein AP-2, characteristic for increased

promoter performance, and other transcription factors. Some of

Table 2. Human-mouse evolutionary divergence in the protein coding and untranslated regions of domains of human PK and
non-PK genes.

K values Non- PK genes PK genes PK expression level PK expression breadth

Ubiqui-tous Nervous tissue Testis

High Low Up-reg Down-reg Up-reg Down-reg

59-spacer

K59 0.346 (0.002) 0.339 (0.013) 0.322 (0.024) 0.356 (0.034) 0.298 (0.026) 0.288 (0.041) 0.396 (0.039) 0.325 (0.047) 0.340 (0.035)

Protein coding regions

Ke 0.171 (0.001) 0.159 (0.003) 0.145 (0.006) 0.186 (0.009) 0.135 (0.006) 0.149 (0.008) 0.177 (0.010) 0.189 (0.013) 0.144 (0.011)

Ka 0.073 (0.001) 0.050 (0.002) 0.042 (0.005) 0.060 (0.005) 0.029 (0.003) 0.031 (0.012) 0.057 (0.008) 0.095 (0.012) 0.046 (0.009)

Ks 0.558 (0.002) 0.548 (0.007) 0.540 (0.017) 0.560 (0.018) 0.530 (0.020) 0.538 (0.026) 0.609 (0.025) 0.510 (0.042) 0.540 (0.017)

Ka/Ks 0.128 0.089 0.080 0.110 0.050 0.090 0.090 0.190 0.080

39UTR

K39 0.379 (0.002) 0.376 (0.012) 0.371 (0.038) 0.431 (0.018) 0.322 (0.022) 0.357 (0.028) 0.411 (0.023) 0.447 (0.047) 0.379 (0.021)

Introns

Ki 0.545 (0.001) 0.564 (0.006) 0.556 (0.013) 0.571 (0.014) 0.579 (0.020) 0.533 (0.013) 0.605 (0.021) 0.571 (0.046) 0.508 (0.016)

Evolutionary divergence in the protein coding regions (Ke), 59UTRs (K59), and 39UTRs (K39) was calculated using Kimura’s two parameter model [28]. Rates of synonymous
(Ks) and non-synonymous (Ka) divergence were calculated using Yang’s model [25]. Gene groups are defined in Figure 2 legend. Data are presented as averages and the
standard error of the mean (SEM, shown in the parentheses).
doi:10.1371/journal.pone.0003599.t002
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the over-represented motifs were not identified as recognition sites

for known DNA-binding proteins.

To identify sites in 59UTRs associated with transcript abundance,

we performed a search for evolutionarily conserved over-represent-

ed sequence elements using the SiteBD program. 59UTRs of

abundant transcripts have significantly higher GC-content and were

enriched three-fold with repetitive GGCGGCGGC motifs

(p,5610255), complementary CCGCCGCCG motifs (p,9610239),

and other GC-containing sites, as compared to rare transcripts

(Table S1). Several motif variants differing by nucleotide shifts

were found. Unlike typical transcription factor binding sites, these

motifs possessed a low degree of degeneration, mostly resided in

59UTRs and were rarely encountered in the proximal spacers

regions.

Figure 4. Correlations between the level of human-mouse evolutionarily divergence in protein coding regions and 39UTRs of
ubiquitous and differentially expressed human PK genes. A. Correlations between evolutionarily divergence in protein coding regions and
39UTRs of high, low, and ubiquitously expression PK genes. B. Correlations between evolutionarily divergence in protein coding regions and 39UTRs
of PK genes up-regulated and down-regulated in nervous and testicular tissues.
doi:10.1371/journal.pone.0003599.g004
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To identify sites of potential interaction with ribosomes, we

evaluated hybridization affinity of abundant and rare PK

transcripts to 18S ribosomal RNA. As seen from Figure 5A,

59UTRs of abundant transcripts possessed two to three-fold higher

potential to form intermolecular duplexes with 18S ribosomal

RNA, relative to 59UTRs of rare PK transcripts. This effect was

observed for theoretically predicted 18S rRNA ‘‘clinger’’ sites

(data not shown), and also for an experimentally confirmed

‘‘clinger’’ element [29], which base pairs to a core of the

translation enhancer commonly occurring in the 59UTR

(Figure 5B).

It was shown earlier that selection may be operating in the

protein coding regions on most variable synonymous positions to

maintain a more stable and ordered mRNA secondary structures

Figure 5. Hybridization affinity of 59UTRs of PK genes to human 18S ribosomal RNA. A. Distribution of calculated energy of predicted
duplex formation (DG) between human 18S rRNA and 59UTRs of abundant and rare PK transcripts. Site of duplex formation between experimentally
confirmed 18S rRNA ‘‘clinger’’ element and a core of 59UTR translation enhancer [29] is shown. B. Hybridization affinity of abundant and rare PK
transcripts to experimentally verified 18S rRNA ‘‘clinger’’ element [29].
doi:10.1371/journal.pone.0003599.g005
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[30]. To evaluate secondary structures in 59UTRs, we computa-

tionally ‘‘folded’’ sequences of mature PK transcripts. In

agreement with the results of transcriptome-wide analysis of

mammalian mRNA folding, we found that secondary structures

are frequently formed in PK transcripts between UTRs and CDSs

in the vicinity of the start and stop codons (Figure S4). Sequences

immediately upstream from the start codon have strong

hybridization affinity to the N-terminal coding sequences, thus

promoting formation of local hairpin structures where the start

codon is positioned at the end of a hairpin in a relaxed loop

(Figure 6). This type of secondary structure was facilitated by the

enhanced GC-content in the N-terminal protein coding regions,

and was observed in both abundant and rare transcripts. However,

thermodynamic stability of these characteristic hairpin structures

was significantly higher for abundant PK transcripts, than for rare

transcripts (p,1025).

Figure 6. RNA secondary structures in the vicinity of the start codon. A. Profiles of nucleotide base pairing in the vicinity of the start codon
for abundant and rare PK transcripts. Nucleotide positions are shown relative to translation start codon. B. Examples of predicted local secondary
structures in the vicinity of the start codon for an abundant PK transcript (VRK1, NM_003384) and a rare PK transcript (MYLK4, NM_001012418). Start
codons are shown in blue.
doi:10.1371/journal.pone.0003599.g006
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Abundant PK transcripts also carry significantly more con-

served 39UTRs, relative to rare transcripts (p,1024). No

significant difference in nucleotide levels was observed between

39UTR of abundant and rare PK transcripts, which had uniformly

high AT content (Table 1).

Nervous tissue-specific regulatory signals
PK genes up-regulated in the nervous tissue had significantly

longer 59-spacers and introns then genes down-regulated in the

nervous tissue. These extended gene loci may harbor binding sites

for nervous tissue-specific transcription factors. To identify brain-

specific regulatory elements, we analyzed conserved synteny

regions of PK genes predominantly expressed in the nervous

tissue with the DiRE program. Whole gene loci, including

promoters, UTRs, introns, and distant intergenic and spacer

regions were included in this analysis. Conserved synteny regions

of PK genes with similar overall expression levels and low

expression in the brain tissue were used as a background set.

Typical transcription factor binding sites overrepresented in

evolutionarily conserved brain-specific PK genes are shown in

Figure 7, and the top 30 overrepresented motifs are presented in

Table S2. As seen from the Table, binding sites for POU, Pit, Pbx,

Figure 7. Characteristic transcription factor binding sites over-represented in evolutionarily conserved regions of PK genes
predominantly expressed in nervous tissue.
doi:10.1371/journal.pone.0003599.g007
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Pax, Olf, Meis and other neuron-specific transcription factors that

perform specific functions in the central nervous system were

highly overrepresented in evolutionarily conserved in regions of

PK genes predominantly expressed in the nervous tissue.

We searched for overrepresented conserved motifs in promoters

of PK genes up-regulated in the nervous tissue using the DME

program. Conserved promoter sequences of genes down-regulated

in the nervous tissue were used as background in this analysis.

Promoter regions of PK genes predominantly expressed in nervous

tissue contained numerous over-represented sites that composi-

tionally and textually differed from the sites associated with

transcript abundance (data not shown). They were enriched with

CTGG, TGCA, TCTGG, CAATC and CTGA motifs that

constituted nucleotide core sequences for neuron-specific tran-

scription factors identified with the DiRE program.

The number of predicted functional signals in 39UTRs

correlated with sequence conservation, indicating a significant

level of evolutionary conserved posttranscriptional regulation in

nervous tissue. To evaluate potential regulation of PK expression

by RNA inhibition, we analyzed hybridization affinity of

annotated human miRNAs to 39UTRs of human PKs up-

regulated and down-regulated in nervous tissue. Remarkably, we

observed a significant difference in the number of binding sites for

neuron-specific miRNAs between the two groups of PK transcripts

(Figure 8). Transcripts rarely encountered in the nervous tissue

were enriched 2–3 fold with binding sites for neuron-specific

miRNAs, which likely facilitated targeted degradation of these

transcripts in the nervous tissue through the RNA inhibition

mechanism.

Discussion

Gene architecture and expression levels
Physiological complexity of an organism is largely dependent on

the regulation of gene expression and correlates with the length of

non-coding DNA, and the number of cis-control elements in

genome [31]. It is estimated that as much as a third of the human

genome controls chromosome replication, condensation, pairing,

segregation, and gene expression [32]. The regulatory array of a

typical mammalian gene locus consists of a core promoter, and

proximal promoter elements (located within ,3 kb in the

upstream spacer region, 59UTR and sometimes within the first

exon of a gene), and distant enhancers, silencers, chromatin

insulators, and scaffold/matrix attachment regions that can be

scattered within 100 kb or more from the transcription start site.

The size of a gene locus inversely correlates with GC content and

depends on gene location within the complex landscape of the

human genome, which is dominated by extensive GC-rich regions

(isochores) alternating with GC-poor isochores. GC-rich isochores

are densely populated with compact genes, while GC-poor

isochores are low gene density regions populated with larger

genes [33]. PK genes occupy larger genomic loci than other

mammalian genes. Our results indicate that human and mouse

PK genes expressed at different levels and in different tissues have

similar GC-content in intergenic regions, suggesting that they are

not confined to GC-rich isochores. Noteworthy, 59-spacer regions

and introns of the human PK genes were significantly (,15%)

longer than the corresponding regions of the mouse genes,

implying a more complex regulation of transcription.

There is a strong negative correlation between gene length and

the level of gene expression. Highly expressed human housekeep-

ing genes are generally shorter and more compact than genes that

are expressed at lower levels, which has been explained by

selection pressure to reduce metabolic costs of transcription

[24,34]. Our results (Figure 2), consistent with published data

for non-regulatory genes [34,35] indicate that PK genes have

significantly longer spacer regions, introns, primary transcripts,

and encode larger and more complex proteins than average

housekeeping and non-housekeeping mammalian genes. Within

the PK group, we observed major differences in gene architecture

that are related to gene expression levels and tissue-specific

expression. Gene transcription levels and breadth of expression

negatively correlate with the length of introns and the size of

primary PK transcripts. Primary transcripts of highly and

ubiquitously expressed genes are significantly shorter than primary

transcripts of low expression PK genes. Average length of protein

coding regions in ubiquitously expressed PK genes tends to be

shorter than in other groups, which may reflect evolutionary

pressure to reduce costs of translation for housekeeping protein

kinases.

Transcription efficiency of a gene is determined by many

factors, most important of which are the structure of promoter, the

Figure 8. Hybridization affinity of human miRNAs to 39UTRs of human PK genes up-regulated and down-regulated in nervous
tissue. A. Predicted numbers of miRNAs hybridizing to 39UTRs. B. Predicted numbers of miRNA target sites in 39UTRs.
doi:10.1371/journal.pone.0003599.g008
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array of transcription factor binding sites, and the length of

transcribed units. Mammalian transcription factor binding sites

are usually organized in clusters that contain several phylogenet-

ically conserved sites for a few different transcription factors [36].

Degenerate sites are enriched around the cognate binding sites in

orthologous mammalian promoters [37], which may facilitate

recruitment of transcription factors to DNA regulatory regions and

a robust transcription response (for discussion of possible

molecular mechanisms, see [37]). Our data show that GC content

in promoter regions and 59UTRs of ubiquitously expressed PK

genes is stably higher, relative to other groups.

Proximal 59-spacers of actively and ubiquitously transcribed PK

genes carry complex cis-regulatory modules enriched with

conserved and degenerate GC-rich binding sites for transcriptional

activators of Sp, AP, and other families. Abundance of these sites is

indicative of increased promoter strength and correlates with gene

transcription levels.

PK expression in nervous and testicular tissue
Human brain and testes employ large groups of tissue-specific

PKs (Table S1), implying increased complexity of phosphoryla-

tion-dependent regulatory network that controls the functioning

and homeostasis of these organs. We observed major differences in

gene architecture and expression between PK groups up-regulated

in nervous and testicular tissues. Adult brain is characterized with

significant transcriptional and very low mitotic activity. Our data

demonstrate that PK genes up-regulated in nervous tissue possess

long transcribed regions with numerous extended introns, an

indication of increased complexity of transcription regulation.

They also carry extended spacer regions which may be required

for accommodation of distant neuron-specific enhancers and

extended 59UTRs, an indication of increased post-transcriptional

regulation.

In contrast, testis-specific PK genes are compact, with short and

low conserved regulatory regions. These properties of testis-

specific PK genes likely reflect simpler transcriptional control by

testis-specific transcription factors that turn transcription on and

off at specific stages during linear progression of germ cell

development. Male germ cell development and differentiation

require massive production of testis-specific transcripts and

isoforms. Transcription during germ cell development peaks at

meiotic and post-meiotic phases [38]. This increased expression

fulfils the requirement for the rapid accumulation of large amount

of transcripts in haploid round spermatids in preparation for

radical restructuring of the cytoplasm and chromatin condensation

at the following stage of elongated spermatids. After this final

burst, transcription ceases in elongated spermatids, chromosomes

are stripped of nucleosomes and densely packed in sperm heads.

We speculate that general compactness of genomic loci of PK

genes predominantly expressed in the testis [39], small size of their

pre-mRNAs and reduced number of introns (Table 1) are likely

dictated by the need for intense transcription in germ cells during

the relatively short developmental time frame. Interestingly,

several testicular PKs (TSSK1, TSSK2, SSTK and Haspin) are

evolutionarily young, intronless, and supposedly originated by

retrotransposition [7]. Same tendency for gene compactness was

observed for proliferatively active placental tissue (data not shown).

Evolutionary divergence of PK genes
Protein coding sequences of PK genes are evolutionarily more

conserved than coding sequences of other genes (Table 2), which is

likely due to tighter purifying selection on catalytic kinase domains.

Evaluation of sequence divergence between the human and mouse

PKs revealed differing rates of evolution for different gene groups.

Ubiquitous PK genes evolve slower, relative to differentially

expressed genes. Elevated conservation in ubiquitous PKs likely

reflects increased selection pressure on housekeeping kinases.

These data are in agreement with the observation that proteins

with a broad range of tissue expression tend to be more conserved

than those expressed in one or few cell types [26].

Our results demonstrate that genes preferentially expressed in

different tissues evolve with differing rates. Rates of evolutionary

divergence of PK genes up-regulated in nervous and testicular

tissues correlated with the proliferative activity of the tissue and

with the length of transcribed gene domains. Consistent with the

published results [7], the group of testis-specific kinases is the

most divergent between the human and mouse in the protein

coding regions. This divergence is reflective of higher evolution-

ary rates of testicular PKs. Conversely, PK genes preferentially

expressed in nervous tissue are more conserved between the

human and mouse in the coding regions and UTRs, indicating

elevated selection pressure on amino acid sequences and on RNA

regulatory sequences.

Interestingly, our results demonstrate increased evolutionary

divergence for the groups of PK genes with generally low

expression levels and genes with low expression in the nervous

tissue, relatively to ubiquitous PK genes. A likely explanation is

that the low expression group contains genes selectively expressed

in low abundant cell types. This group may also contain

evolutionarily young genes with low expression levels and

emerging function. Many of the genes from the second group

are preferentially expressed in two or more tissues, suggesting

possible diversification or specialization of function, which may be

accompanied with evolutionary divergence. It is possible that some

of the observed differences in sequence conservation between the

human and mouse may be due to the unique physiology of the

mouse. Consistent with published reports [40,41], evolutionary

conservation in the protein coding regions strongly correlated with

conservation in 39UTRs and 59UTRs for all gene groups. These

correlations were more pronounced for differentially expressed PK

genes than for ubiquitously expressed genes. Our results for PK

genes are in good agreement with published data for other genes

[26] and support the idea that expression patterns affect selection

intensity but not mutation rate.

Regulation of expression by 39UTRs
In eukaryotic cells, transcripts exist as complexes with associated

proteins that are essential for mRNA transport across nuclear

membrane, stability, and translation. Messenger RNA degradation

and translation are tightly coupled events, and efficiency of gene

expression is largely dependent on post-transcriptional stability of

mRNA. Both mRNA stability and translation efficiency depend on

the 39 poly(A) tail which interacts with poly(A) binding protein

(PABP). PABP is involved in mRNA circularization by binding

together the 59 and 39 ends of mRNA, and also plays a role in

translation initiation and mRNA degradation. The major pathway

of eukaryotic mRNA decay is initiated with degradation of the 39

poly(A) tail and the loss of PABP, linearization of transcript, and

cleavage of the methylated 59 cap structure, followed by 59 to 39

exonucleolytic degradation of mRNA (reviewed in [42]). Other

RNA-binding proteins regulating post-transcriptional mRNA

stability and turnover specifically interact with AU- and CU-rich

sites in 39UTRs [43]. For example, stability of the epidermal

growth factor (EGF) receptor tyrosine kinase mRNA is mediated

by two RNA-binding proteins that bind to AU-rich elements in the

39UTR. The binding affinity of these proteins is down-regulated

by the kinase ligand, EGF [44].
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Another major regulatory pathway is RNA inhibition. 39UTRs

are recognized and targeted by small non-coding miRNAs that

inhibit translation, promote transcript degradation, and often act

as tissue-specific regulators of transcript stability [45]. A large set of

housekeeping genes involved in basic cellular processes avoid

regulation by miRNAs due to short 39UTRs that are depleted of

miRNA binding sites [46]. Our results are suggestive that PK

genes are extensively regulated through RNA inhibition in a

tissue-specific manner. 39UTRs of transcripts rarely encountered

in the nervous tissue were enriched with binding sites for neuron-

specific miRNAs (Figure 8), which likely facilitate targeted

degradation of these transcripts in the nervous tissues through

the RNAi mechanism. Comparison of our results with published

data [47] reveal that sites over-represented in the brain-specific

PK transcripts include few ubiquitous miRNA binding sites that

are commonly found in human transcripts, suggesting regulation

by unidentified miRNAs. 39UTRs of PK genes predominantly

expressed in the nervous tissue were significantly longer and more

conserved, as compared to genes expressed in the nervous tissue at

low levels. These conserved GC-rich sites participate in the

formation of local secondary structures in 39UTRs which increase

the compactness of transcript folding (data not shown) and may be

involved in regulation of mRNA stability.

Regulation of expression by 59UTRs
Recent genetic studies demonstrated that mutations and single

nucleotide polymorphism in 59UTRs affect transcription efficien-

cy, mRNA levels, and have implications in human disease

[48,49,50,51]. The length of the 59UTR negatively correlates

with mRNA and protein expression levels. Transcripts of highly

expressed housekeeping genes carry short 59UTRs devoid of

strong secondary structures. Conversely, transcripts of low

expression regulatory genes controlling cell proliferation, survival

and apoptosis carry long 59UTRs with stable secondary structures

and upstream translation start codons [35,52,53]. Similar to other

regulatory genes, PK genes possess long and complex 59UTRs.

Surprisingly, our analysis showed that abundant PK transcripts

carry longer 59UTRs with higher GC-content that form more

stable secondary structures, as compared to rare PK transcripts.

GC-rich elements in 59UTRs are mostly confined to evolutionarily

conserved sequences and could be maintained by selective

pressure due to conserved biological function. Our observations

suggest that GC-rich elements in 59UTRs may function at the

mRNA level rather than at the DNA level. Increased GC content

in 59UTRs of abundant transcripts allows formation of more stable

RNA secondary structures that may serve as scaffolds for RNA-

binding proteins, promote a more compact folding and increased

mRNA stability.

The majority of translational control events occur at the level of

initiation, implicating the 59UTR as the major site of translational

regulation. The cap-dependent initiation of translation is affected

by mutations in the 59UTR and severely hampered by stable

secondary structures that can stall the ribosome and inhibit

translation [54,55]. Translation of mRNAs encoding regulatory

proteins is often initiated via internal ribosome entry or other yet

unknown mechanisms [56]. Transcript folding in the vicinity of

the start codon favors formation of characteristic local structures

where the start codon is positioned at the end of a hairpin in a

relaxed loop [30]. This type of secondary structure is preferred in

GC-rich 59UTRs of abundant PK transcripts (Figure 6A) and

probably represents adaptation for a more efficient translation of

abundant mRNAs. Positioning of the AUG codon at the end of

stem-loop may provide a more productive recognition context

during cap-independent initiation of translation, when the

ribosome binds directly to internal entry site without unwinding

and scanning upstream regions of mRNA molecule.

A role was proposed for 59UTRs in regulation of translation

through intermolecular base-pairing interaction with 18S ribo-

somal RNA. It was hypothesized [57] and experimentally

confirmed [58] that accessible ‘‘clinger’’ regions of 18S rRNA

may function as low-specificity mRNA-binding sites allowing a

more efficient transcript interaction with the ribosome. This

interaction may affect translational efficiency of different subsets of

mRNAs. Our data suggest that 59UTRs of abundant PK

transcripts have significantly higher hybridization affinity to 18S

rRNA, than 59UTRs of rare PK transcripts (Figure 5). Most

common elements in 59UTRs of abundant PK transcripts are

short GGC repeats. CGGCGG element was recently identified as

a core of a translation enhancer commonly occurring in 59UTRs

of mammalian mRNAs, which base pairs to a ‘‘clinger’’ site on

18S ribosomal RNA and facilitates translation initiation [29].

Studies of the functional role of CGG repeats in the 59UTR of the

human FMR1 gene demonstrated that these repeats may exert

both positive and negative effects on the efficiency of translation of

FMR1 mRNA, depending on repeat length. Long repeats in

59UTR of FMR1 suppressed translation. However, the presence of

short repeats increased translation efficiency in the absence of any

change in mRNA levels [59]. Our results are consistent with these

data and provide additional support for the ribosome filter

hypothesis [58]. Other evolutionarily conserved GC-rich motifs in

59UTRs of abundant PK transcripts (Table S1) may affect

translation initiation through similar mechanisms.

Conclusions
Genomic organization of the human PK superfamily and the

structure of gene functional domains significantly differ from other

protein coding genes. Our results demonstrate that gene

expression levels, expression breadth, and requirements for

tissue-specific regulation correlate with genomic architecture.

These factors also may contribute to selection pressure in the

protein-coding and non-coding DNA regions. Transcription levels

and breadth of expression negatively correlate with the length of

introns and the size of primary transcript, which is likely due to the

necessity to minimize metabolic costs of transcription for abundant

mRNAs. It is generally accepted that mammalian ubiquitously

expressed genes evolve slower than tissue-specific genes. Here we

show that genes up-regulated in different tissues evolve with

different rates, and that evolutionary rates correlate with the

proliferative activity of expressing tissue and with gene architec-

ture. The observed negative correlation between the length of

transcribed gene domains and the proliferative activity of tissues

may reflect metabolic constraints and requirements for tissue-

specific expression. Our data provide evidence that evolutionarily

conserved phylogenetic footprints and structural elements in

messenger RNA play roles in regulation of transcript abundance,

tissue-specific expression, and translation. All these mechanisms

may contribute to the multi-level regulation of PK expression,

providing precision control of the key components of the cell

signaling pathways that determine cell function and destiny.

Methods

Gene sequences and alignments
Protein kinase names and classification in this paper are

presented according to Manning et al [5]. Sequences of the full-

length human PK mRNAs were downloaded from http://kinase.

com/kinbase/FastaFiles/Human_kinase_rna.fasta and aligned to

the sequence of the human genome (ftp://hgdownload.cse.ucsc.
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edu/goldenPath/hg18/chromosomes/), March 2006 assembly.

To compare our results for PK genes with overall trends for other

genes, we compiled control group of 7,711 randomly selected non-

PK genes well-annotated orthologous human and mouse genes that

yielded high quality genome alignments. Gene coordinates were

downloaded from http://genome.brc.mcw.edu/cgi-bin/hgTables.

For each human mRNA, a mouse orthologue was found as a best

Blast hit with complete mouse mRNA sequences. Only full-length

transcripts with links to the RefSeq database were used (http://www.

ncbi.nlm.nih.gov/RefSeq/index.html). Mouse genome sequences

(February 2006 assembly) were downloaded from ftp://hgdownload.

cse.ucsc.edu/goldenPath/mm8/chromosomes/. Genome coordi-

nates of extended human gene loci were transferred to the mouse

genome sequence with UCSC Lift Genome Annotations tool

(http://genome.brc.mcw.edu/cgi-bin/hgLiftOver). Mammalian ge-

nomic repeats were masked and extended genomic loci of

orthologous human-mouse genes were aligned with the OWEN

program [60] and annotated. In case of alternatively spliced forms,

the longest CDSs and UTRs were considered. For the protein coding

regions, the alignment of nucleotide sequences was guided by the

amino acid sequence alignment. 59 and 39 intergenic regions were

considered separately and orientations of gene loci were assigned

from the 59 end to the 39 end of a gene. For 98% of PK genes, UTRs

were annotated and considered separately. When UTRs are

included in the intergenic regions, they usually constitute only a

minor fraction of the sequences and can not affect significantly the

results of computer analysis of intergenic regions. We additionally

analyzed proximal 59-spacer regions (3 kb upstream from the

transcription start site) that contain core promoter and proximal

promoter elements. Overall level of similarity was calculated from

percent identity in global alignments and sequence lengths. Core hits

with e-value lower than 1023 produced by OWEN program were

extracted for analysis. Phylogenetic footprints were identified using

conservative parameters (match = 1, mismatch = 21, gap = 25/21)

where the final similarity of the extended core regions was higher

than 50% and boundaries were matches. The lowest significantly

non-random level of similarity for two-sequence alignments (A

,30%, T ,30%, G ,20%, C ,20%) is 42% [61]. Statistical

analyses of phylogenetic footprints were conducted using Excel

(Microsoft, USA) and our statistical tools [62].

Evaluation of gene expression levels
We evaluated relative transcript abundance using the numbers

of gene-specific expressed sequence tag (EST) sequences in

GenBank. We used EST approach because it allows a more

reliable identification of the transcript identity than microarray

data and has a greater potential for quantitative analysis, since

EST clone frequency in a library is generally proportional to the

corresponding gene expression levels. This approach gives a

reasonably accurate approximation of gene expression and was

successfully used for studying gene transcription levels and tissue-

specific gene expression (for example, [24,26,63,64,65]). We

aligned sequences of PK mRNAs with PK-specific ESTs from

the human normal tissue EST libraries from GenBank using the

program BLAST [66]. We accepted EST hits with the identity

more than 95% and longer than 80% of EST sequence length as

matches. For identification of PKs with overall high and low

expression levels we selected genes with EST numbers .140 and

,25, correspondingly, from pooled normal tissue EST libraries.

For identification of PKs up-regulated and down-regulated in

tissues, we normalized each EST library to the same level using

published approach [63,65]. We calculated PK tissue expression

score (ES) as the ratio of PK-specific ESTs versus expected EST

frequency. We considered PKs with ES.6 (ES.2 for brain and

nervous tissue) as preferentially expressed in a tissue. PKs with

ES,0.25 from nervous tissue or testis were considered as down-

regulated in these organs. Breadth of gene expression was

estimated as the number of organ and tissue sources of gene-

specific ESTs. For identification of the group of ubiquitously

expressed PKs, we used tissue EST libraries containing more than

100,000 ESTs. Genes with low expression levels and low EST

numbers, which could not be reliable evaluated by this method,

were excluded from this analysis. Genes were ranked according to

the number of expressing tissues. Genes expressed in 9 or more

tissues from the 12 tissues were considered as broadly expressed.

Groups of preferentially expressed PK genes were checked against

the Gene Expression Atlas (http://wombat.gnf.org/) and available

experimental PT-PCR and Northern data from literature. Only

genes with similar tissue-specific preferences were considered in

the final classification and computer analysis.

Textual and statistical analyses
Human-mouse evolutionary divergence of PK genes was

evaluated using Kimura’s two parameter model [28]. The levels

of synonymous and non-synonymous divergence (Ks and Ka,

respectively) were calculated with the PAML program (ftp://

abacus.gene.ucl.ac.uk/pub/paml) using default parameters and

the yn00 estimation method [25]. For all measures of evolutionary

distances, including Ks, Ka, Ka/Ks, the Wilcoxon rank sum non-

parametric test was applied to the pairwise comparison between all

groups of PK genes.

To identify regulatory elements associated with transcript

abundance and tissue-specific expression, we searched for con-

served over-represented motifs in promoter regions of actively

transcribed genes using the discriminating matrix emulator (DME)

program [67]. Search for over-represented sequence elements in

59UTR and 39UTR regions was performed using an enumerative

Markov chain motif finding algorithm [68], which applies z-scores

to evaluate the over-representation of exact DNA words, and

SiteDB program [69]. We also used the program CLOVER [70]

that uses the position frequency matrices (PFMs) of cis-regulatory

sites to evaluate sequences for statistically significant over/under-

representative sequence elements. The methods employed take into

account nucleotide content bias. Identified statistically significant

over-represented motifs were compared with PFMs of known cis-

regulatory motifs from the TRANSFAC database (http://www.

biobase-international.com/pages/index.php?id = transfac) [71].

DiRE server for the identification of distant regulatory elements

of co-regulated genes (http://dire.dcode.org) was used for predic-

tion of transcription factor binding sites over-represented in

conserved synteny regions of PK genes predominantly expressed

in nervous tissue [39].

Formation of intermolecular mRNA-rRNA duplexes and

hybridization affinity of 59UTRs to ribosomal RNA were

evaluated with program Hybrid [62] under default parameters

using DG threshold of #217 kcal/mol [57]. Annotated dataset of

476 human miRNAs was extracted from Rfam database, release10

(http://microrna.sanger.ac.uk/sequences/index.shtml). For iden-

tification of potential miRNA target sites in 39UTRs, we calculated

hybridization affinity of miRNAs to 39UTRs using Hybrid

program and DG threshold of #217 kcal/mol, and used

predictions of RegRNA program (http://regrna.mbc.nctu.edu.

tw/). For identification of potential binding sites for neuron-

specific miRNAs in 39UTRs, we calculated hybridization affinity

of 39UTRs to annotated neuron-specific and brain-specific

miRNAs from Rfam database. We identified common invariant

oligonucleotides in 39UTRs. We required common fragments of

complementarity to be at least 6 nt long, since most identifies
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targets have conserved complementary seeds of 6–8 nucleotides.

We performed single-linking clustering of these targets using the

Histogram AC program [69].

Statistical analysis was performed using exact Fisher test,

Student’s t-test for normally distributed variables, Wilcoxon rank

sum test for unknown distributions.

Supporting Information

Table S1 PK-specific ESTs in GenBank originating from

different human organs. Differentially expressed PK genes.

Evolutionarily conserved motifs over-represented in promoter

regions and 59UTRs of high expression PK genes.

Found at: doi:10.1371/journal.pone.0003599.s001 (0.23 MB

XLS)

Table S2 Top 25 transcription factor binding sites over-

represented in evolutionarily conserved regions of PK genes

preferentially expressed in the nervous tissue.

Found at: doi:10.1371/journal.pone.0003599.s002 (0.04 MB

DOC)

Figure S1 Length of functional domains in the groups of

differentially expressed human and mouse PK genes. A. Length of

59-spacers, introns, and primary transcripts. B. Length of CDSs,

59UTRs and 39UTRs.

Found at: doi:10.1371/journal.pone.0003599.s003 (0.57 MB TIF)

Figure S2 Correlation between PK expression levels and rates of

non-synonymous human-mouse evolutionary divergence (Ka).

Gene expression levels were estimated as the number of gene-

specific ESTs in GenBank.

Found at: doi:10.1371/journal.pone.0003599.s004 (0.34 MB TIF)

Figure S3 Characteristic evolutionarily conserved motifs over-

represented in promoter regions of high expression PK genes.

Found at: doi:10.1371/journal.pone.0003599.s005 (1.38 MB TIF)

Figure S4 Profiles of nucleotide base pairing in PK transcripts

around the start codon (A) and the stop codon (B) with different

mRNA structural domains. Blue, nucleotides paired with the 59-

UTRs; red, nucleotides paired with the CDSs; green, nucleotides

paired with the 39-UTRs; black, total base paired nucleotides.

Found at: doi:10.1371/journal.pone.0003599.s006 (0.88 MB TIF)
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Abstract
Background: Biologically active sequence motifs often have positional preferences with respect
to a genomic landmark. For example, many known transcription factor binding sites (TFBSs) occur
within an interval [-300, 0] bases upstream of a transcription start site (TSS). Although some
programs for identifying sequence motifs exploit positional information, most of them model it only
implicitly and with ad hoc methods, making them unsuitable for general motif searches.

Results: A-GLAM, a user-friendly computer program for identifying sequence motifs, now
incorporates a Bayesian model systematically combining sequence and positional information. A-
GLAM's predictions with and without positional information were compared on two human TFBS
datasets, each containing sequences corresponding to the interval [-2000, 0] bases upstream of a
known TSS. A rigorous statistical analysis showed that positional information significantly improved
the prediction of sequence motifs, and an extensive cross-validation study showed that A-GLAM's
model was robust against mild misspecification of its parameters. As expected, when sequences in
the datasets were successively truncated to the intervals [-1000, 0], [-500, 0] and [-250, 0],
positional information aided motif prediction less and less, but never hurt it significantly.

Conclusion: Although sequence truncation is a viable strategy when searching for biologically
active motifs with a positional preference, a probabilistic model (used reasonably) generally
provides a superior and more robust strategy, particularly when the sequence motifs' positional
preferences are not well characterized.

Background
Transcription factor binding sites (TFBSs) provide a spe-
cific example of biologically functional sequence motifs
that sometimes have positional preferences. TFBSs con-
tribute substantially to the control of gene expression, and

because of their biological importance, much experimen-
tal effort has been expended in identifying them. Because
experimental identification is expensive, there are now
many computational tools that identify TFBSs as the sub-
sequences, or "motifs", common to a set of sequences.
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Most TFBSs correspond to short and imprecise motifs [1],
however, so all computational tools in a recent contest
performed rather poorly in identifying known TFBSs [2].

Although some tools have an ad hoc basis [3-5], other
tools have a basis in the calculus of probability, and can
therefore immediately and systematically combine
sequence with other sources of information. Most proba-
bilistic tools align candidate subsequences and convert
the nucleotide counts in the alignment columns into a
position-specific score matrix (PSSM). Most PSSMs are
based on the log ratio between a motif model and a back-
ground model. Tools then identify putative motifs by
maximizing the log ratio, usually with expectation maxi-
mization (EM) [6] or Gibbs sampling [7-9].

Experiments have shown, however, that besides common
sequence motifs, TFBSs also have positional preferences,
as illustrated in Figure 1. In yeast, TFBS positions demon-
strate a strong bias toward locations between 150 and 50
bases upstream of the TSS [10]. In E. coli, TFBS positions
tend to be located between 400 and 0 bases upstream of
the translation start site [11]. In the words of Wray et al.,
"for at least some regulatory elements, function constrains
their position with respect to the transcriptional start site"
(TSS) [1]. On the other hand, the trends regarding the
positional preferences of TFBSs appear inconsistent. Wray
et al. continue "for most transcription factors, however,
binding sites lack any obvious spatial restriction relative
to other feature of the locus" [1].

Some computational methods do exist to exploit the posi-
tional preferences of TFBSs. The first computational study
using positional preferences used an empirical prior dis-
tribution of known positional information with respect to
the translation start site from the E. coli genome [12]. This
simple method, however, is applicable only to very simple

organism like E. coli. Another computational study used
position to calculate p-values for candidate motifs that
formed a cluster [13]. The p-values were based on one par-
ticular database, however, and might not generalize relia-
bly. Moreover, the corresponding model is not a
probability model, making the systematic combination of
sequence and positional information problematic. Yet
another computational study modeled the positional
preferences of TFBSs with a uniform prior, only mention-
ing the possibility of a more informative prior [11]. A sys-
tematic computational study to find new TFBS motifs by
exploiting positional preferences applied a chi-square test
to bins of positions near TSSs [14]. The chi-square test
found one 8-letter word with significant positional prefer-
ences, the "Clus1" word, TCTCGCGA. The study's use of
binning probably reduced the power of statistical tests,
however. Shortly thereafter, in confirmation of the
reduced statistical power, a systematic study of a human
promoter dataset [15] identified 801 8-letter words with a
positional preferences with respect to the TSS [9]. Interest-
ingly, although 388 of the 801 words appeared in the
TRANSFAC database [16], 413 of the words did not, sug-
gesting that TFBS positional preferences were much more
pervasive than previously believed. A later study showed
that in eukaryotes the distribution of TFBSs was not uni-
form with respect to the TSS [17]. A study using chromatin
immunoprecipitation followed by DNA hybridization
(ChIP-Chip experiments) inferred TFBSs within sheared
DNA fragments by using prior probability distributions to
model positional preference [18]. The model was not
directed at identifying TFBSs by their positional prefer-
ences with respect to genomic landmarks, however.
Finally, a study applied a Poisson approximation to bins
of positions within promoters to identify TFBSs by their
positional preferences with respect to the TSS [19].

Several studies, therefore, have examined the positional
conservation of TFBSs. Consequently, TFBS positional
preferences are relatively well understood, particularly
when compared to most non-coding DNA. Very few com-
putational tools systematically combine positional prefer-
ence with sequence information, however, and to our
knowledge, no general-purpose computational tools
using positional information are currently available.
Standard tools like MEME [6], AlignACE [10], and Motif-
Sampler [20], e.g., do not use positional information.
Accordingly, this article evaluates the accuracy of predic-
tions from a Bayesian model combining sequence with
positional information, implemented in the newest ver-
sion of the tool A-GLAM [9]. We assessed predictions
from A-GLAM with and without the positional informa-
tion, using a standard dataset of sequences with known
TFBSs, and were therefore able to measure the contribu-
tion of positional information to TFBS prediction accu-
racy.

Positions of hypothetical TFBSs (gray boxes) with respect to the corresponding TSSFigure 1
Positions of hypothetical TFBSs (gray boxes) with 
respect to the corresponding TSS.
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Results
Results for the TSS Tompa dataset
The TSS Tompa dataset is one of two test datasets consid-
ered in this study and contains 23 data subsets (see Meth-
ods). Table 1 shows an anecdotal A-GLAM alignment
using positional information for the dataset 'hm08r' from
the TSS Tompa dataset, which contains 10 sequences of
length 2001. Run in its ZOOPS mode (Zero Or One Per
Sequence), A-GLAM returned candidate alignments with
only one or zero candidate site per sequence. In addition
to sequence conservation, the alignment shows positional
conservation within an interval of [-220, -1], much nar-
rower than the input interval, [-2000, 0] bp upstream of
the transcription start site (TSS). The alignment also over-
lapped several known sites (underlined in Table 1), with
a correlation coefficient of 0.574, indicating good overlap.

Table 1 does not show the corresponding alignment with-
out positional information, because its width was a bio-
logically unrealistic 126 bp long. The alignment showed
little positional conservation, with a range of [-2000, -
1237]. It also showed essentially no overlap with the
known sites, with a correlation coefficient of -0.012.

For TFBSs predicted without positional information, E-
values were immoderately small, even for incorrect pre-
dictions. (Some incorrect predictions even displayed a
numerical underflow E-value of 0, data not shown.) In
contrast, the E-values in Table 1 were quite moderate, per-
haps because they had to reconcile conflicting constraints
from different sources of information on the motifs.

Alignments for more data subsets can be found in Supple-
mentary Tables 1–6 [see Additional file 1]. We collected

alignments (with positional information) whose correla-
tion coefficient (CC) is larger than 0.08. The hm03r data
subset does not appear in Tables 1–6, despite a CC of
0.386, because the corresponding alignment had a biolog-
ically unrealistic width of 224 bp. Unrealistically large
alignment widths are much less common for alignments
with positional information than without. In Supplemen-
tary Tables 2–6, the alignments without positional infor-
mation are omitted because they show essentially no
overlap with known binding sites.

Table 2 summarizes results for all 23 TSS Tompa data sub-
sets. Some 18 out of the 23 datasets show improved pre-
dictions after adding positional information. Overall, the
combined correlation coefficient (CCC; see Methods) at
the bottom of Table 2 improved from -0.008 to 0.101. To
evaluate the statistical significance, let γ- and γ+ denote the
average correlation coefficient for each data subset with-
out and with positional information. A one-sample Wil-
coxon test against the one-sided null hypothesis γ- ≥ γ+
yielded a p-value of 0.002, supporting the alternative
hypothesis that γ- <γ+.

Results for TRANSFAC dataset
The TRANSFAC dataset contains 82 data subsets. Supple-
mentary Table 8 contains detailed results for the input
interval of [-2000, 0]. With the addition of positional
information, the CCC has improved from -0.009 to 0.027
with a p-value of 10-8 (Wilcoxon test as above). The CCC
for TRANSFAC dataset (0.027) is smaller than for TSS
Tompa dataset (0.101), and the positional information
makes a more significant change in the CCC for the
TRANSFAC dataset (p = 10-8) than for the TSS Tompa
dataset (p = 0.002), probably because the TRANSFAC
dataset contains 82 data subsets; the TSS Tompa dataset,
only 23. In the case of subtle differences, the larger
TRANSFAC dataset provides more evidence, leading to
smaller p-values.

Cross-validation using TSS Tompa dataset
Because we used known binding sites to estimate the
hyperparameters of the model (see Methods), one might
suspect over-fitting. Moreover, because the distribution of
locations might vary from one type of TFBS to another,
the proposed model might not be appropriate for the dis-
covery of unknown binding sites of different types of
TFBSs. Cross-validation addressed these issues (see Meth-
ods).

Over the 100 random partitions from TSS Tompa dataset,
the sample average of the CCC was 0.086; its sample
standard deviation, 0.027; its 90% confidence interval,
(0.049, 0.133); and its range, (0.029, 0.155). (The
TRANSFAC dataset was not used for 5-fold cross-valida-
tion because of amount of computation required.) The

Table 1: The A-GLAM output with positional information for 
'hm08r'.

Name Start Alignment End Score E-value

seq_0 -66 GTCACGGC -59 11.0093 6.65E-06
seq_2 -65 GTGACGTT -58 10.3315 2.30E-05
seq_3 -58 ATGACGTC -51 11.2688 2.94E-06
seq_5 -188 GTGACGTC -181 11.4594 1.28E-06
seq_7 -184 CTGACGAC -177 9.86871 4.64E-05
seq_9 -101 ATGACGTC -94 10.9283 8.09E-06
seq_10 -220 ATCACGGC -213 7.58906 3.78E-04
seq_11 -80 GTGACGTC -73 11.1306 4.75E-06
seq_12 -52 CTGACGGC -45 10.0764 3.50E-05
seq_14 -8 CTGATGTC -1 7.60515 3.69E-04

A-GLAM predicted TFBSs in 10 data subsets in the TSS Tompa data 
subset hm08r'. The column "Name" shows each data subset; the 
column "Alignment", the corresponding predicted TFBS. The start and 
end positions with respect to the corresponding TSS are shown in the 
columns "Start" and "End". The columns "Score" and "E-value" show 
bit scores and E-values that A-GLAM assigned to predicted TFBSs. 
The known binding sites in the alignment are underlined.
Page 3 of 11
(page number not for citation purposes)



BMC Bioinformatics 2008, 9:262 http://www.biomedcentral.com/1471-2105/9/262
CCC for the model using sequence information alone was
-0.008. Because the CCC for sequence alone lay outside
the range (0.029, 0.155) of the 100 CCCs using positional
information in the 5-fold cross-validation, positional
information improved prediction accuracy significantly.
The actual CCC for the model using both sequence and
positional information was 0.101 (see Table 2), well
within the 90% confidence interval from cross-validation.
The different types of known sites have quite diverse dis-
tributions (see Fig. 2), so we expect occasional misspecifi-
cation of hyperparameters η in our model (see Methods).
The 5-fold cross-validation shows, however, that classifi-
cation accuracy is not excessively sensitive to the hyperpa-
rameter estimation or, by extension, to the locations of
the known sites.

Truncation effect on sequences of test datasets
Figures 2 and 3 suggest that a truncated input sequence
interval of, say, [-500, 0] or [-250, 0] might incorporate
positional information as well as a Bayesian positional
model applied to the full interval [-2000, 0]. Accordingly,
in addition to the full interval [-2000, 0], we tested 3 trun-
cated intervals [-1000, 0], [-500, 0], and [-250, 0]. (See
Supplementary Table 7 and 8 for details.) The predictive
accuracy, as represented by the CCCs in Table 3, indicate

that truncation on its own, without any Bayesian posi-
tional modeling, improved the motif predictions. Moreo-
ver, predictive improvements due to modeling position
gradually disappeared as the truncation reduced the inter-
val to [-250, 0]. Note, however, that positional modeling
never significantly hurt the predictive accuracy, even with
truncated input sequences.

Discussion
The new version of the A-GLAM program ('anchored gap-
less local alignment of multiple sequences', written in
C++) [9,21] can incorporate positional information by
implementing the model from the Methods section in a
Gibbs sampler. A-GLAM already has several desirable fea-
tures when predicting transcription factor binding sites
(TFBSs). First, it optimizes motif width automatically,
without user input. Second, it reports theoretically accu-
rate E-values for candidate TFBSs. Finally, it implements a
theoretically sound context-dependent Markov back-
ground model, which yielded better predictions than dif-
ferent, ad hoc Markov background models or the
conventional background model of independent bases
[22]. With its Markov background model, a rigorous sta-
tistical evaluation showed that even before the addition of
positional information, A-GLAM's predictive accuracy was

Table 2: The correlation coefficients for the TSS Tompa data subsets

Data Subset Without positional information With positional information Improvement

hm01r -0.012 -0.007 0.005
hm02r -0.009 -0.007 0.002
hm03r -0.037 0.386 0.423
hm04r -0.008 -0.005 0.003
hm05r -0.031 -0.019 0.012
hm06r -0.014 0.156 0.170
hm07r -0.015 -0.015 -0.001
hm08r -0.012 0.574 0.586
hm09r -0.011 0.358 0.369
hm10r -0.019 0.083 0.102
hm11r -0.028 -0.012 0.016
hm13r -0.015 -0.016 -0.001
hm14r 0.204 -0.018 -0.222
hm15r -0.011 -0.012 -0.002
hm16r -0.011 -0.006 0.005
hm17r -0.015 -0.012 0.004
hm18r -0.018 0.094 0.112
hm19r -0.010 -0.007 0.003
hm20r -0.026 0.046 0.073
hm21r 0.401 0.384 -0.016
hm22r -0.020 -0.020 0.000
hm24r -0.016 -0.010 0.006
hm26r -0.016 0.099 0.115

Combined CC -0.008 0.101 0.109

Table 2 shows the correlation coefficients for A-GLAM's predictions on the 23 subsets of the TSS Tompa dataset. The column, "Improvement", 
quantifies the effect of positional information on predictions, by showing the difference between the correlation coefficients in the second and third 
columns, "Without Positional Information" and "With Positional Information".
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competitive with any state-of-the-art motif-finding tool
[22].

At the outset, we point out that all motif-finding tools
have had notorious difficultly with the original Tompa
dataset [2]. Our TSS Tompa test dataset is even more diffi-
cult than the original Tompa dataset. Its data subsets often
contained fewer sequences than the corresponding origi-

nal Tompa subset. Moreover, our sequences were on aver-
age longer than the corresponding original Tompa
sequence. Thus, conventional motif-finding tools should
perform more weakly on our TSS Tompa test dataset than
on the original Tompa dataset.

The Bayesian model in this paper combines sequence and
positional information to predict putative TFBSs. Its
implementation in A-GLAM permits users either to accept

Distribution of known locations of binding site in TSS Tompa datasetFigure 2
Distribution of known locations of binding site in TSS 
Tompa dataset. The x-axis is anchored on the TSS, 
denoted as location 0. All sequences in each test subset are 
collapsed into a single line; hence the 23 data subsets are 
shown as 23 different horizontal lines. Each data subset con-
tains TFBSs corresponding to a single specific transcription 
factor.
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Distribution of known locations of binding site in TRANS-FAC datasetFigure 3
Distribution of known locations of binding site in 
TRANSFAC dataset. The x-axis is anchored on the TSS, 
denoted as location 0. All sequences in each test subset are 
collapsed into a single line; hence the 82 data subsets are 
shown as 82 different horizontal lines. Each data subset con-
tains TFBSs corresponding to a single specific transcription 
factor.
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Table 3: The effect of truncating the sequence upstream of the TSS

Sequence range TSS Tompa Dataset TRANSFAC Dataset

Without positional info With positional info p-value Without positional info With positional info p-value

[-2000, 0] -0.008 0.101 0.002 -0.009 0.027 10-8

[-1000, 0] 0.086 0.098 0.583 0.050 0.066 0.112
[-500, 0] 0.125 0.133 0.338 0.077 0.078 0.070
[-250, 0] 0.139 0.139 0.054 0.094 0.076 0.603

The first column shows the sequence range upstream of the TSS given as input to A-GLAM. The change of CCC from modes with and without 
positional information for the TSS Tompa and TRANSFAC datasets is displayed in the corresponding groups of three columns. The third column of 
each group shows a Wilcoxon p-value, which evaluates the difference between the CCCs in the previous two columns. Because not all TFBSs in 
our datasets are known, small improvements in the CCC correspond to true improvements of unknown magnitude. In particular, e.g., in the Table, 
two CCC values rounded to 0.139 have unseen decimals different enough to have a p-value of 0.054. To view results for individual sites in the 
Tompa dataset, see Supplementary Table 7 [see Additional file 1].
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our default hyperparameters η for the prior distribution or
to select their own. Although complete flexibility in the
selection of hyperparameters can permit inappropriate or
excessively aggressive choices, extensive cross-validation
showed that the usual priors place mild restrictions on the
predictions, so the model is very robust against misspeci-
fication of its hyperparameters or, by extension, to the
locations of known sites. In other words, the prior does
not dictate the alignment; instead, it loosely guides the
alignment and permits the data to "speak for themselves".
If motifs do not cluster by position, A-GLAM might there-
fore still find motifs sharing sequence but not position.
We therefore make the following recommendation to
users: in the absence of a strong reason to the contrary,
they should accept A-GLAM's default hyperparameters.

To use positional information to find biologically active
sites, A-GLAM's positional model requires the input
sequences to be anchored on a genomic landmark, e.g., to
find TFBSs, the model might be anchored to TSSs. Because
a single gene might correspond to several alternative TSSs
[23], however, TSS multiplicity might initially appear to
cause problems. Moreover, the TSS itself can have either
"sharp" or "broad" positional preference within a pro-
moter [24]. Variability of the TSS position within a pro-
moter reduces the positional information available to A-
GLAM, possibly explaining the uneven improvement in
prediction across our data subsets. A-GLAM's statistical
model examines sequence as well as positional informa-
tion, however, so it retains robustness against a mild mis-
specification of the TSS, say, within a few hundred bases
of the true position, so alternative TSSs or TSSs with a typ-
ical broad positional distribution are unlikely to degrade
predictions seriously when positional information is
used. A-GLAM's users should note, however, if a TSS is
specified, e.g., a kilobase away from the relevant position,
positional information might severely distract A-GLAM
from finding the desired TFBSs. On the other hand, how-
ever, different positions relative to the TSS containing
exactly the same sequence have long been known to be
associated with different TFBS biological functions [25];
in other cases, they might also be associated with alterna-
tive TSSs or TSSs with a broad positional distribution. Up
to now, because computational studies of positional con-
trol of transcription have had to rely on ad hoc methods,
A-GLAM now has a unique potential among general
motif-prediction tools. Even if two functionally different
sets of TFBSs have similar motifs, A-GLAM can differenti-
ate them by position alone and report the two sets sepa-
rately. It would be very interesting if someone using A-
GLAM identified two sets of TFBSs of similar sequence
corresponding to two different functionalities or TSSs.

The sequences in our study used the upstream positions
from -2000 to 0 bp relative to the TSS to evaluate A-

GLAM's accuracy in predicting TSSs. Because our purpose
in this article was to evaluate A-GLAM's ability to find bio-
logically active sequence motifs in general, there is no sci-
entific reason not to use the 3' UTR region as a "genomic
anchor" to identify nearby regulatory elements. A similar
statement applies to any set of regulatory elements (e.g.,
TFBSs, miRNA binding sites, etc.) around any genomic
landmark (e.g., the TSS, the 3' UTR, etc.).

Indeed, if its main purpose was not evaluation of the pre-
dictive accuracy of A-GLAM's positional model, this article
could have restricted its input sequences to intervals
downstream of the TSS, e.g., [0, 1000] bp instead. With
the TSS still providing the genomic anchor, A-GLAM
could have searched for motifs associated with, e.g., 5'
UTRs or translation start sites, which are usually within a
few hundred base pairs downstream of a TSS. Thus, posi-
tional restrictions on the input sequence could focus A-
GLAM's search on sequence motifs with different biologi-
cal functions.

In practice, however, restricting the input interval requires
great care. Unlike the TFBSs in our test datasets, many
sequence motifs have poorly characterized distributions.
On one hand, excessively stringent truncation of the input
interval to, say, [-125, 0] would probably have removed
many TFBSs from consideration in our study. On the
other hand, positional modeling generally improved the
accuracy of motif prediction, never hurting it significantly,
even when input sequences were truncated. In the search
for novel sequence motifs, therefore, we recommend that
the use of Bayesian positional modeling on an input
sequence whose length is generous (but not too generous)
relative to the locations of known motifs.

Since the previous study showed that A-GLAM is one of
the top performers among existing tools for de novo TFBS
discovery [22], we believe that A-GLAM now easily out-
performs its competitors whenever positional informa-
tion is available and relevant. "Positional genomics"
exploits the information provided by genomic landmarks
(like the TSS), yielding a "poor man's alignment", even
when the precise sequence alignments are unavailable.
Given the power of comparative genomics, which
depends on accurate alignments, positional genomics
presents many interesting possibilities.

Conclusion
We proposed a Bayesian model for incorporating posi-
tional preference of TFBS with respect to a genomic land-
mark, e.g., a TSS. The results on our test datasets show that
a positional model can produce statistically significant
improvements in the accuracy of motif prediction. Our
cross-validation study shows that the prior distribution of
our positional model is robust against mild misspecifica-
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tion of its parameters. Our study of truncated input
sequences indicates that the positional model provides a
superior and more robust strategy than sequence trunca-
tion, especially when the positional preferences of
sequence motifs are not well characterized.

Availability
The A-GLAM program and all datasets relevant to this arti-
cle can be found online [26].

Project name: A-GLAM 2.1

Project home page: ftp://ftp.ncbi.nih.gov/pub/spouge/
papers/archive/AGLAM/2008-02-20/

Operating system: Linux

Programming language: C++

Licence: No license required.

Methods
The two test datasets
Our first test dataset was a subset of the "real" human
sequences in the "original Tompa dataset", from [2]. The
original Tompa dataset does not annotate any experimen-
tally verified TSS positions, which were supplied from the
Database of Transcription Start Sites (DBTSS) [27], as fol-
lows. BLAT [28] searched the DBTSS for hits to sequences
in the original Tompa dataset. The DBTSS is incomplete,
so when BLAT returned no hits in a sequence, the corre-
sponding sequence was discarded. After the BLAT search,
the dataset contained 26 data subsets, each composed of
human sequences with a known TSS, and each corre-
sponding to a single type of TFBS, like the original Tompa
data subsets. We then discarded data subsets with 0 or 1
sequences, resulting in our "TSS Tompa dataset", which
contained 23 data subsets. Each data subset contained
from 2 to 26 sequences, and each sequence contained any
number of known TFBSs, including 0. To encompass sys-
tematically all known TFBSs in the sequences, each
sequence was expanded to contain proximal promoter
regions from -2000 to 0 bp (upstream) relative to the cor-
responding TSS.

Our second test dataset was constructed from: (1) the lat-
est human genome build (NCBI Build 36, ftp://
ftp.ncbi.nih.gov/genomes/H_sapiens/); (2) transcrip-
tional start sites (TSS) from the database of transcription
start sites (DBTSS) [27]; and (3) experimentally character-
ized TFBSs from the TRANSFAC database (professional
version 11.2) [29]. Briefly, TSS and TRANSFAC sites were
mapped to the human genome using MegaBLAST [30],
yielding a set of proximal promoter DNA sequences
[15,31] annotated with experimentally characterized TSSs

and TFBSs. In this paper, the resulting sequences are called
our "TRANSFAC dataset". The TRANSFAC dataset con-
tains 82 data subsets, each subset containing 2 to 101
sequences, and each sequence containing at least one
instance of known TFBSs. Like the TSS Tompa data sub-
sets, each data subset corresponded to a single type of
TFBS. Like our TSS Tompa dataset, the range of TRANS-
FAC dataset is from -2000 to 0 bp (upstream) relative to
the corresponding TSS.

A standard measure of prediction accuracy, the correlation
coefficient, described elsewhere [22], evaluated TFBS pre-
dictions within our test dataset.

A Bayesian model for positional preferences
Our model for TFBSs uses two sources of information:
sequence and position. We discuss sequence later, to focus
on the novelties of position first.

Figure 2 displays the positions of all known TFBSs within
the data subsets of the TSS Tompa dataset. Figure 2 col-
lapses all sequences in each test subset into a single line
anchored at the TSS. Thus, the 23 lines represent the 23
data subsets. Figure 2 shows that the TFBSs in several data
subsets display positional preferences with respect to the
TSS. Many TFBSs are upstream of the TSS, possibly clus-
tered around certain positions. Accordingly, we search for
TFBS positions that are normally distributed, with
unknown center and dispersion, near the TSS. (Mathe-
matical convenience facilitates the choice of the normal
distribution.) Analogous to Figure 2, Figure 3 contains the
positions of all known TFBSs in the TRANSFAC dataset.
The TRANSFAC dataset displays the same basic distribu-
tional characteristics as the TSS Tompa dataset in Figure 2.

Fix a data subset in Figure 2 or 3, and assume it contains
some number n of unknown TFBSs with locations x1,...,xn

relative to the TSS. For later reference, let 

and  be the sample mean and

sample standard deviation. Assume x = (x1,...,xn) consti-

tute independent samples from a Normal (μ, λ) distribu-

tion, with mean μ and reciprocal variance (also known as

"precision") λ = 1/σ2. Given the normal parameters θ = (μ,

λ), the positions x have the likelihood function

Parenthetically, to avoid confusion, the sequence loca-
tions x1,...,xn are integers, but the use of continuous distri-
butions (e.g., the normal) as approximations simplifies
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the algebra enormously. Similarly, the locations x1,...,xn
might be confined to a finite interval (e.g., they might be
within a finite piece of DNA). The seemingly unrestricted
normal distribution remains appropriate, however,
because its rapidly vanishing squared exponential form
(as in Eq) effectively confines its samples to a finite inter-
val.

Now, let the normal parameters θ = (μ, λ) have a uniform-
gamma prior distribution, in which μ and λ have inde-
pendent prior distributions. The prior for μ is the contin-
uous Uniform [a, b] distribution on some closed interval
[a, b] (a <b), with constant density p(μ) = (b - a)-1 for μ ∈
[a, b]. The prior for λ is a Gamma(α, β) distribution with
parameters α, β > 0, with density

for λ ≥ 0. The uniform-gamma prior distribution for θ =
(μ, λ) therefore has the joint density function

for μ ∈ [a, b] and λ ≥ 0.

Practical suggestions for the numerical values of α and β
are given below.

Our aim is to provide a figure of merit for Gibbs sampling
based on the predictive distribution p(x) = ∫p(x|θ)p(θ)d∫ of
the locations x. Gibbs sampling conditions on the loca-
tions x = (x1,...,xn) to determine the conditional predictive
distribution of the location xn+1 = x of another TFBS (see
Eq (2) below). After extensive algebraic manipulation of
the relevant integrals, the conditional predictive distribu-
tion is

a Student t-distribution whose parameters are

, , and

The t-distribution has mean  for v > 1 and variance v(v

-2)-1σ2 for v > 2.

The result in Eq (2) ignores the restriction μ ∈ [a, b]. If [a,
b] covers most of the range [a', b'] of the locations x (e.g.,
a-3σ <a' <b' <b+3σ), then analysis will confirm that under
appropriate mathematical hypotheses, Eq (2) approxi-
mates the desired conditional predictive distribution
accurately.

The prior distribution is fully specified by a list of the
hyperparameters a, b, α, and β. As indicated above, any
sufficiently generous interval [a, b] containing the loca-
tions x suffices for present purposes. The input sequence
range (e.g., in the case of TSS Tompa's dataset as well as
TRANSFAC dataset, from -2000 to 0 bp relative to the cor-
responding TSS) is a practical choice for [a, b]. In contrast,
the selection of α and β can be delicate. On one hand, a
user can provide subjective preferences for α and β, yield-
ing a precision λ with mean αβ-1 and variance αβ-2. On the
other hand, α and β can be estimated from the distribu-
tions of experimentally verified TFBSs, as follows.

Suppose we have k data subsets, where the i-th data subset
(i = 1,...,k) yields a known vector xi of locations for a par-
ticular TFBS. Each data subset xi corresponds to a different
set of hyperparameters {θi = (μi, λi)}i = 1,...,k chosen from a
common uniform-gamma prior with unknown parame-
ters η = (α, β). The predictive distribution of the data is

Maximization of the predictive distribution yields the so-
called type-II maximum likelihood estimate for η = (α, β)
[32].

In this study, based on our two datasets, the type-II maxi-
mum likelihood estimate of α and β were selected. The
value of α was 0.8424; of β, 25790 for TSS Tompa dataset;
α, 0.5825, β, 12818, for TRANSFAC dataset. Thus, the dis-
tribution of the precision λ had mean 3.27 × 10-5 (4.54 ×
10-5, for TRANSFAC dataset), giving the scale parameter σ
= λ-1/2 an approximate mean 175 (148, for TRANSFAC
dataset). (The lengths of typical input sequences are sev-
eral hundreds to a couple of thousand, e.g., in our dataset,
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the lengths are all 2000.) Now, 95% of the realizations
from a Normal (μ, λ) distribution fall into the interval (μ-
2σ, μ+2σ) of length 4σ. Because 4σ = 4(175) = 700 (592,
for TRANSFAC dataset), the above selection of α and β
makes the prior distribution quite broad, permitting the
data "to speak for themselves".

Some comments on the distributional choices for the prior 
and likelihood
The normal distribution might be challenged as an inap-
propriate form for the likelihood. In most of the data sub-
sets in Figure 2 or3, it is completely justifiable, but does
appear untenable for a few. Although mathematical con-
venience facilitates the choice of a normal distribution,
one could propose alternative distributional forms, usu-
ally at the expense of greater complexity. The normal dis-
tribution is quite adequate, however, when modeling any
cluster lacking distant "orphan" locations.

Similarly, a uniform prior for the normal mean μ might be
challenged. In fact, we implemented the same model with
a normal-chi-square prior for θ = (μ, λ). In our hands,
both models produced comparable results on our test
dataset (data not shown).

Gibbs sampling using both sequence and position
As noted above, Gibbs sampling requires only conditional
predictive distributions. Because of the uniform prior for
μ, multiplying the conditional predictive distribution in
Eq (2) by (an ultimately irrelevant factor of) (b - a) yields
an approximation for the conditional predictive odds
ratio with respect to the uniform background model. Tak-
ing logarithms and adding subscripts for "location",
yields a log-odds score Δs [l] (x [l] | x [l]) for location.

Now, consider the sequence information. Let the n loca-
tions x [l] initiate subsequences x [s] of length w (for "win-
dow"). Let the count of nucleotide j in the i-th column of
the window be ci,j, so the total count in each position is c
= ∑(j)ci,j = n. As in the conditional predictive distribution
above, add another subsequence x [s] of length w to the
data. Let δ[i, j] equal 1 if the new subsequence contains
nucleotide j in its i-th position, and 0 otherwise. Our pre-
vious work [9] postulated a familiar model [7,8], that the
TFBS sequences follow a multinomial motif model with a
Dirichlet prior. In the prior, the nucleotide pseudo-counts
were {aj} (a = ∑(j)aj). The background model was the so-
called "independent letters model" with probabilities
{pj}. Effectively, our previous work gave the conditional
log-odds ratio of the subsequence x [s], given the subse-
quences x [s], as

If sequence and position are independent in both the
motif and background models, the corresponding condi-
tional predictive log-odds ratio is Δs(x | x) = Δs [s] = (x [s] |
x [s]) + Δs [l] (x [l] | x [1]). Conditional predictive log-odds
ratios can be added to generate the log-odds ratios for any
dataset x step by step. Thus, Eqs (2) and (3) completely
specify a predictive log-odds ratios for use as the figure of
merit in Gibbs sampling. The present article actually
replaces the independent letters model for the sequence
background with a Markov model of order 3 [22], but the
principles are the same.

Having established the separate roles of sequence and
location, we drop the subscripts [s] and [l] below, particu-
larly in xi, which now represents the sequence and loca-
tion of the i-th candidate TFBS.

A p-value for each candidate TFBS
For consistency with other computer programs (and
because it makes little practical difference), to calculate a
p-value for the i-th candidate TFBS xi, we consider the self-
predictive score Δs(xi | x), where x = (xi, ..., xi, xn) includes
xi. Because sequence and location are independent vari-
ates in both the motif and background models, the distri-
bution of Δs(xi |x) is a convolution, i.e.,

Existing methods [33,34] determine the distribution of Δs

[s], and the distribution of Δs [l] is known. Thus, a p-value
can be assigned to each candidate site.

k-fold cross-validation for sensitivity of hyperparameter 
selection
The k-fold cross-validation method estimates error rates in
classification problems accurately [35]. The k-fold cross-
validation splits the available data containing known clas-
sification labels into k mutually exclusive "partitions", so
that each partition contains about the same amount of
data. It then sets aside one of k partitions as the test set,
and uses remaining k - 1 partitions as a training set to esti-
mate the statistical parameters underlying the classifica-
tion rule. After repeating the estimation process k times,
leaving out each partition in turn, the average of the
resulting classification errors estimates the error rate of the
rule. The choice of 5 or 10 for k generally overcomes the
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effects of replicated data, which would otherwise render
the test and training data unduly similar [35]. In the
present context, known sites provide estimates of the
hyperparameters η = (α, β). In our study, cross-validation
with k = 5 partitions was most appropriate to address
over-fitting, because we have only 23 different datasets in
TSS Tompa dataset. To illustrate the 5-fold cross-valida-
tion, consider the partition 23 = 5 + 5 + 5 + 4 + 4. First, set
aside the first "5" of the 23 data subsets as the test set x1,
and estimate the hyperparameters η by maximizing the
value of p(x2,...,x5|η), where x2,...,x5 are the 18 = 5 + 5 + 4
+ 4 training sets. With the estimated hyperparameters η,
A-GLAM then makes predictions on the test set x1. The 5-
fold cross-validation then repeats the procedure, taking
each of the partitions x2,...,x5 in turn as the test set.

To eliminate the results' dependence on the partition, the
partition was chosen randomly 100 times, and the results
averaged.

A-GLAM Settings for the Test Predictions
To compare the model with positional information and
the model without positional information (i.e., using
sequence alone), we ran A-GLAM in the ZOOPS (Zero or
One Occurrence Per Sequence) mode, where A-GLAM
reports zero or one instance of the motif element for each
sequence. Somewhat arbitrarily, we restricted the search
space to the strands in the test dataset, without the com-
plementary strands.
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Abstract
Background: The majority of human non-protein-coding DNA is made up of repetitive sequences, mainly transposable
elements (TEs). It is becoming increasingly apparent that many of these repetitive DNA sequence elements encode gene
regulatory functions. This fact has important evolutionary implications, since repetitive DNA is the most dynamic part
of the genome. We set out to assess the evolutionary rate and pattern of experimentally characterized human
transcription factor binding sites (TFBS) that are derived from repetitive versus non-repetitive DNA to test whether
repeat-derived TFBS are in fact rapidly evolving. We also evaluated the position-specific patterns of variation among TFBS
to look for signs of functional constraint on TFBS derived from repetitive and non-repetitive DNA.

Results: We found numerous experimentally characterized TFBS in the human genome, 7–10% of all mapped sites,
which are derived from repetitive DNA sequences including simple sequence repeats (SSRs) and TEs. TE-derived TFBS
sequences are far less conserved between species than TFBS derived from SSRs and non-repetitive DNA. Despite their
rapid evolution, several lines of evidence indicate that TE-derived TFBS are functionally constrained. First of all, ancient
TE families, such as MIR and L2, are enriched for TFBS relative to younger families like Alu and L1. Secondly, functionally
important positions in TE-derived TFBS, specifically those residues thought to physically interact with their cognate
protein binding factors (TF), are more evolutionarily conserved than adjacent TFBS positions. Finally, TE-derived TFBS
show position-specific patterns of sequence variation that are highly distinct from random patterns and similar to the
variation seen for non-repeat derived sequences of the same TFBS.

Conclusion: The abundance of experimentally characterized human TFBS that are derived from repetitive DNA speaks
to the substantial regulatory effects that this class of sequence has on the human genome. The unique evolutionary
properties of repeat-derived TFBS are perhaps even more intriguing. TE-derived TFBS in particular, while clearly
functionally constrained, evolve extremely rapidly relative to non-repeat derived sites. Such rapidly evolving TFBS are
likely to confer species-specific regulatory phenotypes, i.e. divergent expression patterns, on the human evolutionary
lineage. This result has practical implications with respect to the widespread use of evolutionary conservation as a
surrogate for functionally relevant non-coding DNA. Most TE-derived TFBS would be missed using the kinds of sequence
conservation-based screens, such as phylogenetic footprinting, that are used to help characterize non-coding DNA. Thus,
the very TFBS that are most likely to yield human-specific characteristics will be neglected by the comparative genomic
techniques that are currently de rigeur for the identification of novel regulatory sites.
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Background
The vast majority of the human genome is made up of
non-protein-coding sequences [1,2], and the specific
function of such DNA is often unknown. As of late, eluci-
dating the functional relevance of the non-coding fraction
of the human genome has become a major priority for
computational and functional genomics [3].

Most of the non-protein-coding fraction of the human
genome is made up of repetitive DNA sequences, prima-
rily transposable elements (TEs), which alone make at
least 45% of the genome. In one sense, these TEs can be
considered as genomic parasites that exist solely by virtue
of their ability to out-replicate the host genome in which
they reside [4,5]. On the other hand, it has become abun-
dantly clear that, once established in a genome, TEs can
contribute to genome function in a number of different
ways [6]. For instance, TEs are known to donate a wide
variety of gene regulatory sequences to the human
genome [7-9], and TE-derived regulatory sequences exert
diversifying effects on the expression patterns of adjacent
genes (reviewed in [10-12]).

TE-derived regulatory sequences are particularly interest-
ing from an evolutionary perspective because of their
potential to drive gene expression divergence between
species. The potential for TEs to cause regulatory changes
between evolutionary lineages is related to the fact that
TEs invariably represent the most rapidly changing, line-
age-specific part of eukaryotic genomes. For instance,
when the human and mouse genomes sequences were
compared, it became apparent that 99% of protein coding
genes had human-mouse homologs, with 80% having
direct 1:1 orthologs, whereas only 13% of mouse and
48% of human TEs were shared between the two species
[13]. TE dynamics can even lead to substantial differences
between genomes over relatively short evolutionary time
scales. Indeed, the human evolutionary lineage has expe-
rience a TE-driven genome expansion of 500 Mb in the
last 50 million years and 30 Mb since the divergence from
chimpanzees [14].

Taken together with their ability to donate regulatory
sequences, this lineage-specific character of TEs suggests
that the regulatory elements they donate may lead to spe-
cies-specific differences in gene expression. In fact, a pri-
mate-specific endogenous retroviral element has been
shown to donate an enhancer that confers a distinct
parotid-specific expression pattern on the human amylase
gene [15]. A more recent genome scale analysis showed
that TE-derived human regulatory sites are associated with
genes that have increased tissue-specific expression diver-
gence between human and mouse [16]. A corollary pre-
diction of this model for the diversifying regulatory effects
of TEs is that TE-derived regulatory sequences will have

anomalously rapid evolutionary rates. Consistent with
this expectation, we previously found that TE-derived
human transcription factor binding sites (TFBS) are much
less likely to have orthologs in the mouse genome than
non-repetitive TFBS [17].

In this study, we set out to assess the relative evolutionary
rates and the position-specific patterns of variation for
human TFBS that are derived from repetitive versus non-
repetitive DNA. We relied on the analysis of experimen-
tally characterized TFBS that can be unambiguously
mapped to the human genome in order to determine their
evolutionary origins in repetitive or non-repetitive DNA.
Our results suggest that TE-derived TFBS show both rapid
evolution and, in some cases, anomalous position-spe-
cific patterns of change relative to non-repetitive TFBS.
Despite these distinct evolutionary characteristics, the TE-
derived TFBS do show sequence divergence patterns that
are consistent with the conservation of function.

Results and Discussion
Human TFBS from repetitive DNA
A total of 2,521 experimentally characterized human TFBS
were taken from the TRANSFAC database [18] and 1,810
of these were able to be precisely mapped to the latest
build of the human genome reference sequence. Mapping
of TFBS was done using the program site2genome, which
facilitates unambiguous mapping of TFBS by using the
longer flanking sequence context surrounding the rela-
tively short binding sites [19]. The genomic locations of
these human TFBS were compared to the locations of
repetitive DNA sequences identified with the RepeatMas-
ker program [20]. A total of 182 (10%) mapped human
TFBS are co-located with repetitive DNA elements, and
121 (6.7%) of these are contained completely within
repeats (Table 1). 62 of the TFBS derived completely from
repeat regions are associated with TEs, while 59 are
derived from simple sequence repeats (SSRs). SSRs are
short tandem repeats consisting of repeated runs of exact
or nearly exact k-mers, where k = 1–13 bp for microsat-
telites or k = 14–500 bp for minisatellites [1]. A lower per-
centage of the SSR co-located TFBS (57%) are found to
completely overlap with the repeats compared to TE-
derived TFBS (78%), suggesting that some of the SSR-
derived TFBS identified here may represent ascertainment
artifacts.

Human TEs can be characterized into specific classes/fam-
ilies, and the class/family-specific counts of TE-derived
TFBS are shown in Table 1. The observed distributions of
TE-derived TFBS across classes/families, relative to their
expected distributions based on the genome frequencies
of the TE classes/families, are shown in Figure 1. The
human genome has experienced a number of successive
waves of TE expansion, and accordingly, different TE fam-
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ilies have distinct evolutionary ages [1]. For short inter-
spersed nuclear elements (SINEs) and long interspersed
nuclear elements (LINEs), relatively older families, such
as MIR and L2, encode more TFBS than expected based on
their genome frequencies, while proportionally fewer
TFBS are derived from younger element families such as
Alu and L1. The relative enrichment of TFBS encoded by
older TE families is consistent with the action of purifying
selection based on their regulatory function. In other
words, these older elements are likely to have been pre-
served in the genome because of the regulatory sequences
that they provide as was predicted by Silva et al. [21].

Evolutionary sequence conservation of repeat-derived 
TFBS
Levels of evolutionary sequence conservation between 17
vertebrate species were compared for TFBS with origins in
repetitive versus non-repetitive DNA (Figure 2). TE-
derived TFBS are by far the least conserved of the three cat-
egories, followed by SSR-derived and then non-repetitive
TFBS. All differences between these categories are highly
statistically significant (110>t>19 0 = P < 9e-47). This pat-
tern of low sequence conservation for the TE-derived TFBS
is consistent with the prediction of our regulatory diver-
gence model that TEs are prone to provide rapidly evolv-
ing, lineage-specific TFBS.

Observed versus expected frequencies of TE-derived TFBSFigure 1
Observed versus expected frequencies of TE-derived 
TFBS. The observed percentages (light) of TE-derived TFBS 
from different classes/families of human TEs are plotted along 
with the percentages that are expected (dark) based on the 
background frequencies of the TEs in the genome. All class/
family percentages are relative, i.e. they are normalized by 
the total number of TEs that donate TFBS (observed) and the 
total number of TEs in the genome (expected) respectively.
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Table 1: Counts for human TFBS derived from repetitive DNA.

Category Total count Complete overlap Partial overlap

All repeats 182 121 61
All SSR 103 59 44
All TEs 79 62 17
Alu 20 19 1
MIR 16 10 6
L1 10 4 6
All other LINEs 10 8 2
LTR 14 14 0
DNA 9 7 2

The numbers of experimentally characterized TFBS mapped to different categories of human genome sequence are shown. Total counts are 
indicated along with counts for those cases where the TFBS completely or partially overlaps with the repeat.

Average evolutionary sequence conservation for repetitive versus non-repetitive TFBSFigure 2
Average evolutionary sequence conservation for 
repetitive versus non-repetitive TFBS. Average conser-
vation levels (± standard errors) are shown for TFBS that are 
derived from TEs, SSRs and non-repetitive DNA (NR). For 
each category, conservation levels were determined by aver-
aging across the entire TFBS site (red), the specific contact 
part of the site that is thought to physically interact with the 
transcription factor (blue) and the sequence context part of 
the site that does contact the transcription factor (green).
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Having shown the high levels of sequence divergence for
TE-derived TFBS, it is worth noting that evolutionary con-
servation is often taken as a measure of functional rele-
vance. For instance, the phylogenetic footprinting
approach identifies highly conserved regulatory
sequences as more likely to be functional [22,23]. While a
number of functionally relevant TE-derived sequences
have recently been identified by virtue of their sequence
conservation [24-28], the relatively unconserved TE-
derived TFBS revealed by our analysis would almost cer-
tainly be overlooked by phylogenetic footprinting meth-
ods. However, the TFBS that we analyzed were
experimentally characterized, not predicted, and are thus
quite likely to represent bona fide functional regulatory
elements. In fact, the analysis of the relative evolutionary
rates for different positions in the TFBS described below
demonstrates that the specific pattern of conservation
across sites supports the assertion that the TE-derived
TFBS are functional.

TRANSFAC annotations in the site table represent individ-
ual residues in TFBS with either upper-case or lower-case
letters. The upper-case residues correspond to specific
sequence motifs within the site that were emphasized by
the authors of the cited literature. We consider upper-case
residues to be more likely to form specific DNA-protein
contacts. Accordingly, the upper- and lower-case TRANS-
FAC annotations were used to partition TFBS residues into
putative 'contact' positions, which are thought to physi-
cally interact with transcription factors (TF), versus 'con-
text' positions that make up the rest of the site.
Presumably, putative contact positions are more function-
ally relevant than context positions, i.e. a change of
sequence at a contact position would have more of an
effect on TF binding than a change at a context position
would. If this is indeed the case, then according to the
phylogenetic footprinting rationale, contact positions
should be more conserved than context positions. This
prediction is confirmed for all three categories of TFBS
seen in Figure 2, and all differences between conservation
levels for contact versus context positions within catego-
ries are statistically significant (7.5>t>3.0 8.4e-11<P <
2.5e-3). In other words, although TE-derived TFBS do
evolve more rapidly than the other categories of TFBS, the
position-specific patterns of TE-TFBS sequence divergence
are nonetheless consistent with selective constraint based
on their regulatory function.

Evolutionary conservation rates for contact and context
positions were further broken down for the different
classes/families of TEs (Table 2). These data reveal several
noteworthy trends. There are substantial differences in the
level of conservation among classes and families. For
instance, it is not surprising that the evolutionarily young
Alu family of elements has the least conserved TFBS, and

the young L1 family is similarly less conserved than the
other older LINEs. One unexpected finding was the fact
that TFBS derived from the long terminal repeats (LTRs) of
endogenous retroviruses (ERVs) are the most conserved of
all TE-derived TFBS. This observation stands out because
ERVs are also evolutionarily young and not expected to be
conserved. When this finding is considered together with
the fact that LTRs are the only young class (or family) of
TEs that has more TFBS than expected based on their
genome frequencies (Figure 1), it suggest that LTRs may
be particularly prone to donating regulatory sequences to
the human genome. Indeed, LTRs are known to encode
strong promoters, and there are a number of known cases
where LTR-derived promoters control the expression of
adjacent genes [29-33].

Another relevant point from the class/family specific evo-
lutionary conservation data is the fact that the relative
rates of contact versus context TFBS position divergence
are consistent across all categories observed (Table 2). The
greater conservation of contact positions is seen for even
the least conserved Alu family (t = 4.76 P = 2.7e-6). This
indicates that the signal of functional constraint on TE-
derived TFBS holds irrespective of the age of the elements
from which the TFBS are derived, and serves as an inde-
pendent confirmation of the experimental evidence in
support of their identification.

Position-specific variation patterns for TE-derived TFBS
The results described in the previous section indicate that
TE-derived TFBS show a low level of evolutionary conser-
vation but a pattern of change that is consistent with their
functional relevance as gene regulators. We used a proba-
bilistic analysis of the position-specific patterns of
sequence variation across TFBS sites to better understand
the relative modes of evolution for non-repetitive versus

Table 2: Evolutionary sequence conservation of human TFBS.

Category Site Contact Context

Non-repetitive 0.407 ± 0.085 0.410 ± 0.074 0.400 ± 0.110
All repeats 0.115 ± 0.042 0.130 ± 0.041 0.088 ± 0.045
All SSR 0.170 ± 0.056 0.183 ± 0.052 0.145 ± 0.062
All TEs 0.047 ± 0.026 0.059 ± 0.026 0.028 ± 0.026
Alu 0.002 ± 0.002 0.003 ± 0.003 0.002 ± 0.001
MIR 0.028 ± 0.017 0.048 ± 0.026 0.003 ± 0.004
L1 0.068 ± 0.063 0.077 ± 0.068 0.047 ± 0.052
All other LINEs 0.066 ± 0.018 0.095 ± 0.022 0.012 ± 0.011
LTR 0.141 ± 0.076 0.145 ± 0.042 0.136 ± 0.119
DNA 0.043 ± 0.029 0.057 ± 0.038 0.016 ± 0.009

Average (± standard deviation) base-by-base conservation levels are 
shown for different categories, non-repetitive and repetitive, of 
human TFBS. TFBS derived from repetitive DNA are broken down 
SSR versus TE-derived, and TE-derived TFBS are divided into specific 
classes/families of elements. Base-by-base conservation levels were 
averaged separately across entire sites, and across contact versus 
context positions.
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TE-derived TFBS. To do this, position frequency matrices
(PFMs) were taken from the TRANSFAC database for five
TFBS where there was at least one TE-derived site in the
human genome along with multiple non-repetitive TFBS.
The PFMs summarize the collection of all experimentally
characterized instances of that TFBS in the genome by rep-
resenting the counts of each DNA residue (A, T, C or G) at
each site in the TFBS (Figure 3). The PFMs can in turn be
used to derive position weight matrices (PWMs), which
are probabilistic representations of the position-specific
nucleotide composition of the TFBS. The PWMs are repre-
sented as sequence logos [34], where the probabilities of
observing a given residue at positions along the TFBS are
indicated with the height of the residue symbols (Figure
3). We used these PWMs to score TE-derived versus non
TE-derived TFBS sequences in terms of how well their spe-
cific sequences match the probabilistic model represent-
ing all other experimentally characterized sequences of
that TFBS. The scoring was done using a 'leave-one-out'
approach whereby each TFBS was scored using a PFM that
does not include counts derived from the same TFBS. The
TE-derived and non TE-derived sequence scores were
compared to distributions of scores for three distinct sim-
ulated sets of 1,000 TFBS sequences. The first set of simu-
lated TFBS sequences – 'genome-random' – was built by
randomly drawing residues at each position of the TFBS
based on their genome frequencies. The second set –
'repeat-random' – was generated from randomly sampled
sequences, of the same length of the TFBS under consider-
ation, taken from members of the same TE subfamily as
the TE-derived TFBS being compared. Finally, the 'matrix-
random' set was simulated according to the position-spe-
cific probabilities of the PWM for that TFBS.

An example of this kind of analysis can be seen for an Alu-
derived TFBS (TRANSFAC site R08639) that sits just
upstream of the FOS-like antigen (FOSL1)-encoding gene
on human chromosome 11 (Figure 4). This TFBS was
identified by virtue of its interaction with the beta-cat-
enin-T cell-factor/lymphoid-enhancer-factor complex
(Tcf/Lef) [35]. In that same study [35], binding of Tcf/Lef
to FOSL1 and C-JUN was implicated in the progression of
colon carcinoma. Interestingly, both FOSL1 and C-JUN
are part of the AP-1 transcription complex suggesting that
this Alu-derived TFBS may be involved in a cascade of reg-
ulatory interactions.

The particular TRANSFAC PFM model that corresponds to
this Alu-derived site is M00671, and the binding factor for
this model is the T-cell-specific transcription factor 4
(TCF-4 aka TCF7L2). The PFM and derived PWM that cor-
respond to the M00671 model are shown in Figure 3. This
PWM was used to calculate scores for sets of genome-ran-
dom, repeat-random and matrix-random sequences (Fig-
ure 5A). The Alu-derived and the non-repetitive TFBS were

scored using PWMs built from M00671 PFMs that do not
include residue counts from the particular TFBS being
scored, i.e. using the leave-one-out method (Figure 5B). As
could be expected, the genome-random and repeat-ran-
dom simulated TFBS sequences have lower scores than do
the matrix-random simulated sequences (Mann-Whitney
U test P = 3.7e-5). What is more relevant is the fact that all
of the experimentally characterized TFBS have scores that
fall within the range of the matrix-simulated sequences
and are much higher than either the genome-random or
repeat-random scores (Table 3). This includes the Alu-
derived TFBS, which scores significantly higher than the
average scores for the genome-random and repeat-ran-
dom sites (Mann-Whitney U test P = 1.9e-3). In other
words, the Alu-derived TFBS has a position-specific DNA
sequence profile that much more closely resembles the
non TE-derived sites than it resembles random genomic
sequences or random Alu sequences of the same sub-
family. However, the Alu-derived site does have a lower
score than all of the other non TE-derived sites. This indi-
cates that there is still something unique about the TE-
derived site relative to the non TE-derived sites. Thus, the
position-specific profile of the Alu-derived TCF-4 binding
site shows the hallmark of being functionally active yet
retains a unique character relative to the non TE-derived
sites that bind the same factor. The four other sites ana-
lyzed here show similar patterns in that they are clearly
non-random, i.e. they score higher than the genome-ran-
dom and repeat-random sets, and thus appear to be func-
tional (Table 3). For the p53 matrix (M00761) Androgen
receptor matrix (M00962), the TE-derived sites score
lower than the non-repetitive sites; the two other cases
show TE-derived sites with higher average scores than the
non-repetitive sites. However, these differences are not
statistically significant, indicating that TE-derived TFBS
have position-specific profiles that are indistinguishable
from non-repetitive TFBS. This is consistent with the fact
that we started with experimentally characterized TFBS
and underscores the functional relevance, and similar
position-specific evolutionary constraints, of these TE-
derived TFBS.

Conclusion
There are numerous experimentally characterized TFBS in
the human genome (7–10%) that are derived from repet-
itive DNA indicating a pronounced effect of repetitive
DNA on human gene regulation. TFBS that originate from
repeats evolve more rapidly than non-repetitive TFBS but
still shown signs of sequence conservation on function-
ally critical residues due to purifying selection. Position-
specific patterns sequence variation observed for TE-
derived TFBS, in terms of the specific nucleotide composi-
tion along the positions of the TFBS, also point to diver-
gence in the face of functional constraint. These findings
are consistent with the notion that TFBS originating from
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Probabilistic modelling of TFBSFigure 3
Probabilistic modelling of TFBS. PFMs for five collections of human TFBS (Table 3) are shown along with sequence logo 
representations of their PWMs. Each PFM/PWM represents a human TFBS that has both TE-derived and non-repetitive exper-
imentally characterized sites in the genome. The TFBS are identified with their TRANSFAC matrix identifiers and the official 
human gene name symbol for the binding transcription factor proteins.
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repetitive DNA elements are likely to provide functionally
relevant regulatory divergence between species.

Methods
Experimentally characterized human transcription factor
binding sites (TFBS) were retrieved from the Professional
release 11.3 (9/10/07) of the TRANSFAC database [18].
These TFBS were mapped to the July 2003 human refer-
ence sequence [1] (National Center for Biotechnology
(NCBI) Build 34 or hg16) using the program site2genome
[19]. For many individual TFBS, TRANSFAC annotations
list GenBank accessions that provide longer flanking
sequence context for the relatively short TFBS contained
within the sequence. Site2genome uses this flanking
sequence context to allow for one-to-one TFBS-to-genome
mapping. Only TFBS that could be unambiguously
mapped to the human genome sequence (1,810 out of
2,521) were taken for further analysis, and these TFBS
mappings were transferred to the current human genome
build (NCBI Build 36 or hg18) using the UCSC Genome
Browser [36] 'liftover' utility. The locations of human
TFBS were compared to the locations of repetitive DNA,

transposable elements (TEs) and simple sequence repeats
(SSRs), annotated with the RepeatMasker program [20].

The evolutionary conservation levels for human TFBS
were determined based on complete genome sequence
alignments [37] between the human genome and 16
other vertebrate genomes [38]. These alignments have
been analyzed, along with the phylogenetic tree of the
species, by the program phastCons [39] to make predic-
tions of discrete conserved genomic elements and to pro-
duce conservation level scores for each position (base) in
the human genome. The base-by-base conservation level
scores range from 0 to 1 and represent the posterior prob-
ability of every individual position in the genome being in
a conserved element. Base-by-base conservation level
scores were taken across all positions of the mapped TFBS
and then averaged for the different categories compared in
Table 2 and Figure 2.

Individual TFBS were broken down into putative contact
and context positions using the TRANSFAC site table
annotations. In the site table, the TFBS sequences are rep-

An Alu-derived TFBS upstream of the FOSL1 encoding geneFigure 4
An Alu-derived TFBS upstream of the FOSL1 encoding gene. A schematic of the intron-exon structure of FOSL1, 
taken from the UCSC genome browser, is shown (blue) along with the positions of the repetitive DNA elements (black) at 
that locus. FOSL1 is encoded on the Crick strand of human chromosome 11. An Alu insertion (red) that donates a TCF-4 
binding sites is found just upstream of the FOSL1 5' untranslated region in the proximal promoter region. Summary statistics 
and a sequence alignment between the FOSL1 proximal promoter sequence and the AluJb subfamily consensus sequence are 
shown with the TFBS location indicated (entire site boxed in red, contact residues highlighted in yellow).
Page 7 of 10
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Table 3: Position-specific sequence variation scores for TE-derived, non-repetitive, matrix-random and genome-random TFBS.

Matrix
1

Protein binding factor2 TE-derived non-repetitive matrix-
rand

genome-rand repeat-rand

M00671 T-cell-specific transcription factor 4 (TCF-4 or 
TCF7L2)

4.25 5.69 ± 0.51 5.80 ± 0.73 -48.76 ± 15.61 -48.63 ± 14.97

M00761 p53 (TP53) 5.97 6.65 ± 1.26 5.52 ± 1.92 -2.79 ± 3.02 -4.71 ± 3.35
M00789 GATA binding proteins (GATA) 6.12 5.26 ± 1.56 5.27 ± 1.46 -5.87 ± 2.71 -4.70 ± 3.15
M00962 Androgen receptor (AR) 3.72 4.45 ± 1.21 4.33 ± 1.74 -2.29 ± 1.28 -1.80 ± 2.17
M01037 Glioma-associated oncogene homolog 1 (GLI1) 9.34 9.12 ± 1.14 9.24 ± 1.70 1.77 ± 2.83 -4.28 ± 2.91

Average TFBS scores are shown for each category of sites.
1The TRANSFAC database matrix identifier
2The colloquial name of the protein that binds the TFBS along with its official HUGO name in parentheses

Site-specific variation scores for TE-derived versus non-repetitive TFBSFigure 5
Site-specific variation scores for TE-derived versus non-repetitive TFBS. (A & C) Frequency distributions of scores 
for 1,000 simulated genome-random sequences (pink), repeat-random sequences (green) and matrix-random sequences (blue) 
for the M00671 matrix representing the TFBS bound by TCF-4 (A) and the M01037 matrix for TFBS bound by GLI1 (C). (B & 
D) The matrix-random score distributions are compared to the scores for individual TFBS derived from TEs (red) versus the 
non-repetitive TEs (gray). Data are shown for M00671 TCF-4 (B) and M01037 GLI1 (D).
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resented with upper-case and lower-case residues. The
upper-case TFBS residues correspond to specific sequence
motifs within the site that were emphasized by the
authors of the cited literature. We consider upper-case res-
idues to be more likely to form specific DNA-protein con-
tacts than lower case residues. Accordingly, the upper- and
lower-case TRANSFAC annotations were used to partition
TFBS residues into putative 'contact' positions, which are
thought to physically interact with transcription factors
(TF), versus 'context' positions. TFBS were also divided
into those derived from repetitive, TE and SSR, versus
non-repetitive classes and average conservation scores
were determined for each TFBS class over each residue
(contact and context) class. The statistical significance of
the differences between average evolutionary conserva-
tion levels was evaluated using the Students' t-test.

Analysis of the site-specific pattern of TFBS evolution was
done using probabilistic models of TFBS that were com-
puted based on a previously described protocol [40]. Posi-
tion frequency matrices (PFMs), which represent the
counts of each of the four DNA residues (A, T, C and G) in
each position of a TFBS model, were downloaded from
TRANSFAC 10.3. PFMs were converted into position-
weight matrices (PWMs), which represent the probability
(p) of observing each DNA residue (r) at each position (i)
in a TFBS according to the following formula:

where cr, i = counts of residue r at position i, sr is a pseudo-
count function = 1, and n = the total number of TFBS used
to build the model. These probabilities (pr, i) are normal-
ized by the background genome frequencies of the DNA
residues (pr) to compute weights (W):

Wr, i = pr, i/pr

The PWMs are represented as sequence logos [34], which
were built from the collections of TFBS sequences pro-
vided by the TRANSFAC matrix database, using the pro-
gram WebLogo [41]. PWMs were used in Monte-Carlo
simulation to build test sets of 1,000 TFBS sequences, the
so-called 'matrix-random' sequences. For this procedure,
DNA residues at each position of a TFBS were drawn at
random according the site-specific probabilities of its
PWM. 'Genome-random' simulated sets of 1,000 TFBS
were built by randomly drawing residues across site posi-
tions according to their background genome frequencies.
'Repeat-random' simulated sets of 1,000 TFBS were gener-
ated by randomly sampling sequences of the same length
of the matrix from members of the same repeat (TE) sub-
family that the particular TE-derived TFBS was derived.

The PWMs were used compute scores (S) individual
observed and simulated TFBS according to the formula:

where Wr, i = the weight of the observed residue r at posi-
tion i and n = the number of sites in the TFBS PWM. Indi-
vidual TFBS from the TRANSFAC site table were scored
using the leave-one-out method whereby matrix-specific
PFMs were iteratively built without residue counts from
the particular TFBS being scored. Scores (S) were com-
pared for individual TE-derived and non-repetitive TFBS
along with the score distributions for simulated sets of
matrix-random and genome-random sites.

Authors' contributions
IKJ and LM–R conceived of and designed the study and
performed computational analyses. LM–R and DL pro-
vided data used for the computational analyses. NP per-
formed computational analyses in the lab of JFMcD. IKJ
drafted the manuscript. All authors read and approved of
the manuscript.

Acknowledgements
IKJ was supported by the School of Biology at the Georgia Institute of Tech-
nology. LM–R and DL were supported by the Intramural Research Program 
of the National Center for Biotechnology Information, National Library of 
Medicine at the National Institutes of Health. JFMcD and NP were sup-
ported by a grant from the Georgia Tech Research Foundation.

References
1. Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC, Baldwin J,

Devon K, Dewar K, Doyle M, FitzHugh W, et al.: Initial sequencing
and analysis of the human genome.  Nature 2001,
409(6822):860-921.

2. Venter JC, Adams MD, Myers EW, Li PW, Mural RJ, Sutton GG, Smith
HO, Yandell M, Evans CA, Holt RA, et al.: The sequence of the
human genome.  Science 2001, 291(5507):1304-1351.

3. Consortium EP: The ENCODE (ENCyclopedia Of DNA Ele-
ments) Project.  Science 2004, 306(5696):636-640.

4. Doolittle WF, Sapienza C: Selfish genes, the phenotype para-
digm and genome evolution.  Nature 1980, 284(5757):601-603.

5. Orgel LE, Crick FH: Selfish DNA: the ultimate parasite.  Nature
1980, 284(5757):604-607.

6. Kidwell MG, Lisch DR: Perspective: transposable elements,
parasitic DNA, and genome evolution.  Evolution Int J Org Evolu-
tion 2001, 55(1):1-24.

7. Jordan IK, Rogozin IB, Glazko GV, Koonin EV: Origin of a substan-
tial fraction of human regulatory sequences from transposa-
ble elements.  Trends Genet 2003, 19(2):68-72.

8. Thornburg BG, Gotea V, Makalowski W: Transposable elements
as a significant source of transcription regulating signals.
Gene 2006, 365:104-110.

9. Lagemaat LN van de, Landry JR, Mager DL, Medstrand P: Transpos-
able elements in mammals promote regulatory variation
and diversification of genes with specialized functions.  Trends
Genet 2003, 19(10):530-536.

10. Britten RJ: DNA sequence insertion and evolutionary varia-
tion in gene regulation.  Proc Natl Acad Sci USA 1996,
93(18):9374-9377.

11. Britten RJ: Mobile elements inserted in the distant past have
taken on important functions.  Gene 1997, 205(1–2):177-182.

12. Medstrand P, Lagemaat LN van de, Dunn CA, Landry JR, Svenback D,
Mager DL: Impact of transposable elements on the evolution

p
cr i sr
n sr

r i,
,

*
=

+
+4

S Wr i

i

n

=
=
∑ ln ,

1

Page 9 of 10
(page number not for citation purposes)

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11237011
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11237011
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11181995
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11181995
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15499007
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15499007
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=6245369
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=6245369
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7366731
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11263730
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11263730
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12547512
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12547512
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12547512
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16376497
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16376497
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14550626
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14550626
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14550626
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8790336
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8790336
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9461392
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9461392
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16093686


BMC Genomics 2008, 9:226 http://www.biomedcentral.com/1471-2164/9/226
Publish with BioMed Central   and  every 
scientist can read your work free of charge

"BioMed Central will be the most significant development for 
disseminating the results of biomedical research in our lifetime."

Sir Paul Nurse, Cancer Research UK

Your research papers will be:

available free of charge to the entire biomedical community

peer reviewed and published immediately upon acceptance

cited in PubMed and archived on PubMed Central 

yours — you keep the copyright

Submit your manuscript here:
http://www.biomedcentral.com/info/publishing_adv.asp

BioMedcentral

of mammalian gene regulation.  Cytogenet Genome Res 2005,
110(1–4):342-352.

13. Waterston RH, Lindblad-Toh K, Birney E, Rogers J, Abril JF, Agarwal
P, Agarwala R, Ainscough R, Alexandersson M, An P, et al.: Initial
sequencing and comparative analysis of the mouse genome.
Nature 2002, 420(6915):520-562.

14. Liu G, Zhao S, Bailey JA, Sahinalp SC, Alkan C, Tuzun E, Green ED,
Eichler EE: Analysis of primate genomic variation reveals a
repeat-driven expansion of the human genome.  Genome
research 2003, 13(3):358-368.

15. Samuelson LC, Wiebauer K, Snow CM, Meisler MH: Retroviral and
pseudogene insertion sites reveal the lineage of human sali-
vary and pancreatic amylase genes from a single gene during
primate evolution.  Mol Cell Biol 1990, 10(6):2513-2520.

16. Marino-Ramirez L, Jordan IK: Transposable element derived
DNaseI-hypersensitive sites in the human genome.  Biol Direct
2006, 1:20.

17. Marino-Ramirez L, Lewis KC, Landsman D, Jordan IK: Transposable
elements donate lineage-specific regulatory sequences to
host genomes.  Cytogenet Genome Res 2005, 110(1–4):333-341.

18. Matys V, Fricke E, Geffers R, Gossling E, Haubrock M, Hehl R, Hor-
nischer K, Karas D, Kel AE, Kel-Margoulis OV, et al.: TRANSFAC:
transcriptional regulation, from patterns to profiles.  Nucleic
Acids Res 2003, 31(1):374-378.

19. Frith MC, Halees AS, Hansen U, Weng Z: Site2genome: locating
short DNA sequences in whole genomes.  Bioinformatics 2004,
20(9):1468-1469.

20. RepeatMasker   [http://www.repeatmasker.org/]
21. Silva JC, Shabalina SA, Harris DG, Spouge JL, Kondrashovi AS: Con-

served fragments of transposable elements in intergenic
regions: evidence for widespread recruitment of MIR- and
L2-derived sequences within the mouse and human
genomes.  Genet Res 2003, 82(1):1-18.

22. Gumucio DL, Heilstedt-Williamson H, Gray TA, Tarle SA, Shelton
DA, Tagle DA, Slightom JL, Goodman M, Collins FS: Phylogenetic
footprinting reveals a nuclear protein which binds to silencer
sequences in the human gamma and epsilon globin genes.
Mol Cell Biol 1992, 12(11):4919-4929.

23. Zhang Z, Gerstein M: Of mice and men: phylogenetic footprint-
ing aids the discovery of regulatory elements.  J Biol 2003,
2(2):11.

24. Bejerano G, Lowe CB, Ahituv N, King B, Siepel A, Salama SR, Rubin
EM, Kent WJ, Haussler D: A distal enhancer and an ultracon-
served exon are derived from a novel retroposon.  Nature
2006, 441(7089):87-90.

25. Kamal M, Xie X, Lander ES: A large family of ancient repeat ele-
ments in the human genome is under strong selection.  Proc
Natl Acad Sci USA 2006, 103(8):2740-2745.

26. Lowe CB, Bejerano G, Haussler D: Thousands of human mobile
element fragments undergo strong purifying selection near
developmental genes.  Proc Natl Acad Sci USA 2007,
104(19):8005-8010.

27. Nishihara H, Smit AF, Okada N: Functional noncoding sequences
derived from SINEs in the mammalian genome.  Genome
research 2006, 16(7):864-874.

28. Xie X, Kamal M, Lander ES: A family of conserved noncoding
elements derived from an ancient transposable element.
Proc Natl Acad Sci USA 2006, 103(31):11659-11664.

29. Bannert N, Kurth R: Retroelements and the human genome:
new perspectives on an old relation.  Proc Natl Acad Sci USA 2004,
101(Suppl 2):14572-14579.

30. Dunn CA, Medstrand P, Mager DL: An endogenous retroviral
long terminal repeat is the dominant promoter for human
beta1,3-galactosyltransferase 5 in the colon.  Proc Natl Acad Sci
USA 2003, 100(22):12841-12846.

31. Dunn CA, Romanish MT, Gutierrez LE, Lagemaat LN van de, Mager
DL: Transcription of two human genes from a bidirectional
endogenous retrovirus promoter.  Gene 2006, 366(2):335-342.

32. Romanish MT, Lock WM, Lagemaat LN van de, Dunn CA, Mager DL:
Repeated recruitment of LTR retrotransposons as promot-
ers by the anti-apoptotic locus NAIP during mammalian
evolution.  PLoS Genet 2007, 3(1):e10.

33. Wang T, Zeng J, Lowe CB, Sellers RG, Salama SR, Yang M, Burgess
SM, Brachmann RK, Haussler D: Species-specific endogenous
retroviruses shape the transcriptional network of the human

tumor suppressor protein p53.  Proc Natl Acad Sci USA 2007,
104(47):18613-18618.

34. Schneider TD, Stephens RM: Sequence logos: a new way to dis-
play consensus sequences.  Nucleic Acids Res 1990,
18(20):6097-6100.

35. Mann B, Gelos M, Siedow A, Hanski ML, Gratchev A, Ilyas M, Bodmer
WF, Moyer MP, Riecken EO, Buhr HJ, et al.: Target genes of beta-
catenin-T cell-factor/lymphoid-enhancer-factor signaling in
human colorectal carcinomas.  Proc Natl Acad Sci USA 1999,
96(4):1603-1608.

36. Kent WJ, Sugnet CW, Furey TS, Roskin KM, Pringle TH, Zahler AM,
Haussler D: The human genome browser at UCSC.  Genome
research 2002, 12(6):996-1006.

37. Blanchette M, Kent WJ, Riemer C, Elnitski L, Smit AF, Roskin KM,
Baertsch R, Rosenbloom K, Clawson H, Green ED, et al.: Aligning
multiple genomic sequences with the threaded blockset
aligner.  Genome research 2004, 14(4):708-715.

38. Vertebrate Multiz Alignment & Conservation (17 Species)
[http://www.genome.ucsc.edu/cgi-bin/
hgTrackUi?hgsid=100603286&c=chrX&g=multiz17way]

39. Siepel A, Bejerano G, Pedersen JS, Hinrichs AS, Hou M, Rosenbloom
K, Clawson H, Spieth J, Hillier LW, Richards S, et al.: Evolutionarily
conserved elements in vertebrate, insect, worm, and yeast
genomes.  Genome research 2005, 15(8):1034-1050.

40. Wasserman WW, Sandelin A: Applied bioinformatics for the
identification of regulatory elements.  Nat Rev Genet 2004,
5(4):276-287.

41. Crooks GE, Hon G, Chandonia JM, Brenner SE: WebLogo: a
sequence logo generator.  Genome research 2004,
14(6):1188-1190.
Page 10 of 10
(page number not for citation purposes)

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16093686
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12466850
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12466850
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12618366
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12618366
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1692956
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1692956
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1692956
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16857058
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16857058
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16093685
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16093685
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16093685
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12520026
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12520026
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14962939
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14962939
http://www.repeatmasker.org/
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14621267
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14621267
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14621267
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1406669
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1406669
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12814519
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12814519
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16625209
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16625209
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16477033
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16477033
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17463089
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17463089
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17463089
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16717141
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16717141
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16864796
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16864796
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15310846
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15310846
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14534330
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14534330
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14534330
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16288839
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16288839
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17222062
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17222062
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17222062
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18003932
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18003932
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18003932
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2172928
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2172928
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9990071
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9990071
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9990071
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12045153
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15060014
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15060014
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15060014
http://www.genome.ucsc.edu/cgi-bin/hgTrackUi?hgsid=100603286&c=chrX&g=multiz17way
http://www.genome.ucsc.edu/cgi-bin/hgTrackUi?hgsid=100603286&c=chrX&g=multiz17way
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16024819
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16024819
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16024819
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15131651
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15131651
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15173120
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15173120
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/publishing_adv.asp
http://www.biomedcentral.com/


Published online 26 March 2008 Nucleic Acids Research, 2008, Vol. 36, No. 8 2777–2786
doi:10.1093/nar/gkn137

The biological function of some human transcription
factor binding motifs varies with position relative to
the transcription start site
Kannan Tharakaraman1, Olivier Bodenreider2, David Landsman1,

John L. Spouge1 and Leonardo Mariño-Ramı́rez1,*

1Computational Biology Branch, National Center for Biotechnology Information and 2National Library of Medicine,
National Institutes of Health, 8600 Rockville Pike, MSC 6075 Bethesda, MD 20894-6075, USA

Received February 14, 2008; Revised March 11, 2008; Accepted March 12, 2008

ABSTRACT

A number of previous studies have predicted tran-
scription factor binding sites (TFBSs) by exploiting
the position of genomic landmarks like the transcrip-
tional start site (TSS). The studies’ methods are
generally too computationally intensive for genome-
scale investigation, so the full potential of ‘positional
regulomics’ to discover TFBSs and determine their
function remains unknown. Because databases
often annotate the genomic landmarks in DNA
sequences, the methodical exploitation of positional
regulomics has become increasingly urgent.
Accordingly, we examined a set of 7914 human
putative promoter regions (PPRs) with a known
TSS. Our methods identified 1226 eight-letter DNA
words with significant positional preferences with
respect to the TSS, of which only 608 of the 1226
words matched known TFBSs. Many groups of genes
whose PPRs contained a common word displayed
similar expression profiles and related biological
functions, however. Most interestingly, our results
included 78 words, each of which clustered signifi-
cantly in two or three different positions relative to
the TSS. Often, the gene groups corresponding to
different positional clusters of the same word
corresponded to diverse functions, e.g. activation
or repression in different tissues. Thus, different
clusters of the same word likely reflect the phenom-
enon of ‘positional regulation’, i.e. a word’s regula-
tory function can vary with its position relative to a
genomic landmark, a conclusion inaccessible to
methods based purely on sequence. Further inte-
grative analysis of words co-occurring in PPRs also
yielded 24 different groups of genes, likely identifying

cis-regulatory modules de novo. Whereas compara-
tive genomics requires precise sequence align-
ments, positional regulomics exploits genomic
landmarks to provide a ‘poor man’s alignment’. By
exploiting the phenomenon of positional regulation,
it uses position to differentiate the biological func-
tions of subsets of TFBSs sharing a common
sequence motif.

INTRODUCTION

In the postgenomic era, the identification of signals
regulating transcription remains an outstanding problem
(1,2). The problem has frustrated standard methods in
computational sequence analysis, and experiments still
provide one of the few consistently reliable sources of
information about transcriptional signals (3). Even simple
cis-regulatory transcription-binding sites (TFBSs) have
proved notoriously difficult to identify de novo, because
they usually correspond to short, degenerate motifs whose
sequence information is insufficient on its own for
dependable predictions. In particular, sequence analysis
alone is generally unable to address the information that
higher-order chromatin structure contributes to gene
regulation (4).
Consider, however, a transcriptional complex anchored

on a transcription start site (TSS). Each transcription
factor (TF) within the complex occupies a particular
position. Thus, if a TF interacts with a TFBS, the TFBS
probably is constrained positionally with respect to the
TSS. Moreover, as classic experiments on the lambda
repressor and its operator-binding sites showed, by
occupying TFBSs in different positions, a single TF can
assume different biological functions (5). Rather like a
receptor antagonist occupying a binding site, a TFBS
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corresponding to the TF might activate in one position
relative to the TSS, but repress in another. Because of
position, therefore, a single TFBS motif might regulate
gene expression in a tissue- or temporal stage-specific
manner (or both). Positional regulation of function
generalizes obviously and broadly, to regulatory elements
and genomic landmarks other than TFBSs and TSSs.
In the presence of positional regulation, sequence alone

would be insufficient to predict TFBS function.
Fortunately, many modern databases annotate their
sequences. Consequently, where the traditional conference
slide in computational biology once displayed an endless
sea of letters, it should now display letters punctuated
regularly by genomic landmarks like the TSS, exon
boundaries, etc. Presently, genomic investigations are
not exploiting the position of annotated landmarks as
much as they might.
Positional regulomics therefore holds promise, but it

requires in hand a rich source of interesting regulatory
positions. With regard to TFBSs, some computational
studies have examined position (6–10), but few new
putative motifs emerged. In contrast, our previous work
discovered 791 eight-letter DNA words displaying posi-
tional preferences with respect to the TSS (11). To
summarize the work, the Database of Transcription
Start Sites (DBTSS) contained many human TSSs
determined from oligo-capping experiments (12–14).
False positive TSSs were eliminated by precise transcript
mapping, yielding a database of 4737 putative promoter
regions (PPRs) containing positions �2000 to þ1000 bp
relative to the corresponding TSS (15). For each of the 48

eight-letter DNA words, a local maximum statistic
(similar to the BLAST statistic) assessed the word’s
positional preferences with respect to the TSS (11). After
multiplying by 48 to correct for multiple testing, the
analysis yielded 791 statistically significant words
(P� 0.05). Of the 791 words, 388 had perfect matches in
TRANSFAC database (16), an event with a P-value
of 4� 10�42. The biological function of the other 413 of
the 791 words remained unidentified, but suggested the
potential of positional regulomics to discover unknown
sequence elements and their function.
To give an overview of the present study, with recent TSS

data (17), the PPR dataset now contains 7914 sequences
(see theMethods section). Within the new PPR dataset, the
local maximum statistic identified words w displaying
positional preferences with respect to the TSS. (To avoid
unnecessary repetition of the phrase ‘with respect to the
TSS’, all bp coordinates and positions below refer
implicitly to the corresponding TSS, unless stated other-
wise.) Each statistically significant positional preference
yielded a ‘cluster’ of positions containing the correspond-
ing word w, and each of the clusters corresponded to a
group of genes (‘gene group’). Occasionally, a single word
w corresponded to more than one cluster, hinting at
the possibility of a TFBS under positional regulation,
and rendering such words particularly interesting to us.
Two external sources of information implicated the

positional clusters in the co-regulation of the correspond-
ing gene group. First, quantitative functional relationships
were determined using a semantic similarity method (18)

based on the Gene Ontology (GO) annotation. The
functional analysis suggested that many individual gene
groups had a common biological function. Second, the
microarray experiments in the GNF Atlas 2 (19) suggested
that many individual gene groups identified here were
co-expressed across multiple tissues. In addition to
validating the biological functionality of words and
helping to classify the corresponding putative TFBS, the
two sources of information permitted us to formulate
some novel biological hypotheses. In accord with the
notion of positional regulation, our analysis sometimes
linked different tissues to specific positions of a word, to
our knowledge yielding the first computational evidence
that a TFBS’s position can influence the tissue-specificity
of its regulatory functions. Furthermore, in accord with
the analogy to receptor antagonists, our analysis some-
times linked different levels of activation or repression
of the same gene group in different tissues to specific
positions of a word. Thus, it is not an isolated
phenomenon in human gene regulation, that the position
of a TFBS influences its function in a regulatory module.

METHODS

The PPR database

Recently, (17) determined new TSSs with about 1.8
million 50-end clones of full-length human cDNAs,
extending the DBTSS. DBTSS yielded 30 924 TSSs for
14 628 RefSeq (20) human genes, indicating that many
genes have alternative TSSs. The PPR database was
constructed using every TSS within �1000 bp of the start
of an annotated RefSeq transcript for annotated genes. If
several TSSs were within �1000 bp of the same RefSeq 50

end, the closest TSS was used. The corresponding PPRs
in DBTSS were aligned to the human genome (NCBI,
build 36). Each PPR that mapped unambiguously was
extended to include from �2000 to þ1000 bp relative to
the TSS (which was at 0 bp), as in our previous study (11).
The final PPR database contained 7914 sequences. An
ungapped block alignment then anchored the PPRs,
placing all TSSs in a single column. Supplementary
Figure S1 shows systematic variations in base composition
over the alignment columns, confirming that the anchored
alignment generally placed the TSSs correctly.

Our previous study describes in detail the remaining
procedures, applied to every one of the 48 eight-letter
DNA words. For each word and for each PPR, one
instance of the word was chosen uniformly at random,
and the remaining instances masked. At the end of the
masking procedure, each PPR contained at most one
unmasked instance of the word, in a random position. The
unmasked instances in each column of the block align-
ment were counted, and a local maximum statistic (similar
to the gapless BLAST statistic) assessed whether the
unmasked instances of the word were unusually clustered
by columns within the block alignment (see Supple-
mentary data—Section 1.1). The randomized masking
step reduces the density of ubiquitous repetitive elements
or low complexity regions (e.g. poly A, poly T), which are
biologically uninteresting in the present context but which
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tend to be statistically significant without masking. Our
study examined clusters with a significant local maximum
statistic, a ‘cluster’ being simply a statistically significant
set of positions within certain PPRs.

Pairwise correlation coefficient for microarray data

Given the set of n=74 tissue-specific microarray expres-
sion values (Xi,Yi) for two genes g1 and g2, the
corresponding Pearson correlation coefficient is

r ¼

Pn
i¼1 Xi � �X
� �

Yi � �Y
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1 Xi � �X
� �2Pn

i¼1 Yi � �Y
� �2q : 1

Pairwise correlation coefficient for significant words

Each significant word W provided a pairwise similarity
corresponding to TFs in TRANSFAC (16), as follows.

We used 522 count matrices from TRANSFAC
Professional 11.1, many of which represent the same or
similar factors. To make the set nonredundant, we skipped
all nonvertebrate matrices, and if a family of related
factors shared a single matrix, the matrix appeared once,
to represent the entire family. For each of the 145
nonredundant count matrices remaining, the standard
log-likelihood ratio yielded a PSSM as follows: Let pn
represent the background probability of nucleotide
n2 {a, c, g, t} in the 7914 PPRs. Let cn,k represent the
count of nucleotide n in column k. Then, the score for
nucleotide i at column k is

s
n, k
¼ ln

cn, k þ an
cþ a

� �
=p

n

� �
, 2

where c=�n2 {a,c,g,t} cn,k is the total number of counts,
which is independent of the column k (being the total
number of TFBSs in TRANSFAC corresponding to the
TF in question,); an is the pseudo-count, which regularizes
count matrices based only on a few TFBSs; and
�=�n2 {a,c,g,t} �n. As in previous studies (11), we took
an=1.5� pn.

With the 145 nonredundant PSSMs in hand, we
calculated match scores for each word W and PSSM M,
as follows: Each PSSM was padded with eight columns of
0s on each side. As above, let sn,k denote the score for of
nucleotide n in column k, where k ¼ �8, . . . , � 1, 0, . . . ,
j� 1, j, . . . , jþ 7, the columns k=0, . . . , j �1 being from
the original PSSM. The wordW=W(0), . . . ,W(7) receives
a maximum score

SM,W ¼ maxi¼0,..., jþ7
X7

a¼0

sW að Þ, i�8þa: 3

The summed score on the right of Equation (3) can
be related to the binding energy of the TF for the putative
TFBSs (21). The maximum score SM,W is the best
summed score that the word W receives in any offset
against PSSM M.

With the maximum scores SM,W in hand, we calculated
empirical P-values for each word W from our significant

clusters, as follows. For each PSSM M, all eight-letter
words yielded 65 536 maximum scores SM,W against the
PSSM. For any word W, consider the corresponding
maximum score SM,W. The empirical P-value pM,W for
the sequence W against the PSSM M is the fraction of the
8-mers that have a maximum score higher than SM,W. The
complement 1�PM,W of the P-value then should increase
with the binding energy for the word W and the TF
generating the PSSM M. The complement 1�PM,W is
also normalized between 0 and 1.
Now, let i=1, . . . ,145 index the nonredundant PSSMs

M; and let g=1, . . . ,3589 index the genes in our dataset.
If the wordsW1, . . . ,Ww correspond to the gene with index
g, define Tg,i=maxw=1, . . . ,w (1�Pi,w) (i=1, . . . ,145) if
w> 0 and 0 otherwise.
In the table {Tg,i}, the rows represent the genes; the

columns, TFs. When Equation (1) is applied to Xi=Tg1, i

and Yi=Tg2, i
, which correspond to the genes g1 and g2, it

yields the Pearson correlation coefficients (PCCs) between
rows in the table {Tg,i}. Two genes therefore receive a high
PCC, if they correspond to similar words, regardless of the
words’ positions. The resulting network still reflects
putative TFBSs as predicted by positional preference,
however.

The integration of positional, functional and
co-expression data

Three networks were constructed using positional, functi-
onal and co-expression data. In the corresponding net-
works, an edge joined a gene pair, if the pair scored above
the 95th percentile for the corresponding measure:
(i) 0.566 for the Pearson correlation coefficient quantifying
TF positional similarity; (ii) 0.588 for the GO semantic
similarity or (iii) 0.546 for the PCC from the microarray
Atlas data. The networks were analyzed using Cytoscape
(22), software freely available from http://www.cytoscape.
org for visualizing molecular interaction networks. The
Graph Merge plug-in, also freely available from http://
www.cytoscape.org, produced the intersection network
(see Supplementary Figure S3) whose edges lie in all three
networks. Supplementary Table 2 lists numbers of nodes
and edges, and average degrees for each of the four
networks. The MCODE Cytoscape plug-in (23) identified
24 densely connected sets of genes in the intersection
network.

RESULTS

Many words displaying positional preferences are
probably functional

After multiplying P-values by 48 to correct for multiple
testing, our methods yielded 1226 eight-letter words with
significant positional preferences (P� 0.05). Out of the
1226 words, 71 words corresponded to two significant
clusters with distinct positions and seven words corre-
sponded to three significant clusters with distinct posi-
tions, for a total of 1311 significant clusters. (To avoid
unnecessary repetition, all the ‘words’, ‘clusters’, and ‘gene
groups’ mentioned below are significant at P� 0.05 after
multiple test corrections, unless stated otherwise.)
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Supplementary data file 1 contains the words and their
clusters. To identify similar or overlapping words, we
varied one base within each word, but few words were
similar or overlapped. Only 608 of the 1226 words exactly
matched subsequences of experimentally determined
TFBSs in the TRANSFAC database. To discover relation-
ships between the words and basal promoter elements like
the CAAT box, SP1, CREB and TATA box (recognized by
the constitutive human factors NF-Y, SP1, CREB and
TBP, respectively), we again varied one base within each
word. With a change of at most one base, 540 of the 1226
words exactly matched a consensus subsequence of one of
the basal promoter elements. Because the regions sur-
rounding many human genes are GC-rich, we examined
the sequence composition of the words. Within the 1226
words, the frequencies of A, C, G and T were 0.159, 0.318,
0.376 and 0.146, respectively. Moreover, 123 words
(�10%) contained only G and C, but only eight words
(�0.65%) contained only A and T. Thus, the words do
indeed reflect the elevated GC content around the TSS
(Supplementary Figure S1).
Our previous study only found TFBSs from �200 bp to
þ100 bp relative to the TSS at 0 bp. Moreover, to permit a
genome-scale study, our methods here ruthlessly sacrificed
statistical power in favor of computational speed, so they
probably found a small fraction of all functional TFBSs
(which our unpublished data estimates loosely at a site-
level sensitivity of about 15%). As expected, clusters
upstream of the TSS were all within �200 bp relative to
the TSS, indicating that our methods do not find TFBSs
distant from the TSS. Clusters downstream of the TSS
usually occurred within þ100 bp. Cluster density peaked
roughly at the TSS. Some 44 clusters were positioned more
than þ100 bp downstream of the TSS. A consensus GT
dinucleotide appeared in 22 of the corresponding words,
suggesting their role in mRNA splicing.

Many clusters correspond to gene groups with
a common function

We investigated the (significant) gene groups for common
functions, analyzing annotations from the GO database
(24). Although several tools for analyzing GO annotations
are publicly available (25–27), none was entirely suitable
for our study, so we developed other methods ourselves.
Accordingly, we used semantic similarity measures to

quantify the commonalities of molecular function for each
pair of the 15 536 Homo sapiens gene products with GO
annotations (18) (see Supplementary data—Section 1.3).
The semantic measures yielded a maximum average
pairwise functional similarity (APFS) within each gene
group. Similarly, we calculated an APFS for 106 random
gene groups, each random group chosen uniformly from
the PPR dataset to match the size of the original gene
group. The fraction of random groups with a larger APFS
than the original group yielded an empirical p-value
for the original group’s APFS. Of the 1311 clusters, 502
had a significant APFS [P� 0.05; false-discovery rate
(FDR)=5.3%] (see Figure 1).

Many clusters correspond to co-expressed gene groups

If a (statistically significant) cluster represents TFBS
instances with a common function, the corresponding
gene group might be co-expressed. Accordingly, we
analyzed expression patterns in microarray experiments
from the GNF Atlas 2 (19). The microarray Atlas
facilitated the generation of a cross-table, where the rows
correspond to 7914 genes downstream of the PPRs and the
columns to normalized expression values for 74 human
tissues. Consider two clusters and the two corresponding
gene groups. For each gene group, the cross-table yielded a
pairwise Pearson correlation coefficient (PCC) for their
expression values. The substitution of the PCC for the
APFS in the procedure above yielded an empirical PCC
P-value. Of the 1311 clusters, 529 had a statistically
significant PCC (P� 0.05; FDR=2.6%) (Figure 1). As
further validation of biological functionality, 273 words
had both a significant APFS (functional) and a significant
PCC (co-expression) similarity (P� 0.05).

Having established that the gene groups tended to have
common GO functions or co-expression, we then exam-
ined their tissue-specificity. In a particular tissue (column),
the cross-table from the microarray Atlas implicitly ranks
each gene (row) according to its expression. For each gene
group, the Mann–Whitney rank sum statistic quantifies
the expression enrichment for a particular tissue in the
gene group relative to other genes. Among the
1311� 74=97 014 gene group-tissue pairs, 1737 showed
enriched expression (at P� 0.001 without multiple test-
correction, corresponding to a FDR 5.58%). Of the 1311
gene groups, 450 showed enrichment in at least one tissue,
with 58 groups showing enrichment in more than 10
tissues. The vast majority of the gene groups (about 525 of
the 1311 groups) showed enriched expression specifically
in white blood cells (dendritic, NK, B and T cells),
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Figure 1. Empirical P-values of clusters estimated from simulation.
The figure plots the count of clusters whose empirical P-value did not
exceed a particular threshold against the P-value threshold. The
empirical P-values were estimated from microarray data (closed
triangles) and GO-derived functional similarity data (open triangles).
The empirical P-values of nonconserved clusters are shown separately
for the microarray data (closed circles) and GO-derived functional
similarity data (open circles).
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generally agreeing with the conclusion of a recent study on
motif discovery in the human genome (28).

Recall that 273 gene groups had both common GO
functions and co-expression at significant levels (P� 0.05).
Of the corresponding 273 words, 114 exactly matched
subsequences of known human TFBSs in TRANSFAC.
Additionally, experimental evidence linked 44 of the TF
motifs in TRANSFAC matching positionally significant
words to one or more of the tissues showing enrichment of
the matched word’s gene group. Table 1 lists the predicted
tissue of enriched expression and the TRANSFAC TF
for a randomly selected subset of these 44 words.
Supplementary Table 1 in the additional files gives the
complete information for all 44 words.

Positional preference is essential to establishing the
trends described above; standard sequence analysis alone is
insufficient. Two additional lines of evidence support our
hypothesis linking TFBSs’ locations with tissue-specific
usage. First, if a single word corresponded to two or three
different positional clusters, the clusters often corre-
sponded to gene groups expressed in strikingly different
tissues. For instance, the TRANSFAC binding element
for AP-2alphaA, c-Ets-2, Sp1, represented by consensus
CGCCGCCG, yields two significant clusters at �17 and
þ14 bp, respectively. While the upstream cluster showed
overexpression in fetal brain, the downstream cluster
showed overexpression in BM-CD71þEarlyErythroid
and Thyroid. Thus, these TFs might use position-specific
binding to drive differential tissue-specific activation.

Other factors exhibiting a similar phenomenon include
ER-alpha, T3R-beta1, Sp1, Ets (CAGGTGAG) and Sp1,
Sp3, MyoD, AP-2beta (GCGGGGCC). On the other
hand, some factors might use position-specific binding to
cause tissue-specific repression. Such factors include p53
(GCGGCGGG), Sp1, HIF-1, GKLF, NF-Y, CTCF (GG
CGGCGC) and Sp1, Sp3, MyoD, AP-2beta (GCGGG
GCC) (Table 2). Second, for each of the 273 clusters des-
cribed earlier, we selected a gene group of equal size as a
negative control. Each gene in the control group had a
PPR containing the relevant word between �200 and
þ100 bp, but with no other positional restriction. As
expected, the Mann–Whitney rank sum test showed that
unlike the actual gene groups, the control gene groups
did not display any noticeable tissue specificity (see
Supplementary Figure S2a and S2b).

The position of a TFBS can influence its function

There were 78 words (about 6.4% of all 1226 words) with
two or three different significant clusters. These 78 words
presented a unique opportunity to see whether the
sequence of a TFBS is sufficient to determine its biological
function. The 78 words generated 92 pairs of gene groups,
each pair corresponding to a single eight-letter word but
to two different positional clusters. If a TFBS had diverse
roles (e.g. activation and repression) in different tissues, it
might yield a pair of gene groups with significantly
different expression patterns across the 74 tissues in the

Table 2. TFBS words corresponding to two clusters, and thereby displaying possible positional regulation of TF tissue specificity

DNA Word Factor Distance from
TSS (bp)

Tissues Activation(þ)/
Repression(�)

CAGGTGAG ER-alpha, T3R-beta1, Sp1, Ets 158,a 104b WHOLEBLOOD,a Amygdalab þ

CGCCCCGC E2F-1, AP-2alphaA, NRF-1, Egr-1 �59,a �176b Cardiac Myocytes,a Uterus Corpusb �

CGCCGCCG AP-2alphaA, c-Ets-2, Sp1 14,a �17b BM-CD71þEarlyErythroid,a Thyroid,a fetalbrainb þ

GCGGCGGG p53 20,a �56b TrigeminalGanglion,a Appendixb �

GCGGGGCC Sp1, Sp3, MyoD, AP-2beta �57,a �15b Bronchialepithelialcells,a 721_B_lymphoblasts,b

SmoothMuscleb
þ

GGCGGCGC Sp1, HIF-1, GKLF, NF-Y, CTCF �39,a 19b Ovary,a AdrenalCortex,b Appendix,b OlfactoryBulbb �

For simplicity, only three examples have been provided for each case (activation and repression). The rows in the table reflect the lexicographic order
of the words in column 1. Each word corresponds to TFs in column 2. Each word corresponds to two clusters, whose average positions relative to
the TSS are in column 3. Superscripts link the entries in columns 3 and 4, to indicate the relation between the position-specific binding and the tissue-
specific regulation of each TF.

Table 1. Tissue specificity of DNA words and their association with known transcription factors

DNA Word Factor Enriched Tissues P-value
(expression similarity)

P-value
(GO functional similarity)

CCGGAAGC Sp1, c-Ets-1, Ets-1, GABP-alpha,
GABP-beta, STAT1, STAT3

PBCD4þTcells,
PBCD8þTcells, Prostate

1.00E-06 3.24E-03

CGCGATGG Egr-1 Adrenal gland 1.00E-06 1.49E-02
GCCGCCAT YY-1 PBCD4þTcells, PBCD8þTcells 1.00E-06 4.30E-05
GCCTGCGC NRF1, Sp1, Sp3 Thyroid 1.00E-06 8.88E-03
GGCGGGGC Sp1, Sp3, NF-Y Amygdala, Prostate 1.00E-06 7.42E-03
GGTCACGT Sp1, Sp3, ATF-1 PLACENTA 1.00E-06 1.81E-02
TTCCGCGC E2F1, Sp3 PBCD4þTcells, PBCD8þTcells,

Thymus
2.20E-02 2.24E-02

The last columns give the P-values of clusters (estimated by simulation from microarray data and GO-derived functional similarity data). The rows in
the table reflect the lexicographic order of the words in column 1.
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GNF Atlas 2 microarray dataset. For each of the 92 pairs,
a one-sided Mann–Whitney P-value quantified the relative
expression of the two gene groups in the 74 tissues. The
Fisher inverse chi-squared test (29) assessed the product of
the 74 one-sided Mann–Whitney P-values, and its two-
sided P-value for the product indicated the overall
differences in expression between the two groups (see
Supplementary data––Section 1.4). After multiplying by
92 to correct for multiple testing, seven pairs were
statistically significant (P� 0.05). Table 3 presents results
for significant pairs of gene groups (P� 0.05, after
multiplying by 74 to correct for multiple testing).

A comparison of results from positional and
sequence-based methods

For a TFBS conserved across several species, comparative
genomics uses a multiple alignment across the species to
narrow the TFBS search to regions of high conservation
(7,30). Positional regulomics might have at least two
potential advantages over comparative genomics in
identifying TFBSs. First, because positional regulomics
does not require accurate sequence alignments, it can find
TFBSs in poorly conserved regions. Second, it does not
depend on undependable details of the background DNA
sequence, thereby reducing the false positive rate of its
predictions.
The first potential advantage suggests the following

question. Do comparative genomics and its requirement
for sequence conservation obscure TFBSs that positional
regulomics might find? Let a cluster be partially or less
conserved if >20% of positions in it occur in noncon-
served regions within the human genome, as determi-
ned by human/mouse genome alignment (hg17/mm7
assembly) of the UCSC Genome Browser. Of the 1311
clusters, 42 clusters contained 20% or more positions in
nonconserved regions; of these, 12 contained 75% or more
positions in nonconserved regions. Thus, sequence con-
servation considerations had little influence on the 1311
clusters of positions. Out of the 42 nonconserved clusters,
26 and 29 clusters appeared significant (P< 0.05) under
our analysis using expression and functional similarity
data, respectively (Figure 1).
To assess the second potential advantage and to

compare false positives from positional and comparative
genomics, consider a recent study that identified 54 702
putative human TFBSs by aligning human, mouse,

rat and dog genomes (7). The present study identified
46 670 putative TFBSs, a comparable number. The spatial
distribution of transposable elements (TEs) around the
TSS may be an indicator of the relative false positive rates
in the two studies. TEs comprise about 45% of the human
genome and might contribute a substantial fraction of
regulatory elements (31,32). However, a sharp decline of
TEs around the TSS (33) indicates selection against their
insertion in functionally important regions like core
promoters where many regulatory elements are posi-
tioned. RepeatMasker <http://www.repeatmasker.org>
was used to determine TE locations using the RepBase
library of repeats (34). The total TE count was 24 878,
including SINEs, LINEs, LTR elements, DNA elements
and other unclassified elements. Overall, the masked
regions represented 23% of our dataset.

Figure 2 shows distributions of positions relative to the
TSS: Figure 2A, of TE-rich regions; Figure 2B, of
‘comparative TFBSs’ [predicted in (7)]; and Figure 2C,
of ‘positional TFBSs’ [predicted in the present study].
TE-rich regions overlapped with 122 comparative TFBSs
but with only 50 positional TFBSs (two-sided Fisher exact
P=7.8� 10�6). Positional TFBSs had a tight distribution
from about �200 to þ100 bp relative to the TSS, whereas
comparative TFBSs were relatively widespread, from
about �500 to þ500 bp. The positional TFBSs become
rare as TEs become common away from the TSS. Figure 2
suggests that the positional methods are relatively
insensitive to input sequence lengths, because they predict
TFBSs only near their genomic anchor, namely, the TSS
in the present study. In any case, Figure 2 suggests that in
the cases examined, the putative positional TFBSs contain
fewer false positives than the putative comparative TFBSs.

Positional regulomics can identify sets of co-regulating
TFBSs and co-regulated genes

TFs combine to form cis-regulatory modules (CRMs),
complexes controlling gene transcription. Thus, a CRM
interacts with certain TFBSs and controls certain genes.
The following graphical method predicts co-regulating
TFBSs and co-regulated genes, without prior knowledge
of the specific TFs in the CRM. By applying the
techniques of systems biology to CRMs, the method
enhances the dependability and interpretability of
predictions.

Table 3. TFBS words corresponding to two clusters, whose gene groups have significantly different microarray expression patterns

DNA Word Factor Distance from TSS (bp) P-value

CCCCGCCC c-Myc, AP-2alphaA, E2F-1, NF-AT1, MAZ �65, �20 2.24E-04
CCGCCGCC YY1, Egr-1, AP-2alphaA, Sp1, Sp3 63, 13 4.18E-02
CGCCCCGC Sp1, Sp3, E2F-1, Egr-1 �176, 41 4.04E-02
CGCCGCTG Unidentified 15, 39 4.66E-04
CGGGCGGC DP-1, E2F:DP, Sp1, GKLF �15, 23 1.16E-07
GAGGCGGC Unknown �16, 20 2.85E-02
GGGCGGCG Sp1, NF-Y, GKLF �20, 143 1.15E-11

The rows in the table reflect the lexicographic order of the words in column 1. Each word corresponds to TFs in column 2. Each word corresponds
to two clusters, whose average positions relative to the TSS are in column 3. Fisher inverse chi-squared test yielded a (multiple test corrected)
two-sided P-value (in column 4), which quantifies the overall differences in expression between the gene group pair in the 74 tissues.
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We assembled a dataset containing all genes with
complete GO and microarray GNF Atlas 2 data and
corresponding to at least one significant cluster. The
resulting 3589 genes constituted nodes in each of three
networks (i.e. graphs), corresponding to three sources of

information: (i) the positionally significant words, (ii) the
GO annotation and (iii) the microarray Atlas. A Pearson
correlation coefficient quantified pairwise similarity
between genes, based on the significant words occurring
in their promoters (see the Methods section). In the
corresponding networks, an edge joined a gene pair, if the
pair scored above the 95th percentile for the correspond-
ing measure: (i) 0.566 for the Pearson correlation
coefficient quantifying TF similarity; (ii) 0.588 for the
GO semantic similarity or (iii) 0.546 for the PCC from the
microarray Atlas data. The 95th percentile was an
arbitrary choice, because considerations of computational
time precluded a thorough exploration of possible
thresholds.
The three sources of information validated each other’s

conclusions as follows. In Figure 3A, UPGMA
(unweighted pair group method with arithmetic mean)
clustered the genes by GO semantic similarity; in
Figure 3B, by the similarity of the set of positionally
significant words contained in the corresponding promot-
ers. The organized patterns of color in Figure 3 display the
correlations between the three sources of information
(GO, microarray Atlas data and positional regulomics), so
the sources validated each other. Integration of positional,
functional and co-expression information generated an
intersection network (see the Methods section). Figure 4
shows the gene expression profiles for the most densely
connected set of genes, sharing common positional,
functional and co-expression properties. Some other
profiles appear in Supplementary Figure S4. Therefore,
positional regulomics can be combined with (and vali-
dated by) other sources of information, to identify
modules of TFBSs and coregulated genes.

Algorithm and Datasets

A Cþþ computer program implemented the algorithm
identifying significant clusters of eight-letter words in
anchored promoter sequences. A UNIX-compatible ver-
sion of the program with user-tunable parameters is
available for download at the following URL: ftp://
ftp.ncbi.nlm.nih.gov/pub/marino/published/positional_
regulomics/, along with the pairwise GO functional
similarities for 3589 transcripts.

DISCUSSION

Historically, the lambda repressor was the first experi-
mental system known to us to show that position (as well
as sequence) influences a TFBS’s function. Using the TSS
as a genomic landmark, positional regulomics provides
strong statistical evidence that in human transcription, the
phenomenon is not isolated: if not commonly, at least not
rarely, a TFBS’s position as well as its sequence can
influence the strength of activation or repression of a gene.
Some TFs (e.g. AP-2alphaA, ER-alpha, Sp1, Sp3, p53,
NRF-1) appear to bind to different positions relative to
the TSS, to regulate different genes in different tissues.
Moreover, a TFBS’s position appears to influence
biological function, not just strength of that function.
These conclusions rely on data about exact words
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Figure 2. Density of regulatory and repetitive DNA sequences in human
core promoters. The plot displays results for 7914 human core promoters.
Its X-axis runs from �1000 bp to þ1000 bp, relative to the TSS for
each promoter at 0 bp. The Y-axis represents the normalized count of:
(A) TE-derived sequences; (B) TFBSs predicted with our positional
methods and (C) TFBSs predicted with phylogenetic footprinting. In each
case, the raw counts were normalized to make the area under each graph 1.
The boundaries of the three curves indicate the density of predicted
sequences in the different regions. Our methods tend to predict TFBSs in
the [�200, þ100] region of core promoters.
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(i.e. a single sequence pattern with no alternatives), so an
analysis based on sequence alone, without position, has no
obvious opportunity to draw similar conclusions.
Some experimental results for specific TFBSs support

our conclusions about position. The word CCGCCGCC
matches the TRANSFAC motif for the YY1 factor and
clusters at two different locations (þ13 and þ63 bp
relative to the TSS) (Table 3). The cluster at þ63 bp
contains transcripts significantly overexpressed in T cells

(PB-CD4þTcells, PB-CD8þTcells). In contrast, the clus-
ter located at þ13 bp contains transcripts significantly
underexpressed in medulla oblongata (Medulla
Oblongata). In fact, experimentally, YY1 acts as an
activator or repressor, depending on its binding context
within a promoter (35,36). Moreover, YY1 enhances
transcription in T cells but represses it elsewhere (37). In
addition to YY1, our predictions concerning the dual
regulatory roles of several other TFs, notably Sp-1 (38),
Sp3 (39), and AP-2alphaA (40) matched evidence from
experimental literature.

Despite its interesting strengths, our study has some
limitations, particularly with respect to alternative pro-
moters. Our dataset contained PPRs corresponding to as
many as 4603 genes with putative alternative promoters.
In each of these genes, the alternative TSS were spaced at
least 500 bp apart (17). Typically, data about functional
similarity and microarray expression do not specify
possible alternative start sites: the basic unit in both
types of data is usually the gene. Alternative promoter
usage can have tissue and sequence-context specificity,
so the lack of information about alternative promoters
probably restricted the precision and scope of our
conclusions. If a complete catalogue of annotated
promoters and alternative transcripts were available,
however, a microarray could use probes with transcript-
specific 50 ends to distinguish among alternative promot-
ers. Similarly, GO annotation could distinguish alternative
promoters, if it contained the relevant additional
information.

In this study, most positions in most clusters were in
conserved regions relative to the mouse genome. Because
the positions likely represent TFBSs with a common
functionality in the human, most such TFBSs likely
represent functionality common to both human and
mouse. Our methods could not judge, however, the
conservation of individual TFBSs in the two genomes or
the TFBSs missed (41–44) by phylogenetic analysis (7,30).
Variation of individual TFBSs might be one process
differentiating species, but our results suggest that only
relatively small subsets of TFBSs with a common function
display nucleotide changes between human and mouse.

Finally, exact words yield a limited representation of
TFBSs. Position-specific scoring matrices (PSSMs) are
much more flexible. We are currently implementing
improvements to A-GLAM (11), our Gibbs sampler
program for finding TFBSs, to combine sequence infor-
mation with positional information from datasets with
genomic anchors, e.g. the TSS. Initial results indicate that
position can contribute substantially to the accuracy of
sequence motif predictions. Genomic landmarks serve as a
‘poor man’s alignment’, even when precise sequence
alignment is impossible. For genes that contain a
common TFBS, suggesting co-regulation, our results
indicate that positional regulomics can detect positional
regulation and thereby unravel the mechanisms under-
lying diverse functionality and/or expression patterns, by
exploiting the location of the TFBS. Further, the resulting
models from positional regulomics systematically identify
additional genes regulated in a similar manner. Thus,
given the success of comparative genomics and its basis in

Figure 3. Gene profile correlation matrices. The UPGMA method
clustered genes by their GO-derived functional similarity. The matrix in
Figure 3A orders the genes identically on both axes by functional
similarity. Each off-diagonal element in the matrix corresponds to a
pair of different genes. The color of an element codes the Pearson
correlation coefficient for the co-expression of the corresponding gene-
pair in the microarray data. The off-diagonal blocks of consistent color
indicate that functionally similar groups of genes have similar
expression patterns. For comparison, the inset in the plot shows a
negative control. The inset’s matrix orders the genes identically on both
axes, but randomly. Accordingly, the matrix lacks off-diagonal blocks
of consistent color. The matrix in Figure 3B orders the genes identically
on both axes, according to the similarity of the set of positionally
significant words contained in the corresponding promoters (see the
Methods section). The off-diagonal blocks of consistent color indicate
that positional regulomics predicted groups of genes with similar
expression patterns.
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sequence alignment, positional regulomics appears pro-
mising indeed.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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Widespread Positive Selection in Synonymous Sites of Mammalian Genes

Alissa M. Resch,* Liran Carmel,* Leonardo Mariño-Ramı́rez,* Aleksey Y. Ogurtsov,* Svetlana
A. Shabalina,* Igor B. Rogozin,* and Eugene V. Koonin*
*National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland

Evolution of protein sequences is largely governed by purifying selection, with a small fraction of proteins evolving
under positive selection. The evolution at synonymous positions in protein-coding genes is not nearly as well understood,
with the extent and types of selection remaining, largely, unclear. A statistical test to identify purifying and positive
selection at synonymous sites in protein-coding genes was developed. The method compares the rate of evolution at
synonymous sites (Ks) to that in intron sequences of the same gene after sampling the aligned intron sequences to mimic
the statistical properties of coding sequences. We detected purifying selection at synonymous sites in ;28% of the 1,562
analyzed orthologous genes from mouse and rat, and positive selection in ;12% of the genes. Thus, the fraction of genes
with readily detectable positive selection at synonymous sites is much greater than the fraction of genes with comparable
positive selection at nonsynonymous sites, i.e., at the level of the protein sequence. Unlike other genes, the genes with
positive selection at synonymous sites showed no correlation between Ks and the rate of evolution in nonsynonymous
sites (Ka), indicating that evolution of synonymous sites under positive selection is decoupled from protein evolution.
The genes with purifying selection at synonymous sites showed significant anticorrelation between Ks and expression
level and breadth, indicating that highly expressed genes evolve slowly. The genes with positive selection at synonymous
sites showed the opposite trend, i.e., highly expressed genes had, on average, higher Ks. For the genes with positive
selection at synonymous sites, a significantly lower mRNA stability is predicted compared to the genes with negative
selection. Thus, mRNA destabilization could be an important factor driving positive selection in nonsynonymous sites,
probably, through regulation of expression at the level of mRNA degradation and, possibly, also translation rate. So,
unexpectedly, we found that positive selection at synonymous sites of mammalian genes is substantially more common
than positive selection at the level of protein sequences. Positive selection at synonymous sites might act through mRNA
destabilization affecting mRNA levels and translation.

Introduction

It is well established that nonsynonymous sites in
protein-coding sequences are subject to purifying selection
caused by constraints operating at the level of protein struc-
ture and function and that positive selection that, at least in
mammals, affects a minority of genes and/or sites is an im-
portant force of adaptive evolution (Li 1997; Vallender and
Lahn 2004; Bustamante et al. 2005; Nielsen et al. 2005).
Synonymous (silent) sites are often used as a proxy for neu-
tral evolution. Under this premise, the traditional gauge
of selection in nonsynonymous sites is the ratio of nonsy-
nonymous (Ka) over synonymous (Ks) substitutions.
Ka/Ks ,1 is thought to indicate purifying selection,
whereas Ka/Ks .1 is construed as the signature of positive
selection (Li 1997; Hurst 2002). However, the neutrality of
synonymous substitutions is only a rough and not necessar-
ily valid approximation; the extent, range, and underlying
causes of selection in synonymous sites remain subjects of
intense debate (Chamary, Parmley, and Hurst 2006). The
results of several studies suggest that efficient translation
(Ikemura 1985; Akashi and Eyre-Walker 1996; Eyre-
Walker and Keightley 1999) and mRNA stability (Duan
and Antezana 2003; Chamary and Hurst 2005; Shabalina,
Ogurtsov, and Spiridonov 2006) are substantial forces of
purifying selection in synonymous sites. It has also been
shown that synonymous substitutions are under purifying
selection in mammalian exonic splicing enhancer motifs
(ESEs) (Yeo et al. 2004; Parmley, Chamary, and Hurst

2006) and in alternatively spliced exons (Xing and
Lee 2005).

By contrast, to the best of our knowledge, positive se-
lection in synonymous sites has not been reported. How-
ever, this possibility has been brought up in the course
of analysis of the SPANX family of mammalian cancer-
testis genes (Kouprina et al. 2004) and the insect cyclin
A inhibitor gene (Avedisov et al. 2001) that are character-
ized by exceptionally high and comparable rates of evolu-
tion in both synonymous and nonsynonymous sites.

We were interested in addressing the problem at a fun-
damental level: is positive selection in synonymous posi-
tions a common phenomenon, and if so, what could be
the underlying causes of such selection? We reasoned that,
to investigate selection in synonymous sites, the substitu-
tion rate in intronic sequences (Ki) was a logical choice
of the proxy for neutral evolution. A method for estimating
the neutral rate using Ki has recently been reported
(Hoffman and Birney 2007). In principle, at least, cases
of negative selection in synonymous sites were identified
as Ks/Ki ,1 whereas cases of positive selection were in-
dicated by Ks/Ki .1. No part of the genome can be auto-
matically assumed to evolve neutrally: the possibility of
a hidden function that constrains evolution or an adaptive
component in the evolution of a sequence always should be
considered. However, apart from pseudogenes, internal re-
gions of introns are among the best candidates for neutrally
evolving sequences. The sequences of ;30 nucleotides at
each end of an intron are thought to be subject to weak pu-
rifying selection that stems from the involvement of these
sequences in splicing (Louie, Ott, and Majewski 2003; Yeo
et al. 2004) and SAS (unpublished observations). In addi-
tion, some of the introns contain highly conserved sequen-
ces with various, often unknown functions including genes
for noncoding RNAs (Washietl et al. 2005). However, in
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mammals, these functional regions have been estimated to
comprise ,5% of the intronic sequences (Waterston et al.
2002). In addition, it has been demonstrated that, even in
conserved noncoding sequences such as those found in in-
trons, the pressure of purifying selection tends to be sub-
stantially weaker than in coding regions (Kryukov,
Schmidt, and Sunyaev 2005). Thus, it appears that, after
discarding terminal regions, introns could serve as a reason-
able approximation of neutrally evolving sequences.

We found that Ks and Ki distributions for mammalian
genes have different statistical properties, which makes Ki
suspect as the neutral baseline for the analysis of selection
in synonymous sites. Therefore we developed a computa-
tional procedure to shuffle aligned intron sequences such
that their statistical properties mimic those of nonsynony-
mous sites and used the corresponding substitution rate
(Ki-pseudo) to assess the extent of negative (purifying)
and positive (diversifying) selection in synonymous sites
of mammalian genes. It is shown that both types of selec-
tion in synonymous sites are widespread and that positive
selection at synonymous sites is much more common than
positive selection on protein sequence. Positive selection at
synonymous sites is unrelated to functional constraints at
the protein level, but is linked to gene expression, probably
through mRNA destabilization.

Materials and Methods
Identification of Orthologous Genes

We calculated rates of divergence in coding and non-
coding DNA for mouse-rat orthologs taken from the May
2004 HomoloGene database (Wheeler et al. 2006). Homo-
loGene orthologs are defined as bidirectional best hits using
the BLAST program for sequence comparison (Altschul
et al. 1997). Protein and mRNA sequences were obtained
from the Entrez protein and nucleotide databases (Wheeler
et al. 2006). We started with a total 8,178 mouse-rat ortho-
logs but removed over half (see below) to eliminate the po-
tential bias estimates of the Ks estimates that could be
introduced by alternative splice variants and other align-
ment ambiguities (see next section). The final gene set em-
ployed for all analyses contained 1,562 mouse-rat
orthologs.

Coding and Noncoding DNA Alignments

Protein alignments for mouse and rat were generated
using the MUSCLE alignment package (Edgar 2004). Pro-
tein alignments were then used to guide alignment of the
corresponding mouse and rat coding sequences (CDS). It
was required that each coding sequence contain a start
and stop codon, in order to eliminate all partial sequences.
All alignments that contained insertions/deletions with the
total length .30 bp were removed in order to exclude po-
tential effects of incorrect gene prediction and alternative
splicing.

Intron alignments were generated using the OWEN
alignment tool (Ogurtsov et al. 2002) with the following
specifications: (1) an intron must be bound on 5#/3# ends
by exons that align across�80% of length, (2) the presence

of constitutive splice sites at each intron/exon boundary was
required, (3) a P value ,0.001 for each intron alignment
was required, (4) 30-nucleotide regions from the 5#/3# ends
of each intron were removed, and 5) the proximal, 5#-
terminal introns in the compared orthologous genes were
discarded, because these introns are known to be enriched
for various regulatory elements and, consequently, could be
subject to purifying selection (Majewski and Ott 2002).
These requirements help ensure that accurate orthologous
intron alignments are generated. The 30-nucleotide regions
from the ends of each alignment were removed to eliminate
splicing signals from the estimates of intron divergence.

Comparison of Substitution Rates in Coding and
Intronic Sequences

The evolutionary rates for coding DNA were origi-
nally calculated using the Pamilo-Bianchi-Li method (Li
1993; Pamilo and Bianchi 1993), which takes into account
transition and transversion rates. Evolutionary rates for
noncoding DNA were measured using the Kimura’s 2-
parameter model (Kimura 1980). However, considering
the difference in the statistical properties of the CDS and
intron sequences (see Results and Discussion), a method
was developed to shuffle the intron sequence alignments
such that their statistical properties mimicked those of cod-
ing sequences. Mouse-rat pseudo-CDS alignments were
generated from alignments of mouse and rat intronic se-
quences using the following procedure for each alignment
(supplementary fig. 1S): (1) Start the pseudo-CDS from
ATG for both mouse and rat sequences. (2) Take the next
pentanucleotide starting from the first codon position from
the mouse CDS sequence and find this pentanucleotide in
the mouse intronic sequence; if there are several such pen-
tanucleotides, 1 is chosen randomly. (3) Add the corre-
sponding segment of the intronic alignment to the pseudo-
CDS; if the length of the pseudo-CDS alignment .5
nucleotides, the overlapping 2 nucleotides are chosen ran-
domly; if a pentanucleotide is not found in themouse intronic
sequence, the corresponding fragment of theCDS alignment
is added to the pseudo-CDS alignment. 4) The procedure is
repeated until the end of the CDS alignment is reached. The
resulting pseudo-CDS alignment has the same length as the
CDS alignment, and the base compositions of mouse CDS
and pseudo-CDSare identical. The significance of the differ-
ence in the codon composition of the rat CDS and pseudo-
CDS was tested using a Monte-Carlo modification of the v2

test (Adams and Skopek 1987).

Detecting Positive and Negative Selection in
Synonymous Sites

For each CDS alignment, 10,000 pseudo-CDS
alignments were generated. A score of divergence at
synonymous sites Ks was calculated using the Pamilo-
Bianchi-Li method (Li 1993; Pamilo and Bianchi 1993)
or the fraction of mismatches at 4-fold degenerate sites.
This score was calculated for the mouse-rat CDS alignment
(Ks) and 10,000 pseudo-CDS alignments (Ki-pseudo).
The distribution of Ki-pseudo was used to calculate
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probabilities P(Ks � Ki-pseudo) and P(Ks � Ki-pseudo);
the fractions of the pseudo-CDS with Ks � Ki-pseudo and
Ks � Ki-pseudo were taken as approximations of the
respective P values. The genes with P(Ks � Ki-pseudo)
� 0.05 were considered positively selected, and the genes
with P(Ks�Ki-pseudo)� 0.05 were considered negatively
selected. These calculations were performed for the com-
plete alignments and repeated after masking CG, TG,
and CA dinucleotides. For the analysis of statistical prop-
erties of distributions and correlation analysis, a pseudo-
CDS alignment was randomly drawn from the total sample
of 10,000, and Ki-pseudo was calculated using the PBL
method.

Microarray Expression Analysis

The GNFGene Expression Atlas2 data (Su et al. 2004)
for mouse was used as the source of data on genes (rat ex-
pression data was limited for the majority of genes and
therefore was not included in this analysis). The GNF At-
las2 data contain 2 replicates for each of 61 mouse tissues.
The data for redundant tissue types was combined to yield
a final set of 55 mouse tissues. Average expression values
for each probe were calculated using raw expression data.
Average probe expression values for raw data were calcu-
lated by summing the expression values across each probe
set and dividing that sum by the total number of tissues (55).
Tissue breadth values for each gene (the number of tissues
that each probe is expressed in) were obtained using raw
expression data. The raw expression value for a given tissue
had to be �350 in order for that tissue to be counted in the
tissue breadth analysis (Jordan, Marino-Ramirez, and
Koonin 2005). Thus, the final tissue breadth score for
a probe represents the number of all tissues with the raw
expression value �350.

Codon Usage

The effective number of codons (ENC) for the coding
sequences in the analyzed gene sets was calculated using
previously described methods (Wright 1990). The codon
adaptation index (CAI) scores (Sharp and Li 1987) for
the analyzed coding sequences were calculated using the
EMBOSS bioinformatics suite (Rice, Longden, and
Bleasby 2000). The CAI values were calculated by compar-
ing the codon usage patterns of a given gene against the
codon usage patterns of a reference set of highly expressed
mouse genes. Specifically, the GNF Atlas2 mouse expres-
sion data were used to identify the top ;10% (1,479/
15,007) most highly expressed mouse genes by calculating
the average overall expression level of each probe from raw
expression data. The average expression values were
ranked, from largest to smallest, to obtain the top 10%.

Distance Between Distributions

In order to quantify the dissimilarities between the dis-
tribution functions of Ka, Ks, Ki, and Ki-pseudo, we have
computed pairwise distances between these distributions
using an information-theoretic measure known as the

L-divergence (Lin 1991). This distance measure is a refined
version of the widely used Kullback-Leibler distance.

Results and Discussion
Using Intron Evolution Rate as the Baseline for
Detecting Selection in Synonymous Sites

In order to avoid ambiguities of alignment, especially,
in intron sequences, as well as substitution saturation ef-
fects, we limited the present analysis to orthologous genes
from closely related rodents, mouse and rat. It has been re-
cently shown that Ki is particularly prone to taxon-specific
variation at longer evolutionary distances (Hoffman and
Birney 2007). A critical issue is whether Ks/Ki is an ade-
quate measure of selection in synonymous sites. We gen-
erated Ks and Ki distributions for a set of 1,562 reliable (see
Materials and Methods) alignments of intronic and coding
sequences from orthologous mouse and rat genes in order to
assess the suitability of Ki as the baseline for detecting se-
lection in synonymous sites. First, we compared the statis-
tical properties of the distributions of Ki and Ks. The
distribution of Ki had almost precisely the same mean
and median as the Ks distribution but was quite narrow
compared to the latter: the standard deviation of Ks was
more than twice greater than that of Ki (fig. 1 and supple-
mentary table 1S). Furthermore, the skewness of the distri-
bution was also much greater for the Ks distribution than for
the Ki distribution (fig. 1 and supplementary table 1S). We
also compared the nucleotide compositions of introns and
synonymous sites and found substantial differences be-
tween these two (supplementary table 2S). These observa-
tions showed that Ks and Ki distributions had distinct
statistical properties and suggested that introns and synon-
ymous positions in exons are subject to different evolution-
ary forces.

Previous studies that compared Ks and Ki do not seem
to arrive to a consensus. Some reports have claimed that
synonymous substitution rates are approximately equal to
those in introns despite differences in the patterns of sub-
stitution (Hughes and Yeager 1997; Chamary and Hurst

FIG. 1.—The distributions of Ka, Ks, Ki, and Ki-pseudo in the
analyzed set of 1,562 rodent genes.
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2004), whereas others have suggested that intron rates of
divergence are greater than those in synonymous sites
(Hellmann et al. 2003), or conversely, that synonymous
substitutionratesexceed those found in introns (Subramanian
and Kumar 2003). Our present observation that Ks and Ki
are (nearly) identical on average but are very differently
distributed suggests that these diverging conclusions
might be attributed to different evolutionary models and
data sets used in the respective studies. It has been argued
that the apparent increase in synonymous substitution
rates of some genes over those of introns is due to the
context-dependence of mutation in synonymous sites, in
particular, the high mutation rate of CpG dinucleotides
(Hughes and Yeager 1997; Kondrashov, Ogurtsov, and
Kondrashov 2006).

Our observations, together with those in previous stud-
ies, suggest that Ki might not be a proper null model for Ks
due to different nucleotide compositions of coding and non-
coding DNA and distinct statistical properties of the Ks and
Ki distributions. Thus, we developed a computational pro-
cedure to account for these differences between introns and
synonymous sites. Under this approach, alignments of
pseudo-coding sequence (pseudo-CDS) were generated
by sampling alignments of intronic sequences such as to
mimic the base composition of the synonymous sites for
each respective gene and thus eliminate potential artifacts
caused by differences in the CpG content and other com-
positional differences between synonymous sites and in-
trons. The pseudo-CDS alignments were used to
calculate Ki-pseudo values (see Material and Methods and
Supplementary fig. 1S for details). Using an information-
theoretical measure of divergence (see Materials and
Methods for details), we computed distances between the
distributions and found that, unlike Ki, Ki-pseudo had sta-
tistical properties highly similar to thoseofKs (fig. 2 and sup-
plementary table 3S). In particular, the distribution of
Ki-pseudo was shifted to the right compared to the Ki distri-
bution such that the right tail of the Ki-pseudo distribution
behaved more similarly to that of the Ks distribution

(fig. 1). Accordingly, Ki-pseudo values were used as the
baseline to detect purifying and positive selection acting
on synonymous sites of mammalian genes.

Partitioning Rodent Genes into Negatively Selected,
Neutral, and Positively Selected Sets Using
Synonymous Sites As the Criterion

We examined positive and negative selection in syn-
onymous sites, using the Ks/Ki-pseudo ratio as the criterion
under 2 distinct estimation schemes, the Pamilo-Bianchi-Li
(PBL) method (Li 1993; Pamilo and Bianchi 1993) and the
fraction of mismatches at 4-fold degenerate sites (4F
method). These calculations were performed either before
or after masking CG, TG, and CA dinucleotides (the highly
mutable CpG sites and the ‘‘highly CpG-prone’’ sites, i.e.,
those convertible toCpGviaa single transition [Kondrashov,
Ogurtsov, andKondrashov 2006]) or, finally, after removing
all CpX and XpG dinucleotides (all CpG-prone sites). Start-
ing with a set of 1,562 reliably aligned mouse-rat orthologs
(see Materials and Methods), we identified a significant ex-
cess (compared to the random expectation) of genes with
both negative and positive selection in synonymous sites
in all 5 tests.Masking themutable dinucleotides did not sub-
stantially affect the results (table 1). In order to obtain con-
servative estimates of positively and negatively selected
genes, we required agreement between the 2 evolutionary
models: only genes found to be positively or negatively se-
lected in 3or 4 testswere included in thefinal sets.The results
of test #3 (table 1, PBL, CpX, and XpG sites removed) were
not used in this selection procedure because of the dramatic
loss of sites (.50%) that was caused by the masking proce-
dure andmade the 4Fmethod inapplicable. However, the re-
sults of the PBL test show that this masking had but a small
effect on the number of genes with apparent negative and
positive selection in synonymous sites (table 1).

With this approach, 185 cases of positive (diversify-
ing) selection (positive set) and 438 cases of negative (pu-
rifying) selection (negative set) were identified. The

FIG. 2.—A dendrogram based on the pairwise distances between the
distributions of Ka, Ks, Ki, and Ki-pseudo. The distances between the
distributions are in bits.

Table 1
The Number of Genes with Significant Positive and
Negative Selection in Synonymous Sites

Method
Positive
Selection P

Negative
Selection P

1) PBL, all sites 188 4 � 10�26 517 ,10�50

2) PBL, CG, TG, CA
removed 175 6 � 10�21 279 ,10�50

3) PBL, CX, XG
(X 5 A,T,G,C) removed 185 5 � 10�25 218 6 � 10�40

4) 4F, all sites 189 10�27 438 ,10�50

5) 4F, CG, TG, CA
removed 151 2 � 10�12 227 2 � 10�44

NOTE.—Selection in synonymous sites was measured using the Pamilo-

Bianchi-Li (PBL) method and the fraction of mismatches at 4-fold degenerate sites

(4F). The probability of finding this many or more cases of apparent positive or

negative selection by chance was calculated using the binomial test; the expected

number of genes in the positive and the negative set each is 78 (5% of 1,562 genes).

The dramatic loss of sites caused by the CX/XG masking procedure made the 4F

analysis (unlike the PBL method) inapplicable for this method. Therefore, the

results obtained with this stringent filtering were not used for constructing the final

sets of genes with apparent negative and positive selection in synonymous sites.
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remaining 939 genes were conservatively assigned to the
neutral set. Thus, ;28% of the analyzed rodent genes were
found to be subject to substantive negative selection in syn-
onymous sites, whereas roughly half as many genes
(;12%) appeared to be subject to relatively strong positive
selection. A comparison of the content of CpG sites involv-
ing synonymous position in the 3 gene sets did not reveal
significant differences, suggesting that the observed distinct
modes of evolution are not caused by effects of mutagenic
contexts (supplementary table 4S).

We further compared the Ks, Ki, Ki-pseudo, and Ka
distributions for the positive, negative, and neutral datasets.
The distributions of Ka, Ki, and Ki-pseudo were very sim-
ilar, in both shape and parameter values in all 3 sets (figs.
3a,c,d), although there was a statistically significant differ-
ence between the distributions of all 3 of these variables
(supplementary table 5S). In a sharp contrast, the Ks distri-
butions differed much more significantly between the 3
gene sets than the Ka, Ki-pseudo, or Ki distributions
(see supplementary table 5S, and compare fig. 3b to figs.
3a,c,d). Although all 3 Ks distributions were, approxi-
mately, equally broad, the negative and positive set distri-
butions were significantly shifted to the left and to the right,
respectively, compared to the neutral set distribution
(fig. 3). In particular, the mean Ks in the positive set
was substantially greater than the mean Ks of the negative
set (mean 5 0.239 for positive; mean 5 0.132 for negative
set) as expected of sites evolving under positive selection.

It should be emphasized that the existence of a major
difference between the Ks distributions but not Ki distribu-
tions for the negative and positive sets (compare fig. 3b and
fig. 3c) all but rules out a potential alternative explanation of
these results, namely, that the apparent positive selection in
synonymous sites is an artifact caused by an anomalously
high sequence conservation, due to purifying selection, in

the intronic sequences of the respective genes. In order to
further ascertain that purifying selection in introns was not
a significant factor accounting for the detected positive se-
lection in synonymous sites, we applied stringent filtering
to remove potential functional elements from the intronic
sequences used in the Ki and Ki-pseudo calculations.
For that purpose, longer exon-flanking sequences were
trimmed off the intron alignment, and short introns that
could be enriched for functional elements were discarded.
This procedure reduced the set of orthologous gene pairs
available for the analysis to 952 but did not substantially
change the fractions of genes subject to positive and neg-
ative selection in synonymous sites (table 6S). These results
indicate that Ki-pseudo is, indeed, an appropriate baseline
for measuring selection acting at other classes of sites in
orthologous genes from closely related species.

Ks and Ka Are Correlated in the Negative and Neutral
Sets but Not in the Positive Set

Does the relationship between Ks, Ki-pseudo, and Ka
reveal anything about the evolutionary forces that affect the
positive and negative sets? We addressed this question by
checking whether any of the variables were correlated, and
whether the strength of such correlations differed between
the sets. We observed a moderate but statistically highly
significant positive correlation between Ks and Ka for
the negative set (table 2 and fig. 4), which could be ex-
pected, given that genes in this set are under strong purify-
ing selection; similar observations have been reported
previously in several independent studies (Lipman and
Wilbur 1984; Wolfe and Sharp 1993; Mouchiroud, Gautier,
and Bernardi 1995; Makalowski and Boguski 1998; Smith
and Hurst 1999). A somewhat weaker but also highly sig-
nificant correlation between Ka and Ks was seen in the

FIG. 3.—Distributions of Ka (a), Ks (b), Ki (c), and Ki-pseudo (d) for the 3 sets of rodent genes. In each panel, the blue curve corresponds to the
negative set, the green curve to the neutral set, and the red curve to the positive set.
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neutral set (table 2 and fig. 4). The significant correlation
between Ks and Ka in the negative and neutral sets implies
that the evolutionary forces that exert purifying selection on
synonymous sites in the negative set are linked to the evo-
lution of protein structure and function. In particular, it
seems likely that the negative selection acting on synony-
mous sites has to do with the high level of expression that is
characteristic of genes encoding highly conserved proteins
(Pal, Papp, and Hurst 2001; Krylov et al. 2003; Wolf,
Carmel, and Koonin 2006). By contrast, in the positive
set, Ks and Ka showed a much weaker and not significant
correlation (r 5 0.08, P 5 0.28; table 2 and fig. 4). To con-
trol for the possible effect of the smaller sample size of the
positive set, we generated 10,000 random samples of 185
genes each from the total dataset and found only 93 sampled
sets with r � 0.08 (P , 0.01). Thus, the absence of a sig-
nificant correlation between Ka and Ks in the positive gene
set is not a sample size artifact. This observation suggests
that, in sharp contrast with both the negative and the neutral
sets, the forces that affect the evolution of synonymous sites
in the positive-set genes are uncoupled from any selection
acting at the level of protein structure and function.

We then examined the relationship between Ks and
Ki-pseudo and observed strong positive correlations for

all 3 gene sets; slightly weaker but also highly significant
correlations were found for Ks and Ki (table 2). At first
glance, this result suggests the possibility that evolution
of introns might not be neutral, and accordingly, Ki-pseudo
might not be a robust null model for measuring selection at
synonymous sites. However, this does not seem to be the
case, because the strength of the correlation was nearly
identical among the 3 gene sets. It appears most likely that
the correlations between Ks and Ki (and Ki-pseudo) reflect
regional mutational biases across the genome. Such biases
have been reported previously (Matassi, Sharp, and Gautier
1999), and for the rodent genes analyzed here, we observed
a highly significant anticorrelation between the differential
of the Ki and Ks values and the distance separating the re-
spective genes on the chromosome: closely spaced genes,
typically, had similar Ks, Ki, and Ki-pseudo values; no such
effect was seen for Ka (supplementary figs. 2S and 3S).

Given that Ks is correlated with Ka in the negative and
neutral sets, and with Ki in all 3 sets, we performed a partial
correlation analysis in an attempt to disentangle these cor-
relations. In the negative and neutral sets, the correlations
between Ka and both Ks and Ki became smaller but re-
mained highly significant after the removal of the effect
of the other variable (supplementary table 7S). Thus, in
the negative and neutral sets, the correlation between Ka
and Ks appears to be valid in itself and might reflect similar
selective pressures at synonymous and nonsynonymous
sites. The correlation between Ka and Ki, which was, in

FIG. 4.—The correlations between Ka and Ks for the negative (a),
neutral (b), and positive (c) gene sets.

Table 2
The Correlations Between the Analyzed Variables

Negative Set

Ka Ks Ki Ki-pseudo EL EB DG

Ka 1.00 0.27 0.29 0.13 –0.10 –0.20 0.13
Ks 1.00 0.46 0.67 –0.14 –0.15 –0.11

Ki 1.00 0.55 –0.08 –0.18 0.09
Ki-pseudo 1.00 –0.08 –0.11 –0.12

EL 1.00 0.69 0.13
EB 1.00 0.09

DG 1.00
Neutral Set

Ka Ks Ki Ki-pseudo EL EB DG
Ka 1.00 0.19 0.24 0.14 –0.08 �0.21 0.09

Ks 1.00 0.53 0.67 –0.06 �0.08 0.05
Ki 1.00 0.58 0.03 �0.03 0.08

Ki-pseudo 1.00 0.01 �0.03 �0.01
EL 1.00 0.66 0.06

EB 1.00 �0.02
DG 1.00

Positive Set
Ka Ks Ki Ki-pseudo EL EB DG

Ka 1.00 0.08 0.02 �0.01 �0.17 �0.25 0.25
Ks 1.00 0.48 0.72 0.15 0.18 0.17

Ki 1.00 0.54 0.10 �0.04 0.14
Ki-pseudo 1.00 0.16 0.09 0.05

EL 1.00 0.53 �0.02
EB 1.00 �0.20

DG 1.00
Complete Set

Ka Ks Ki Ki-pseudo EL EB DG
Ka 1.00 0.25 0.23 0.08 �0.10 �0.22 0.14

Ks 1.00 0.46 0.44 �0.05 �0.07 0.10
Ki 1.00 0.54 0.01 �0.08 0.10

Ki-pseudo 1.00 0.01 �0.03 �0.06
EL 1.00 0.65 0.07

EB 1.00 �0.01
DG 1.00

NOTE.—The table shows the Pearson correlation coefficient (R) values for each

pair of variables. Statistically significant (P � 0.05) values are indicated by shading.
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part, independent of the Ks-Ki correlation and was greater
in the negative set than in the neutral set (supplementary
table 7S), is harder to explain. It cannot be ruled out that
there is some pressure of purifying selection on intron se-
quences, the nature of which remains obscure. Should such
a selective component, indeed, affect evolution of introns in
the negative set, this would make our estimate of genes sub-
ject to purifying selection at synonymous sites even more
conservative. By contrast, in the positive set, there was no
significant correlation between Ka and either Ks or Ki, in-
dicating that, in these genes, evolution of the protein se-
quence is completely decoupled from the evolution of
noncoding sequences. Taken together, these results indicate
that there are at least 2 distinct components in the evolution
of synonymous sites, a selective one and a mutational one.
The nature of the mutational component is the same across
all analyzed genes. By contrast, the selective component is
linked to the protein evolution in the negative set but ap-
parently is of a different nature in the positive set.

Potential Driving Forces of Selection in Synonymous
Sites: Significant Differences in Expression and mRNA
Stability Between the Positive and Negative Sets

What factors contribute to positive and negative selec-
tion in synonymous sites? Perhaps even more importantly,
can we identify the probable causes of the lack of correla-
tion between Ks and Ka in the positive set? We evaluated
the roles of gene function, codon bias, gene expression, and
mRNA stability as potential driving forces of selection in
synonymous sites. There were no significant differences in
the distribution across the Gene Ontology (GO) categories
between the genes of the negative, neutral, and positive sets
(data not shown), hence no straightforward explanation for
the observed differences in the selection regimes through
the biological functions of the respective genes. We then
compared the codon bias [determined either as the effective
number of codons (ENC) or as the codon adaptation index
(CAI)] between the 3 gene sets. Moderate but statistically
significant differences in CAI were detected between the
negative and positive sets, with the highest value observed
for the negative set (tables 3 and 4). Thus, the pattern of
codon bias exhibited by the genes in the negative set is more
similar to the pattern found among highly expressed genes
(the reference set) than to the pattern found within the pos-

itive set. This result is consistent with the expectation that
genes that are more biased in their choice of synonymous
codons tend to be more conserved. A significant difference
in ENC was also observed between the negative and neutral
sets (tables 3 and 4). Given that a tighter control over codon
usage would be a side effect of strong purifying selection
within the negative set, this result is not surprising. The
nonsignificant differences between the positive set and
the other 2 sets are likely to result from the fast evolution
in synonymous sites of positively selected genes. A com-
parison of gene expression, determined either as expression
level (EL) or as expression breadth (EB), revealed no sig-
nificant differences between the positive, neutral, and neg-
ative sets (table 3 and 4). Some reports have suggested that
purifying selection on synonymous sites affects the effi-
ciency and accuracy of translation in certain model organ-
isms such as Escherichia coli and Drosophila melanogaster
(Ikemura 1985; Eyre-Walker 1996; Akashi and Eyre-
Walker 1998); however, no strong indications of such
selective pressures in mammalian genomes have been de-
tected (Smith and Hurst 1999; Duret andMouchiroud 2000;
Iida and Akashi 2000). Furthermore, these findings were in
agreement with previous reports indicating that rates of syn-
onymous divergence are not correlated with patterns in gene
expression (Lercher, Chamary, and Hurst 2004).

However, examination of the correlations between the
rates of evolution in synonymous and nonsynonymous sites
and characteristics of expression in the 3 gene sets produced
more informative and, partly, unexpected results. In the
negative set, there was a relatively low but statistically sig-
nificant anticorrelation between Ks and expression (both
EL and EB); these anticorrelations paralleled those between
Ka and expression (table 2) and were compatible with the
previous observations on slow evolution of highly and
broadly expressed genes (Duret and Mouchiroud 2000;
Pal, Papp, and Hurst 2001; Krylov et al. 2003; Wolf,
Carmel, and Koonin 2006). The positive set showed a strik-
ingly different pattern, with Ks being positively correlated
with both EL and EB, whereas for Ka the correlation was
negative and of roughly the same magnitude as in the other
2 gene sets (table 2). Thus, in a pattern that is the diametrical
opposite of what is seen in the negative set (and, less pro-
nouncedly, in the neutral set), fast evolution in synonymous
sites that appear to be subject to positive selection is asso-
ciated with higher and broader expression of the
corresponding gene.

Table 3
Codon Bias (ENC and CAI), Gene Expression (EL and
EB), and mRNA Stability (DG) in the 3 Sets of Analyzed
Rodent Genes

Positive Neutral Negative

Mean
Standard
Deviation Mean

Standard
Deviation Mean

Standard
Deviation

Codon Bias ENC 49.618 4.245 49.890 4.081 49.199 4.400
CAI 0.748 0.046 0.754 0.044 0.759 0.045

Gene
ExpressionEL 464.450 752.336 470.100 595.625 508.509 605.628

EB 17.219 19.126 18.232 20.491 19.583 20.429
mRNA

Stability DG –0.329 0.044 –0.338 0.042 –0.347 0.045

NOTE.—DG values are normalized for length.

Table 4
Statistics of the Comparison of the Negative, Neutral, and
Positive Gene Sets with Respect to Codon Bias (ENC
and CAI), Gene Expression (EL and EB) and mRNA
Stability (DG)

Codon Bias Gene Expression mRNA
Stability

ENC CAI EL EB DG

Positive versus Neutral* 1.000 0.259 1.000 1.000 0.0117
Positive versus Negative* 0.818 0.012 1.000 0.747 2.7 � 10�16

Negative versus Neutral* 0.013 0.115 1.000 1.000 3.96 � 10�10

Combined** 0.017 0.009 0.63 0.468 3.69 � 10�18

NOTE.—Bonferroni adjusted P values computed using Student’s t-test (*) and

P values for combined data were computed using ANOVA (**).
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It has been proposed that purifying selection on syn-
onymous sites is linked to increased mRNA stability (Duan
and Antezana 2003; Chamary and Hurst 2005; Shabalina,
Ogurtsov, and Spiridonov 2006). Thus, we looked for dif-
ferences in patterns of mRNA stability between the posi-
tive, neutral, and negative sets. Using previously
published methods (Shabalina, Ogurtsov, and Spiridonov
2006), we found that the average predicted mRNA stability
(kcal/mol) was significantly greater in the negative set than
in the neutral or positive sets (fig. 5 and tables 5 and 6). It
has been shown previously that the contributions of nucleo-
tides to mRNA stability followed a periodic pattern dictated
by the structure of the genetic code, with the third, degen-
erate position being the primary contributor (Shabalina,
Ogurtsov, and Spiridonov 2006). This pattern was, indeed,
apparent in all 3 gene sets analyzed here (fig. 5). Notably,
the difference in RNA stability (estimated free energy)
between the negative, neutral, and positive sets was consis-
tent and significant over all 3 codon positions (fig. 5 and
tables 5 and 6). This suggests that positive selection for
mRNA destabilization affects all codon positions, although
in nonsynonymous sites this relatively weak effect is over-
shadowed by selection acting at the protein level. No sig-
nificant differences in nucleotide content within the codon
positions were observed between the positive and negative
sets (supplementary table 8S), indicating that the differen-
ces in mRNA stability are not artifacts caused by different
base compositions.

We further assessed correlations between DG and Ks
in the 3 gene sets and found the results to be consistent with
selection acting to maintain or establish the optimal stability
of the mRNA secondary structure. The correlation between
DG and Ks was not significant in the neutral set, whereas
the correlations of opposite signs were observed in the neg-
ative and the positive sets. In the negative set, there was
a low but significant anticorrelation between DG and Ks,
whereas the positive set showed a somewhat greater, pos-
itive correlation (table 2). In other words, in the negative
set, the genes that evolve relatively slowly tend to possess
less stable mRNA secondary structure than faster evolving
genes; conversely, in the positive set the faster evolving

genes are less stable than slowly evolving ones. Thus, it
appears that purifying selection in the negative set prevents
the formation of excessively stable secondary structure,
whereas in the positive set diversifying selection might
drive mRNA destabilization.

To summarize, the correlations between Ks, gene ex-
pression, and predicted mRNA stability were all negative in
the negative set but positive in the positive set (fig. 6A).
These coherent but contrasting correlation structures, cer-
tainly, do not prove a cause-and-effect relationship between
mRNA stability and expression in mammalian evolution,
but are compatible with the hypothesis that both purifying
and positive selection in synonymous sites act at the level of
mRNA secondary structure, which affects stability and,
through mRNA degradation process, the expression levels
measured in microarray experiments. In a sharp contrast,
the correlation structures for Ka were identical for the pos-
itive and negative set (fig. 6B), suggesting similar patterns
of (purifying) selection in nonsynonymous sites. In this
case, acceleration of evolution, on average, seems to result
in mRNA destabilization and lower expression.

Conclusions

We developed and applied a robust statistical test to
identify purifying and positive selection acting on synony-
mous sites of mammalian genes using shuffled intron

FIG. 5.—Plot of DG values (kcal/mol) calculated for base pairs along the 150-nucleotide stretch of coding sequence starting from the codon
immediately following the start ATG codon. Values are averaged across the CDS in the negative set (blue), neutral set (green), and positive set (red).

Table 5
Free Energy (DG) of Base-Pairing for Individual Codon
Positions for the 3 Gene Sets

Positive Neutral Negative

Mean
Standard
deviation Mean

Standard
deviation Mean

Standard
deviation

pos_1 –2.182 0.092 –2.205 0.043 –2.275 0.066
pos_2 –2.175 0.089 –2.197 0.054 –2.276 0.063
pos_3 –2.293 0.091 –2.351 0.051 –2.411 0.06

NOTE.—DG values are normalized for the predicted number of base-paired

nucleotides for each of the codon positions within the 150 upstream nucleotides of

the CDS (AUG start codon removed).
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sequences as the proxy for neutral evolution. As expected,
considering many previous reports on strong, positive cor-
relations between Ka and Ks, we observed that a substantial
fraction of the analyzed genes was subject to significant pu-
rifying selection at synonymous sites (Akashi 1994;
Mouchiroud, Gautier, and Bernardi 1995; Makalowski
and Boguski 1998). By contrast, the finding that ;12%
of the genes seemed to experience substantial positive se-
lection at synonymous sites was surprising. A comparison
of the distributions of Ks and Ki for the negative and pos-
itive gene sets (fig. 3) seems to rule out the possibility that
the apparent positive selection in synonymous sites is ac-
tually due to purifying selection affecting the respective in-
tronic sequences.

The fraction of rodent genes with apparent positive se-
lection in synonymous codons is considerably greater than
the fraction of mammalian genes that have been reported to
exhibit positive selection on the level of the amino acid se-
quence, as reflected in Ka/Ks . 1 for the entire coding se-
quence. The specific numbers of mammalian genes that are
subject to strong positive selection differ between studies,
but a recent careful analysis of ;8,000 orthologous genes
from humans and chimpanzees revealed only 35 genes with
statistically significant positive selection manifest at the
level of the entire protein sequence (Nielsen et al. 2005).
Of the 1,562 genes analyzed here, only 2 had Ka/Ks .1
at the statistically significant level, indicating positive selec-
tion on the level of complete protein sequences (data not

shown). Thus, it seems that, in comparable tests, 1 to 2 or-
ders of magnitude more mammalian genes exhibit positive
selection in synonymous than in nonsynonymous sites.
This excess of positive selection in synonymous sites seems
to reflect different balances of evolutionary forces that act at
positions coding for amino acids and at synonymous posi-
tions. Protein sequences are almost universally subject to
purifying selection of varying strength (Ka/Ks ,, 1 for
most genes), which is likely to obscure more subtle effects
of positive selection acting at some positions; indeed, site-
specific positive selection detected by multiple alignment
analysis appears to be common (Yang and Bielawski
2000; Zhang, Nielsen, and Yang 2005). By contrast, as
shown here, readily detectable purifying selection on syn-
onymous sites might affect only about one-quarter of the
mammalian protein-coding genes such that positive selec-
tion is readily detectable against the, largely, neutral back-
ground of synonymous sites. Additionally, Ki and,
especially, Ki-pseudo appear to be better neutral baselines
than Ks such that positive selection at synonymous sites
could be easier to detect than positive selection at nonsy-
nonymous sites for which Ks is used as the baseline. This
being said, a comparison of the distributions of Ka and Ks
in rodent genes (fig. 1) indicates that Ka/Ks remains a rea-
sonable measure of the strength of selection in proteins,
given that protein sequences are subject to much more pro-
nounced constraints than noncoding sites.

Finding the biological basis or at least a strong func-
tional correlate of positive selection in synonymous sites
turned out to be a challenge. The lack of significant corre-
lation between Ks and Ka in the positive set indicates that
positive selection in synonymous sites is decoupled from
the evolution of the respective proteins. This conclusion
is compatible also with the lack of any significant excess
of a particular class of biological functions among the genes
in the positive set. By contrast, analysis of links between
selection in synonymous sites and gene expression and
mRNA stability revealed nontrivial connections. Although
there were no significant differences in the overall expres-
sion level or breadth between positively selected, nega-
tively selected and neutral genes, the dependences
between evolution rate and expression was remarkably dif-
ferent. In particular, and in contrast to negatively selected
genes, among genes with positive selection in synonymous
sites, those that are highly and widely expressed appear to

Table 6
Statistics of the Comparison of the Base-Pairing Free
Energies (DG) for Individual Codon Positions in the 3
Analyzed Gene Sets

pos_1 pos_2 pos_3 Total CDS

Positive versus
Neutral* 0.387 0.456 9.3 � 10�4 0.0117

Positive versus
Negative* 7.38 � 10�7 3.6 � 10�8 3.51 � 10�10 2.7 � 10�16

Negative versus
Neutral* 1.19 � 10�7 1.0 � 10�8 2.95 � 10�6 3.96 � 10�10

Combined** 3.54 � 10�9 1.45 � 10�10 1.09 � 10�12 3.69 � 10�18

NOTE.—Bonferroni adjusted P values were computed for the same data

included in table 5 using Student’s t-test (*) and P values for combined data were

computed using ANOVA (**).
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FIG. 6.—The structure of correlations between Ks (A) and Ka (B) and expression breadth (EB), expression level (EL), and predicted mRNA
stability (dG) for the positive (purple) and negative (light blue) gene sets.
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evolve faster (i.e., under a stronger selective pressure) than
lowly expressed ones. The second clear and statistically
highly significant correlation was with predicted stability
of the mRNA secondary structure: the transcripts in the
set of positively selected genes are predicted to be consid-
erably less stable than those in the negative and neutral sets.
The correlations between Ks, on the one hand, and expres-
sion and mRNA stability, on the other hand, were all of the
same sign within the positive and negative sets but of the
opposite signs between the sets (fig. 6A). This is compatible
with a causal relationship between mRNA stability and ex-
pression levels measured in microarray experiments, with
the link probably actualized through regulation of mRNA
degradation. Therefore, although we technically cannot as-
certain the direction of evolution without using a third spe-
cies as an outgroup, we suspect that mRNA destabilization
could be an important factor that, through its effect on
mRNA stability and possibly also translation rates, drives
positive selection in synonymous sites. Additionally or al-
ternatively, it is conceivable that positive selection in syn-
onymous positions is driven by the necessity to maintain
interactions with other RNA species (Mattick and Makunin
2006).

We cannot be confident that the correlates of selec-
tion in synonymous site detected here, indeed, reflect
the principal underlying selective forces. However, it is
our hope that the demonstration of the wide spread of pos-
itive selection in synonymous sites in mammalian genes
stimulates further theoretical and experimental studies
aimed at the deeper characterization of the causes of this
phenomenon.

Supplementary Material

Supplementary tables and figures are available at
Molecular Biology and Evolution online (http://www.mbe.
oxfordjournals.org/).
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ABSTRACT

We sought to evaluate the extent of the contribution of transposable elements (TEs) to human microRNA
(miRNA) genes along with the evolutionary dynamics of TE-derived human miRNAs. We found 55
experimentally characterized human miRNA genes that are derived from TEs, and these TE-derived miRNAs
have the potential to regulate thousands of human genes. Sequence comparisons revealed that TE-derived
human miRNAs are less conserved, on average, than non-TE-derived miRNAs. However, there are 18 TE-
derived miRNAs that are relatively conserved, and 14 of these are related to the ancient L2 and MIR families.
Comparison of miRNA vs. mRNA expression patterns for TE-derived miRNAs and their putative target genes
showed numerous cases of anti-correlated expression that are consistent with regulation via mRNA
degradation. In addition to the known human miRNAs that we show to be derived from TE sequences, we
predict an additional 85 novel TE-derived miRNA genes. TE sequences are typically disregarded in genomic
surveys for miRNA genes and target sites; this is a mistake. Our results indicate that TEs provide a natural
mechanism for the origination miRNAs that can contribute to regulatory divergence between species as well
as a rich source for the discovery of as yet unknown miRNA genes.

MICRORNAS (miRNAs) are small, �22-nt-long,
noncoding RNAs that regulate gene expression

(Ambros 2004). In animals, miRNA genes are tran-
scribed into primary miRNAs (pri-miRNAs) and processed
by Drosha to yield �70- to 90-nt pre-miRNA transcripts
that form hairpin structures. Mature miRNAs are liber-
ated from these longer hairpin structures by the RNase
III enzyme Dicer (Bartel 2004). Drosha acts in the nu-
cleus, cleaving the pri-miRNA near the base of the hairpin
stem to yield the pre-miRNA sequence. The pre-miRNA
is then exported to the cytoplasm where the stem is cleaved
by Dicer to produce a miRNA duplex. One strand of this
duplex is rapidly degraded and only the mature �22-nt
miRNA sequence remains. The mature miRNA associates
with the RNA-induced silencing complex (RISC), and
together the miRNA–RISC targets mRNAs for regula-
tion. miRNA target specificity is determined by partial
complementarity with the 39-untranslated region (UTR)
sequence of the mRNA, and regulation is achieved
by translational repression and/or mRNA degrada-
tion. miRNAs have been implicated in a variety of func-
tions, including developmental timing (Lee et al. 1993;
Reinhart et al. 2000), apoptosis (Brennecke et al.
2003), and hematopoetic differentiation (Chen et al.
2004).

miRNAs were first discovered in Caenorhabditis elegans
through genetic analysis of developmental mutants

(Lee et al. 1993). The small RNA product of the lin-4
gene was found to negatively regulate lin-14 expression
via interaction with a complementary region in the lin-
14 39-UTR. This system appeared to be unique until a
second example of a similar small regulatory RNA in C.
elegans, let-7, was discovered 7 years later (Reinhart et al.
2000). Shortly thereafter, let-7 homologs and transcripts
were detected among a phylogenetically diverse set of
animals (Pasquinelli et al. 2000). The realization that
miRNAs represent a distinct, coherent, and abundant
class of regulatory genes was finally crystallized in 2001
with the publication of three back-to-back articles in
Science, reporting the discovery of numerous novel
miRNA genes (Lagos-Quintana et al. 2001; Lau et al.
2001; Lee and Ambros 2001). These articles introduced
the term miRNA to refer to all small RNAs with similar
genomic features but unknown functions, and miRNAs
have now been found in all metazoans surveyed for their
presence (Bartel 2004).

Given their relatively recent discovery and character-
ization, a number of open questions concerning the
function and evolution of miRNAs remain. In particu-
lar, the evolutionary origins of miRNAs are not well ap-
preciated. For instance, many miRNA genes were found
to be evolutionarily conserved and this was thought
to be a general characteristic of miRNAs. However, a
number of nonconserved miRNAs have been recently
discovered (Bentwich et al. 2005). The extent to which
miRNA genes evolve as paralogous gene families is also
unknown. Even the upper bound on the number of
miRNA genes encoded by any given genome is not
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known (Berezikov et al. 2006), and the number of new
entries in the miRBase registry of miRNA genes con-
tinues to grow steadily (Griffiths-Jones et al. 2006).

We sought to evaluate the contribution of transposable
elements (TEs) to the origin and evolution of human
miRNA genes. Another class of regulatory RNAs, small
interfering RNAs (siRNAs), are known to be related to TEs.
Interestingly, this has been pointed out as a distinction
between miRNAs and siRNAs, which are closely related in
terms of structure, function, and biogenesis. As opposed to
siRNAs, miRNAs were thought to derive from loci distinct
from other genes or TEs (Bartel 2004). However, several
examples of miRNA genes that are derived from TEs have
been recently identified (Smalheiser and Torvik 2005;
Borchert et al. 2006; Piriyapongsa and Jordan 2007).
We wanted to look at this phenomenon more closely to
identify the full extent of human miRNA genes that are
related to TEs and to characterize how these genes evolve
as well as their regulatory and functional potential.

TEs have several characteristics that make them in-
teresting candidates for donating miRNA sequences.
First of all, TEs are ubiquitous and abundant genomic
sequences. Thus, they could provide for the emergence
of paralogous miRNA gene families as well as multiple
target sites dispersed throughout the genome. Since
TEs tend to be among the most rapidly evolving of all
genomic sequences, they may also provide a mechanism
for the emergence of lineage-specific miRNA genes that
could exert diversifying regulatory effects. Finally, the
full contribution of TEs to miRNA sequences is likely to
be underestimated due to ascertainment biases. This is
because computational methods aimed at the detection
of novel miRNAs tend to purposefully exclude TE se-
quences (Bentwich et al. 2005; Lindow and Krogh

2005; Nam et al. 2005; Li et al. 2006). This is often done
for reasons of tractability, but also reflects the widely
held notion that TEs are genomic parasites that do not
play any functional role for their host species (Doolittle

and Sapienza 1980; Orgel and Crick 1980). However,
many studies have identified a variety ways in which TEs
have been domesticated (Miller et al. 1992) to provide
functions to their hosts (Kidwell and Lisch 2001).
These cases include the donation of coding sequences
(Volff 2006) as well as numerous instances of TE-
derived regulatory sequences (Britten 1996; Jordan

et al. 2003; van de Lagemaat et al. 2003).
To evaluate the contribution of TEs to human miRNAs,

we compared the genomic locations of TEs to the loca-
tions of experimentally validated human miRNA sequences
reported in the miRBase database (Griffiths-Jones et al.
2006). The evolutionary dynamics of TE-related miRNAs
were evaluated by within- and between-genome sequence
comparisons. The potential regulatory and functional
significance of TE-derived miRNAs was explored by com-
bining information on miRNA target-site prediction, ex-
pression data for miRNA–mRNA pairs, and gene functional
annotations. We also sought to discover putative cases of

novel TE-derived miRNA genes in the human genome
through ab initio prediction.

MATERIALS AND METHODS

Detection: Human miRNA sequences and predicted target
sites were taken from version 8.2 of the miRBase database
(Griffiths-Jones et al. 2006). These data do not include ab
initio miRNA gene predictions. The UCSC Genome Browser
(Kent et al. 2002) and Table Browser (Karolchik et al. 2004)
tools were used to search for miRNA genes colocated with TEs
and to compare the evolutionary rates of miRNA genes.
Human miRNA sequences were mapped to the hg18 (NCBI
build 36.1) version of the human genome sequence and a
generic feature format ‘‘custom track’’ was created (available
upon request). Genomic locations of the miRNAs were com-
pared to the locations of TEs annotated with the Repeat-
Masker program (Smit et al. 1996–2004). For this purpose,
precomputed RepeatMasker annotations of hg18 were com-
bined with RepeatMasker-determined genomic locations of a
set of 96 ‘‘conserved’’ TE families recently added to Repbase
( Jurka et al. 2005). These conserved consensus sequences
correspond to low-copy-number TEs that show anomalously
low levels of between-genome orthologous sequence diver-
gence and can be found by searching Repbase (http://www.
girinst.org/) with the keyword ‘‘conserved.’’

Sequences of TE-derived miRNAs were compared to the
human genome sequence using BLAT (Kent 2002). The criteria
used for genome sequence hits were (1) $80% sequence
identity with the query miRNA sequence and (2) the genomic
hit region must be $80% and #120% of the length of the
miRNA query sequence. The latter requirement was used to
ensure that long genomic insertions were not identified as
putative paralogous miRNAs.

Evolution: Comparative genomic sequence data from the
UCSC Genome Browser were used to analyze the relative
evolutionary rates of human miRNAs. Evolutionary rates were
derived from multiple whole-genome sequence alignments
between the human and 16 other vertebrate genomes (Kent

et al. 2003; Blanchette et al. 2004). Human miRNA evolu-
tionary rates were calculated in two ways: (1) by evaluating the
number of conserved sites per miRNA and (2) by evaluating
the per-site conservation scores of miRNA sequences. Con-
served human genome sites were predicted by the phastCons
program, which uses a phylogenetic hidden Markov model
to calculate the probabilities of sites being either conserved
or nonconserved (Siepel et al. 2005). Conservation scores for
human genome sites were also taken from the phastCons
analysis of the vertebrate multiple genome sequence align-
ment, and these scores correspond to the posterior probability
that a site is conserved or nonconserved.

Regulation and function: Human miRNA target-site pre-
dictions were taken from miRBase, which uses a modified pro-
tocol based on the miRanda algorithm (Enright et al. 2003).
The locations of target-site sequences in the human genome
were compared to the RepeatMasker-based TE annotations.
Expression levels for human miRNAs across five tissues (thy-
mus, brain, liver, placenta, and testis) were taken from an
oligonucleotide-based microarray study (Barad et al. 2004).
Human mRNA expression levels from corresponding mRNA
targets were taken from the Novartis Symatlas data set (Su et al.
2004). Corresponding miRNA and mRNA expression profiles
were normalized using standard z-score transformation with
the program Spotfire (http://www.spotfire.com) and compared
using the Pearson correlation coefficient. Gene expression data
were visualized using the Genesis program (Sturn et al. 2002).
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Gene ontology (GO) analysis (Ashburner et al. 2000) was
done using the GO Tree Machine program (Zhang et al.
2004). GO Tree Machine was used to identify significantly over-
represented biological process GO terms from a set of genes
predicted to be regulated by a particular miRNA and to plot
the location of these GO terms along the GO-directed acyclic
graph.

TE–miRNA prediction: TE locations in the human genome
were considered together with the output of the program
EvoFold, which combines RNA secondary structure prediction
with the evaluation of multiple sequence alignments to iden-
tify conserved secondary structures (Pedersen et al. 2006).
TE sequences that encode conserved hairpin structures with
length $55 bp, a single terminal loop #20bp, and at least six
paired bases in the stem region (Bentwich et al. 2005) were
chosen for further analysis. For conserved TE-encoded hair-
pins of ,55 bp that met all other criteria, the predicted
secondary structure sequences were extended manually and
rechecked for the ability to form hairpin structures using the
program RNAfold from the Vienna RNA package (Hofacker

et al. 1994). Sequences that were able to encode hairpins $55
bp after manual extension were chosen for further analysis.
The potential for putative TE-derived miRNAs identified in
this way to be expressed was evaluated using EST and mRNA
data. Our TE–miRNA prediction protocol is represented in
supplemental Figure 1 at http://www.genetics.org/supplemental/.

RESULTS

Transposable-element-derived miRNAs: miRBase is an
online database of miRNA gene sequences and predicted
target sites (Griffiths-Jones et al. 2006); version 8.2 of
miRBase contained 462 human miRNA gene sequences.
Of these human miRNA genes, 379 are defined on the
basis of experimental information, cloning of mature
miRNA sequences for the most part, while 83 are predic-
tions on the basis of sequence similarity with miRNAs that
have been experimentally characterized in related spe-
cies. We mapped these human miRNA genes to the com-
plete genome sequence and compared their locations to
the locations of annotated TEs. A total of 68 human
miRNA genes share sequences with TEs, and all but 7
of these correspond to miRNAs experimentally charac-
terized from human samples. The absence of ab initio
miRNA gene predictions in the miRBase data set ensures
that we are uncovering bona fide TE–miRNA relation-
ships. Of these TE-related miRNAs, 49 are found in in-
tron sequences while 19 are intergenic.

TE-related miRNAs differ in terms of the extent of
overlap with TE sequences and the number of distinct
TE sequences from which they are derived. For each
individual TE-related human miRNA, a schematic in
supplemental Figure 2 (at http://www.genetics.org/
supplemental/) illustrates the identity of all colocated
TE sequences along with the extent and position of the
TE–miRNA overlap and the relationship between the
strand-specific orientation of the TE and the miRNA.
The majority (50 of 68) of TE-related miRNAs consist of
.50% TE-derived positions (Figure 1A), and this figure
is likely to be an underestimate since many TE sequen-
ces are known to have diverged beyond the ability to be

recognized by the RepeatMasker annotation software.
The TE–miRNA overlap distribution for the region
of the miRNA gene that corresponds to the processed
(mature) regulatory sequence is even more bimodal
(Figure 1B); 47 sequences have .95% of mature miRNA
positions covered by TE sequence. Nevertheless, there
are a handful (7 of 68) of TE-related miRNA genes that
have ,20% of their sequences colocated with TE se-
quence. These may represent spurious cases of TE–miRNA
overlap. Visual inspection of the TE–miRNA alignments
(supplemental Figure 2 at http://www.genetics.org/
supplemental/) was used to eliminate these unreliable
cases. Only the 55 cases with at least 50% TE coverage
of the pre-miRNA sequence and/or 100% TE coverage
of the mature miRNA sequence were considered as ac-
tual TE-derived miRNAs and used for further analysis
(Table 1). These 55 TE-derived miRNAs represent�12%
(55/462) of all human miRNAs reported in miRBase
version 8.2.

The TE-related miRNAs that we identified are derived
from all four major classes of human TEs: long- and
short- interspersed nuclear elements (LINE and SINE),
long-terminal-repeat-containing elements (LTR) and DNA-
type transposons (Table 1). Specific classes and families
of TEs show marked over- or underrepresentation among

Figure 1.—Percentage of TE-derived residues in miRNA
genes. Frequency distributions are shown for the percentages
of TE-derived residues relative to miRNA gene sequences (A)
and mature miRNA sequences (B).
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TABLE 1

TE-derived human miRNAs

miRNA name
(from miRBase)

miRBase
accession

no. Coordinatesa

Colocated
TE Overlapb

Average
conservation

score Targetsc

hsa-mir-130b MI0000748 Chromosome 22: 20337593–20337674(1) MIRm 65.85 0.8492 865 (10.75)
hsa-mir-151 MI0000809 Chromosome 8: 141811845–141811934(�) L2 100.00 0.9317 863 (12.28)
hsa-mir-28 MI0000086 Chromosome 3: 189889263–189889348(1) L2 93.02 0.9979 1136 (10.21)
hsa-mir-325 MI0000824 Chromosome X: 76142220–76142317(�) L2 89.80 0.9905 751 (13.32)
hsa-mir-330 MI0000803 Chromosome 19: 50834092–50834185(�) MIRm 53.19 0.9867 927 (5.18)
hsa-mir-345 MI0000825 Chromosome 14: 99843949–99844046(1) MIR 39.80 0.8265 895 (7.82)
hsa-mir-361 MI0000760 Chromosome X: 85045297–85045368(�) MER5A 81.94 0.9998 882 (14.51)
hsa-mir-370 MI0000778 Chromosome 14: 100447229–100447303(1) MIRm 100.00 0.9893 1006 (4.77)
hsa-mir-374 MI0000782 Chromosome X: 73423846–73423917(�) L2 54.17 0.9970 773 (7.50)
hsa-mir-378 MI0000786 Chromosome 5: 149092581–149092646(1) MIRb 90.91 1.0000 0 (0)
hsa-mir-421 MI0003685 Chromosome X: 73354937–73355021(�) L2 89.41 0.9999 1023 (14.47)
hsa-mir-422a MI0001444 Chromosome 15: 61950182–61950271(�) MIR3 100.00 0.0018 940 (7.34)
hsa-mir-493 MI0003132 Chromosome 14: 100405150–100405238(1) L2 66.29 0.9990 0 (0)
hsa-mir-513-1 MI0003191 Chromosome X: 146102673–146102801(�) MER91C 100.00 0.0543 1065 (7.14)
hsa-mir-513-2 MI0003192 Chromosome X: 146115036–146115162(�) MER91C 100.00 0.0003 1065 (7.14)
hsa-mir-544 MI0003515 Chromosome 14: 100584748–100584838(1) MER5A1 100.00 0.9337 1056 (10.42)
hsa-mir-545 MI0003516 Chromosome X: 73423664–73423769(�) L2 82.08 0.9958 1065 (16.345)
hsa-mir-548a-1 MI0003593 Chromosome 6: 18679994–18680090(1) MADE1 78.35 0.0391 1255 (7.09)
hsa-mir-548a-2 MI0003598 Chromosome 6: 135601991–135602087(1) LTR16A1,

MADE1
100.00 0.0047 1255 (7.09)

hsa-mir-548a-3 MI0003612 Chromosome 8: 105565773–105565869(�) MLT1G1,
MADE1

100.00 0.0044 1255 (7.09)

hsa-mir-548b MI0003596 Chromosome 6: 119431911–119432007(�) MADE1 83.51 0.0175 1197 (5.93)
hsa-mir-548c MI0003630 Chromosome 12: 63302556–63302652(1) MADE1 83.51 0.0092 1302 (6.76)
hsa-mir-548d-1 MI0003668 Chromosome 8: 124429455–124429551(�) MADE1 83.51 0.0076 1055 (10.24)
hsa-mir-548d-2 MI0003671 Chromosome 17: 62898067–62898163(�) MADE1 83.51 0.0000 1055 (10.24)
hsa-mir-552 MI0003557 Chromosome 1: 34907787–34907882(�) L1MD2 100.00 0.0000 1067 (11.62)
hsa-mir-558 MI0003564 Chromosome 2: 32610724–32610817(1) MLT1C 45.74 0.0112 778 (7.58)
hsa-mir-562 MI0003568 Chromosome 2: 232745607–232745701(1) L1MB7 100.00 0.0019 954 (11.64)
hsa-mir-566 MI0003572 Chromosome 3: 50185763–50185856(1) AluSg 100.00 0.0000 1184 (80.07)
hsa-mir-570 MI0003577 Chromosome 3: 196911452–196911548(1) MADE1 82.47 0.0000 1115 (4.22)
hsa-mir-571 MI0003578 Chromosome 4: 333946–334041(1) L1MA9 96.88 0.0000 948 (8.33)
hsa-mir-575 MI0003582 Chromosome 4: 83893514–83893607(�) MIR 61.70 0.0001 1048 (7.35)
hsa-mir-576 MI0003583 Chromosome 4: 110629303–110629400(1) L1MB7 100.00 0.0121 921 (10.53)
hsa-mir-578 MI0003585 Chromosome 4: 166526844–166526939(1) L2 44.79 0.0064 1012 (7.61)
hsa-mir-579 MI0003586 Chromosome 5: 32430241–32430338(�) MADE1,

L1MB8
100.00 0.3543 1202 (6.32)

hsa-mir-582 MI0003589 Chromosome 5: 59035189–59035286(�) L3, L3 85.71 0.9954 1017 (8.06)
hsa-mir-584 MI0003591 Chromosome 5: 148422069–148422165(�) MER81 92.78 0.0008 794 (10.96)
hsa-mir-587 MI0003595 Chromosome 6: 107338693–107338788(1) MER115 100.00 0.0053 970 (6.39)
hsa-mir-588 MI0003597 Chromosome 6: 126847470–126847552(1) L1MA3 100.00 0.0000 873 (10.77)
hsa-mir-603 MI0003616 Chromosome 10: 24604620–24604716(1) MADE1 84.54 0.0102 1008 (7.44)
hsa-mir-606 MI0003619 Chromosome 10: 76982222–76982317(1) L1MCc 100.00 0.0014 776 (8.38)
hsa-mir-607 MI0003620 Chromosome 10: 98578416–98578511(�) MIR 100.00 0.9990 985 (8.83)
hsa-mir-616 MI0003629 Chromosome 12: 56199213–56199309(�) L2 100.00 0.0004 922 (10.30)
hsa-mir-619 MI0003633 Chromosome 12: 107754813–107754911(�) L1MC4,

AluSx
100.00 0.0008 765 (8.89)

hsa-mir-625 MI0003639 Chromosome 14: 65007573–65007657(1) L1MCa 100.00 0.0018 1065 (4.41)
hsa-mir-626 MI0003640 Chromosome 15: 39771075–39771168(1) L1MB8,

L1MCa
56.38 0.0086 1022 (6.65)

hsa-mir-633 MI0003648 Chromosome 17: 58375308–58375405(1) MIRb 100.00 0.0136 843 (7.12)
hsa-mir-634 MI0003649 Chromosome 17: 62213652–62213748(1) L1ME3A 48.45 0.0019 886 (5.08)
hsa-mir-640 MI0003655 Chromosome 19: 19406872–19406967(1) MIRb 100.00 0.0074 853 (28.49)
hsa-mir-644 MI0003659 Chromosome 20: 32517791–32517884(1) L1MB3 61.70 0.1035 970 (4.95)
hsa-mir-645 MI0003660 Chromosome 20: 48635730–48635823(1) MER1B 62.77 0.0002 682 (13.49)
hsa-mir-648 MI0003663 Chromosome 22: 16843634–16843727(�) L2 98.94 0.0008 943 (6.15)

(continued )
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human miRNAs (Figure 2). The related L2 (LINE) and
MIR (SINE) families, as well as DNA elements, show far
more overlap with miRNA genes than is expected on
the basis of their relative frequency in the genome (37
observed vs. 11 expected; x2 ¼ 30.74, P ¼ 3.0 3 10�8).
Most of the DNA-type elements that contribute to miRNA
genes are short nonautonomous derivatives of full-length
transposons known as miniature inverted-repeat trans-
posable elements (MITEs). This includes a group of seven
closely related miRNA genes (hsa-mir-548), which are all
derived from the Made1 family of MITEs (Piriyapongsa

and Jordan 2007). Alu (SINE) elements and LTR type
TEs are generally underrepresented among TE-derived
miRNA genes. Most TE-related miRNA genes are derived
from a single TE insertion, but there are several examples
where nested insertion events have led to the origin of a
single miRNA gene from two or even three TEs (supple-
mental Figure 2 at http://www.genetics.org/supplemental/).
For instance, there are two cases where a Made1 element
inserted into an LTR element yielded a miRNA gene
(examples 24 and 27 in supplemental Figure 2 at http://
www.genetics.org/supplemental/), and an insertion of
an Alu into a L1 (LINE) sequence also gave rise to a

miRNA gene (example 46 in supplemental Figure 2 at
http://www.genetics.org/supplemental/).

TE-derived human miRNA genes were used as queries
in BLAT searches against the human genome sequence
to search for putative paralogs. There are 19 cases of TE-
derived miRNA genes with closely related paralogs in
the human genome (Table 2). The number of paralogs
per miRNA ranges from 1, for the L1-derived hsa-mir-
552, to 145, for the Made1-derived hsa-mir-548d-2.

Evolution of TE-derived miRNAs: Comparative ge-
nomic sequence data were used to assess the relative
evolutionary rates of TE-derived miRNAs. This analysis
was based on whole-genome sequence alignments be-
tween humans and 16 other vertebrate species. Two re-
lated approaches were used to evaluate the conservation
of individual miRNA sequence sites across vertebrate
genomes; the first approach results in a binary charac-
terization of either conserved or nonconserved for each
site, while the second rests on a more continuous score
that relates the probability of a site being conserved. All
genome sites for human miRNAs were considered using
these two metrics, and the relative conservation levels
for TE-derived vs. non-TE-derived miRNA genes were
compared. A total of 32.1% of sites in TE-derived
miRNAs map to the most conserved elements in the
human genome. This is far greater than the �5% of
conserved sites seen for the entire human genome but
significantly less than seen for non-TE-derived miRNAs,
which have 63.2% conserved sites (t ¼ 4.39, P ¼ 1.4e-5,
Student’s t-test) (Figure 3A). When the per-site conser-
vation probabilities of human miRNAs were measured,
a similar pattern was observed. The average conserva-
tion score of TE-derived miRNAs was 0.33 compared to
0.63 for non-TE-derived miRNAs (t ¼ 4.37, P ¼ 1.5e-5,
Student’s t-test) (Figure 3B). In addition, the frequency
distribution of the average conservation scores for all
human miRNA genes reveals that, compared to non-TE-
derived miRNAs, there are far more TE-derived miRNAs
that show little or no conservation and fewer that are
highly conserved (Figure 3C). Thus, on the whole, TE-
derived miRNAs are significantly less conserved than
non-TE-derived miRNAs.

TABLE 1

(Continued)

miRNA name
(from miRBase)

miRBase
accession no. Coordinatesa

Colocated
TE Overlapb

Average
conservation

score Targetsc

hsa-mir-649 MI0003664 Chromosome 22: 19718465–19718561(�) L1M4, MER8,
AluSx

100.00 0.0005 1033 (10.65)

hsa-mir-652 MI0003667 Chromosome X: 109185213–109185310(1) MER91C 100.00 0.9883 803 (39.36)
hsa-mir-659 MI0003683 Chromosome 22: 36573631–36573727(�) Arthur1 46.39 0.0027 890 (8.20)
hsa-mir-95 MI0000097 Chromosome 4: 8057928–8058008(�) L2 95.06 0.9862 847 (16.06)

a Human genome (hg 18) coordinates of the miRNA.
b Percentage of miRNA overlapping with TE sequence.
c Total number of targets with the percentage derived from TEs in parentheses.

Figure 2.—Percentage of TE sequences among different
classes and families for the human genome (shading) and
for TE-derived miRNA genes (solid). Relative percentages
are shown such that the total will sum to 100% for the genome
and for miRNAs.
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We used the frequency distribution of average con-
servation scores to divide TE-derived miRNAs into con-
served ($0.8 average conservation probability) and
nonconserved (,0.8 average conservation probability)
groups. Using this criteria, there are 37 nonconserved
and 18 conserved TE-derived miRNAs (Table 1). The

least-conserved TE-derived miRNAs are primate specific,
having orthologous sequences in the chimpanzee only
or both the chimpanzee and Rhesus genomes. Of 18
conserved miRNAs, 14 are derived from the L2 and MIR
families; this is far more than would be expected on the
basis of the overall frequency of L2 and MIR sequences
among TE-derived miRNAs (x2¼ 17.8, P¼ 3.6e-5). The
conservation of L2 and MIR TE-derived miRNAs is con-
sistent with a previous study that found many anoma-
lously conserved L2 and MIR sequences (Silva et al.
2003). Indeed, L2 and MIR are relatively ancient TE
families with many sequences that inserted prior to the
divergence of the human and mouse evolutionary line-
ages. We observed 10 of the conserved L2- and MIR-
derived miRNA sequences to have orthologous sequences
in the mouse genome, and there are 9 orthologous
mouse miRNAs in these regions that are annotated in
miRBase (Table 3). All of the 8 conserved L2 miRNAs
are derived from the same region near the 39-end of
the L2 consensus sequence (approximately positions
3200–3400), while the 6 MIR-derived miRNAs are found
in dispersed locations on the MIR consensus sequence.

A frequency distribution of conserved vs. noncon-
served TE-derived miRNA genes, compared to genome-
wide relative TE frequencies, reveals distinct conservation
levels for miRNAs derived from particular TE classes/
families (Figure 4). For instance, L2 and MIRs contrib-
ute far more conserved than nonconserved miRNAs,
and the fraction of conserved L2 and MIR elements in
miRNAs is much higher than seen for these same
elements in the genome as a whole. DNA-type elements
show the opposite pattern. There is a higher fraction of

TABLE 2

Putative TE-derived miRNA paralogs

miRNA name
(from miRBase)

miRBase
accession no. Colocated TE Paralogsa

hsa-mir-513-1 MI0003191 MER91C 3
hsa-mir-513-2 MI0003192 MER91C 3
hsa-mir-548a-1 MI0003593 MADE1 24
hsa-mir-548a-2 MI0003598 LTR16A1, MADE1 81
hsa-mir-548a-3 MI0003612 MLT1G1, MADE1 82
hsa-mir-548b MI0003596 MADE1 23
hsa-mir-548c MI0003630 MADE1 124
hsa-mir-548d-1 MI0003668 MADE1 71
hsa-mir-548d-2 MI0003671 MADE1 145
hsa-mir-552 MI0003557 L1MD2 1
hsa-mir-562 MI0003568 L1MB7 2
hsa-mir-566 MI0003572 AluSg 87
hsa-mir-570 MI0003577 MADE1 48
hsa-mir-571 MI0003578 L1MA9 4
hsa-mir-579 MI0003586 MADE1, L1MB8 3
hsa-mir-603 MI0003616 MADE1 30
hsa-mir-607 MI0003620 MIR 1
hsa-mir-649 MI0003664 L1M4, MER8,

AluSx
4

hsa-mir-652 MI0003667 MER91C 4

a Number of paralogous sequences in the human genome.

Figure 3.—Evolutionary conservation of hu-
man miRNA genes. (A) The percentage of con-
served residues for non-TE-derived miRNAs
(shading) vs. TE-derived miRNAs (solid) with
95% confidence intervals shown. (B) The average
per-site conservation score for non-TE-derived
miRNAs (shading) vs. TE-derived miRNAs (solid)
with 95% confidence intervals shown. (C) Fre-
quency distribution of the average per-site con-
servation scores for non-TE-derived miRNAs
(shading) vs. TE-derived miRNAs (solid).

1328 J. Piriyapongsa, L. Mariño-Ramı́rez and I. K. Jordan



nonconserved DNA-type elements among miRNAs than
is seen for the whole genome. All of the miRNAs derived
from Alu and L1 elements are nonconserved.

Regulation and function: Given their high copy num-
bers, there is a potential for TE-derived miRNAs to
regulate multiple genes via homologous target sites dis-
persed throughout genome. Using the miRBase target
predictions, TE-derived miRNAs were found to have hun-
dreds of putative target sites (Table 1; Figure 5A). How-
ever, while many of these target sites are also derived from
TEs, in most cases the proportion of TE-derived target
sites is �10% (Table 1; Figure 5B). Thus, TE-derived
miRNAs also have the potential to regulate host genes
with non-TE-derived targets. The relative paucity of TE-
derived target sites can be attributed, in part, to the fact
that target-site prediction methods employ conservation
of 39-UTR sequences as one criteria and TEs tend to be
lineage specific and nonconserved.

There are several outliers that have a substantially
higher fraction of TE-derived target sites. For instance,
hsa-mir-566 is derived from Alu and it has 1184 pre-
dicted targets with 948 (80%) derived from TEs. Most
of these TE-derived hsa-mir-566 target sites are related
to Alu insertions and this is consistent with previous
studies that have found numerous putative Alu-related
miRNA target sites in the human genome (Daskalova

et al. 2006; Smalheiser and Torvik 2006).
The predicted target sites analyzed here are all puta-

tive sites and it is difficult to know with certainty whether
they are actually involved in miRNA-mediated gene
regulation. Another way to evaluate the regulatory po-
tential of miRNAs is to compare the expression patterns
of miRNAs to the expression patterns of the genes they
are thought to regulate (Farh et al. 2005; Stark et al.
2005; Huang et al. 2006; Sood et al. 2006). The rationale
behind the miRNA–mRNA expression pattern compar-
ison is based on the mRNA degradation model of miRNA
action. According to this model, miRNA binding to mRNA
target sites causes the mRNA transcripts to be degraded.
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Figure 4.—Percentage of TE sequences among different
classes and families for the human genome (shading), for
conserved TE-derived miRNAs (solid), and for nonconserved
TE-derived miRNAs (open). Relative percentages are shown
such that the total will sum to 100% for the genome and for
each group of miRNAs.
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This model predicts anti-correlations between expres-
sion levels of miRNAs and the mRNAs of their target
genes; i.e., high levels of miRNA would lead to decreased
levels of targeted mRNA.

We sought to compare miRNA expression levels for
TE-derived miRNA genes to mRNA expression levels of
their target genes to look for anti-correlations that are
consistent with regulation via mRNA degradation. miRNA
expression data were taken from a microarray study of
150 human miRNAs across five tissue samples (Barad

et al. 2004), and mRNA expression data were taken from
the Novartis SymAtlas (Su et al. 2004). Pairs of miRNA–
mRNA gene expression profile vectors were compared
using the Pearson correlation coefficient (r). There were
only three TE-derived miRNA genes with expression
data available. Despite this small sample size and the
fairly low resolution afforded by the comparison of only
five tissues, we found numerous cases of strongly anti-
correlated miRNA–mRNA pairs (Figure 6). Since this

Figure 5.—Target-site frequencies for TE-derived miRNAs.
(A) Frequency distribution showing the number of target sites
per TE-derived miRNA. (B) Frequency distribution showing the
percentage of TE-derived target sites per TE-derived miRNA.

Figure 6.—Anti-correlated expression patterns for
TE-derived miRNAs and their targeted mRNAs. Results for
three TE-derived miRNAs with expression data are shown:
hsa-mir-130b (A), hsa-mir-28 (B), and hsa-mir-95 (C). The
top row in A–C shows the relative miRNA expression across
five human tissues, and the subsequent rows show relative ex-

pression levels for targeted mRNAs. The 50 most-negative
Pearson correlation coefficients (range r ¼ �0.99 to �0.51;
P ¼ 1.2 3 10�10–1.3 3 10�1) are shown for each plot.
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anti-correlation is consistent with the mRNA degradation
model of miRNA gene regulation, it provides an addi-
tional source of support for putative miRNA target sites
and the regulatory action of TE-derived miRNAs.

We also evaluated the GO biological process annota-
tions of the anti-correlated gene sets to look for over-
represented functional categories that may indicate
specific functional roles for TE-derived miRNAs. The
top 10% of anti-correlated mRNAs (i.e., those with the
lowest r - values) for each of the three TE-derived miRNAs
with expression data were evaluated for overrepresented
GO terms. The miRNA hsa-mir-130b gave the strongest
signal of GO term overrepresentation; 39 of 80 genes
were found to correspond to significantly overrepresented
GO terms (supplemental Table 1 at http://www.genetics.
org/supplemental/). Many of these genes correspond to
metabolism and transcriptional regulation in general
as well as to several negative regulators of DNA metabo-
lism (supplemental Figure 3 at http://www.genetics.org/
supplemental/). This negative regulation is achieved in
part by chromatin remodeling, silencing, and hetero-
chromatin formation. Thus, hsa-mir-130b may act to indi-
rectly upregulate DNA metabolism by downregulating
chromatin-based repressors.

Prediction of novel TE-derived miRNAs: The func-
tion of miRNAs, and of noncoding RNAs in general, is
related to their secondary structure (Mattick and Makunin

2006). Selective constraint on such sequences often leads
to compensatory mutations that maintain the base-pair
interactions in the double-stranded regions of the struc-
tures, such as miRNA stem regions. Sequence alignments
can be evaluated for the signal of conserved base-pair
interactions as well as compensatory mutations to identify
conserved, and thus presumably functionally relevant,
secondary structural elements. Recent application of such
techniques has led to the discovery of many novel puta-
tive regulatory RNA sequences (Washietl et al. 2005;
Pedersen et al. 2006). It has even been shown that
orthologous regions that are not constrained at the level
of primary sequence may nevertheless encode conserved
secondary structural elements (Torarinssonet al. 2006).
Given the contribution of TEs to experimentally charac-
terized miRNAs shown here and elsewhere (Smalheiser

and Torvik 2005; Borchert et al. 2006; Piriyapongsa

and Jordan 2007), we sought to evaluate human TE se-
quences for the ability to form hairpin structures along
with the signals of conserved base pairs and compensa-
tory mutations that indicate putatively functional second-
ary structures. This approach provides a way to predict
further contributions of TEs to miRNAs.

Human genome TE sequences were evaluated for
the potential to encode conserved secondary structures
(Pedersen et al. 2006) that meet the criteria of miRNA
genes (Bentwich et al. 2005). This approach is con-
servative in the sense that it relies on sequence con-
servation and most of the experimentally characterized
TE-derived miRNAs that we observe (37 of 55) are not

evolutionarily conserved. Using this conservative ap-
proach, we found 587 human TEs with the potential to
encode conserved secondary structures (supplemental
Table 2 at http://www.genetics.org/supplemental/); 4
of these sequences corresponded to previously known
human miRNAs annotated in miRBase. Evaluation of
these conserved secondary structures was used to identify
85 TE-derived sequences that meet the structural cri-
teria of putative miRNA genes, and 70 of these sequences
also show evidence of being expressed (Table 4). These
70 putative TE-derived miRNA sequences meet the pre-
viously defined biogenesis, conservation, and, at least in
principle, expression criteria used for the identification
of miRNA genes (Ambros et al. 2003).

An example of a predicted TE-derived miRNA gene is
shown in Figure 7. The MER135 sequence shown is a
member of a family of recently characterized nonau-
tonomous DNA-type elements, i.e., MITEs, with �500
copies in the human genome ( Jurka 2006). Since MITEs
have palindromic structures with terminal inverted re-
peats that flank short internal regions, their expression
as RNA results in the formation of the kinds of hairpins
seen for pre-miRNAs. Indeed, MITEs have previously been
shown to contribute miRNA genes in the Arabidopsis
and human genomes (Mette et al. 2002; Piriyapongsa

and Jordan 2007).

DISCUSSION

Abundance of TE-derived miRNAs: Noncoding reg-
ulatory RNAs, such as miRNAs, are a recently discovered
class of genes, and the number of miRNA genes that
exist among eukaryotic genomes is very much an open
question (Berezikov et al. 2006). Sustained efforts at
high-throughput characterization of miRNA genes,
based on both experimental and computational ap-
proaches, continue to result in the discovery of many
novel miRNAs (Bentwich et al. 2005; Cummins et al.
2006). This can be appreciated by examining the release
statistics of miRBase (ftp://ftp.sanger.ac.uk/pub/mirbase/
sequences/CURRENT/README). Plotting the num-
ber of miRNA gene entries against the miRBase release
dates suggests that the number of known miRNA genes
has experienced two distinct phases of linear increase,
before and after the June 2005 release, and the current
rate of increase in known miRNA genes is even greater
than for the initial phase (supplemental Figure 4 at
http://www.genetics.org/supplemental/).

For the most part, the miRBase data do not include
substantial numbers of computationally predicted miRNA
genes. The only computational predictions represented
in miRBase are highly conserved sequences that are
orthologous to experimentally characterized miRNA genes
in other species. Consideration of computationally iden-
tified miRNAs would suggest that miRNA gene numbers
are substantially higher than currently appreciated. How-
ever, a number of computational methods for miRNA
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TABLE 4

Predicted TE-derived miRNA genes

Namea Coordinatesb Colocated TE Expression datac

3715_0_1_61 Chromosome 1: 3131597–3131629(1) MER121 EST/mRNA/KG/RS
15086_0_�_78 Chromosome 1: 15041842–15041859(�) HAL1 EST/mRNA/KG/RS
25288_0_�_83 Chromosome 1: 23621848–23621877(�) MIRb EST/mRNA/KG/RS
30647_0_1_38 Chromosome 1: 27752374–27752433(1) MIRb EST/mRNA/KG/RS
52664_0_�_50 Chromosome 1: 44571346–44571464(�) Eulor9A EST/mRNA/KG/RS
67626_0_�_76 Chromosome 1: 57127400–57127465(�) Eulor1 EST/mRNA/KG/RS
85615_0_1_83 Chromosome 1: 76474930–76474947(1) MIRb EST/mRNA/KG/RS
120809_0_1_79 Chromosome 1: 111021701–111021719(1) MIR EST/mRNA
122080_0_�_62 Chromosome 1: 112177611–112177631(�) MIR EST/mRNA/KG/RS
124780_0_�_66 Chromosome 1: 114214379–114214407(�) MIRb EST/mRNA/KG/RS
154818_0_�_64 Chromosome 1: 162825371–162825437(�) MER135 EST/mRNA/KG/RS
188052_1_�_92 Chromosome 1: 198460508–198460590(�) Eulor3 —
204532_0_�_104 Chromosome 1: 211522027–211522054(�) UCON31 EST
230542_0_�_67 Chromosome 1: 244286075–244286098(�) L1MB3 EST/mRNA/KG/RS
1231553_0_1_75 Chromosome 2: 67238894–67239028(1) Eulor4 EST/mRNA
1258257_0_1_85 Chromosome 2: 104314401–104314489(1) MER134 —
1361323_0_1_57 Chromosome 2: 213067475–213067509(1) Eulor5A EST/mRNA/KG/RS
1573547_0_1_44 Chromosome 3: 61643441–61643518(1) MER126 EST/mRNA/KG/RS
1573643_0_1_95 Chromosome 3: 61718341–61718381(1) MER134 EST/mRNA/KG/RS
1620066_0_�_64 Chromosome 3: 116298434–116298458(�) Eulor1 EST/mRNA/KG/RS
1651767_0_1_52 Chromosome 3: 146074810–146074873(1) Eulor3 —
1668216_0_�_58 Chromosome 3: 168436231–168436447(�) MER126 —
1730972_0_�_56 Chromosome 4: 46681709–46681733(�) L1ME3B EST/mRNA/KG/RS
1747758_0_�_63 Chromosome 4: 74275595–74275629(�) L1M5 EST/mRNA/KG/RS
1757379_0_1_70 Chromosome 4: 85466757–85466855(1) MER134 —
1827751_0_1_75 Chromosome 4: 181988895–181988914(1) MIRb EST
1830405_0_1_49 Chromosome 4: 183690755–183690850(1) MER135 EST/mRNA/RS
1873731_0_1_53 Chromosome 5: 58495675–58495729(1) UCON9 EST/mRNA/KG/RS
1902777_0_1_53 Chromosome 5: 90643387–90643420(1) AmnSINE1_GG EST/mRNA
1920501_0_1_72 Chromosome 5: 113735156–113735173(1) L2 EST/mRNA/KG/RS
1966281_0_1_83 Chromosome 5: 156681824–156681841(1) MIR3 EST/mRNA/KG/RS
1975838_0_�_80 Chromosome 5: 165688874–165688944(�) Eulor5A —
1979031_0_1_61 Chromosome 5: 167506770–167506888(1) Eulor9A EST/mRNA/RS
1987527_0_1_59 Chromosome 5: 175727565–175727628(1) L2 EST/mRNA/KG/RS
2000476_0_�_85 Chromosome 6: 8499794–8499914(�) Eulor6C EST/mRNA
2031067_0_1_44 Chromosome 6: 39048083–39048162(1) Eulor5A EST/mRNA/KG/RS
2075048_0_�_91 Chromosome 6: 94484941–94484963(�) ERVL-E EST/mRNA
2115069.5_0_1_82 Chromosome 6: 141179709–141179763(1) Eulor5B —
2165103_0_1_104 Chromosome 7: 28447122–28447144(1) MER121 EST/mRNA/KG/RS
2195049_0_1_117 Chromosome 7: 73161289–73161306(1) MIR3 EST/mRNA/KG/RS
2232211_0_1_45 Chromosome 7: 113190696–113190791(1) Eulor6B —
2247695_1_1_65 Chromosome 7: 129521966–129521985(1) L1ME4a EST/mRNA/KG/RS
2265159_0_1_85 Chromosome 7: 146833245–146833271(1) UCON4 EST/mRNA/KG/RS
2330918_0_�_108 Chromosome 8: 79081399–79081462(-) Eulor3 —
2344217_0_1_65 Chromosome 8: 97188471–97188580(1) MER135 EST
2348773_0_1_51 Chromosome 8: 102229956–102230022(1) Charlie9 —
2401146_0_�_96 Chromosome 9: 16787222–16787246(�) MIR EST/mRNA/KG/RS
2421368_0_�_79 Chromosome 9: 37811135–37811158(�) L1MC4a EST/mRNA/KG/RS
2426661_0_1_64 Chromosome 9: 70297285–70297306(1) MER91A EST/KG/RS
2455634_0_�_64 Chromosome 9: 105918396–105918420(�) MER5A EST/mRNA/KG/RS
2469999_0_1_79 Chromosome 9: 118715772–118715795(1) UCON11 EST/mRNA/KG/RS
2500550_0_�_83 Chromosome X: 10899595–10899617(�) L4 EST/mRNA/KG/RS
2519737_0_1_67 Chromosome X: 24557155–24557175(1) L1ME4a EST/mRNA/KG/RS
2598753_0_1_171 Chromosome X: 123865376–123865447(1) Eulor11 EST/mRNA/KG/RS
2607024_0_�_68 Chromosome X: 131689852–131689873(�) L1MB5 EST/mRNA/KG/RS
2625375_0_1_86 Chromosome X: 152562536–152562556(1) L2 EST/mRNA/KG/RS
276291_0_1_66 Chromosome 10: 62836157–62836220(1) L1M5 —
285555_0_1_63 Chromosome 10: 72980870–72980944(1) MER125 EST/mRNA/KG/RS

(continued )
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prediction do not consider TE-derived miRNAs (Bentwich

et al. 2005; Lindow and Krogh 2005; Nam et al. 2005;
Li et al. 2006). This is because, mainly for reasons of
tractability, one of the first steps in computational anal-
ysis of eukaryotic genome sequences is the exclusion of
repetitive DNA by RepeatMasking. TEs will also tend to
be excluded from predictions based solely on conserva-
tion between species because they are rapidly evolving
and lineage-specific genomic elements. This is under-
scored by the fact that the set of TE-derived human
miRNAs that we identify here is enriched for genes ex-
perimentally characterized in humans (93% for TE-
derived vs. 81% for non-TE-derived miRNAs; x2 ¼ 4.76,
P ¼ 0.03).

The factors described above that suggest the exclu-
sion of TE-derived miRNAs led us to speculate as to how
many more miRNA genes would be discovered if TE
sequences were not eliminated from consideration a
priori. To investigate this, we employed our own ab initio
computational approach to try and predict TE-derived
miRNA sequences. Application of this method to the
human genome revealed 587 cases of human TE se-
quences that encode conserved RNA secondary struc-
tures, 85 of which are most likely to represent bona fide

miRNA genes. Fifteen of the TE-derived miRNA genes
that we predicted using this approach overlap with pre-
vious miRNA computational predictions (Berezikov et al.
2005; Pedersen et al. 2006) as well as experimentally char-
acterized miRNAs from miRBase.

Conservation of TE-derived miRNAs: Many miRNA
genes are evolutionarily conserved and may have func-
tional orthologs in multiple species. Indeed, sequence
conservation is one of the criteria used to aid the com-
putational discovery of miRNAs. While the TE-derived
miRNA genes analyzed here are less conserved, on
average, than non-TE-derived miRNAs, there are a num-
ber of well-conserved miRNAs that evolved from TE
sequences (Table 1). The majority of these conserved
miRNAs are related to the ancient L2 and MIR TE
families, and some of these sequences have been
previously identified (Smalheiser and Torvik 2005).
This is particularly interesting because numerous L2
and MIR sequences have been shown to be anomalously
conserved between the human and mouse genomes
(Silva et al. 2003). Specifically, Silva et al. (2003) dem-
onstrated that many L2 and MIR sequences found
in orthologous human–mouse intergenic regions were
present in the common ancestor of the two species and,

TABLE 4

(Continued)

Namea Coordinatesb Colocated TE Expression datac

334961_0_1_78 Chromosome 10: 117579937–117579954(1) L2 EST/mRNA/KG/RS
335779_0_1_54 Chromosome 10: 118027456–118027512(1) Eulor6D EST
377681_0_1_96 Chromosome 11: 19331037–19331062(1) L3 mRNA/KG
425555_0_1_71 Chromosome 11: 71985685–71985701(1) MIR EST/mRNA/KG/RS
438439_0_1_83 Chromosome 11: 83316376–83316398(1) L2 EST/mRNA/KG/RS
486187_0_1_68 Chromosome 11: 130861130–130861151(1) MIRb EST/mRNA/KG/RS
487071_2_1_103 Chromosome 11: 131453921–131453949(1) MER122 EST/mRNA/KG/RS
492576_0_�_95 Chromosome 12: 2125422–2125443(�) MIRb mRNA/KG/RS
533638.0_0_�_122 Chromosome 12: 50492331–50492353(�) MIRb mRNA/KG
542148_0_�_83 Chromosome 12: 55246557–55246574(�) LTR37B EST/mRNA/KG/RS
551096_0_�_85 Chromosome 12: 64538090–64538148(�) Eulor5A EST/mRNA/KG/RS
596947_0_1_93 Chromosome 12: 115505370–115505426(1) MER123 EST/mRNA
697653_0_1_69 Chromosome 14: 33093444–33093479(1) UCON11 EST/mRNA/KG/RS
700890_0_�_65 Chromosome 14: 35855217–35855366(�) Eulor6A EST/mRNA/KG/RS
775713_0_1_77 Chromosome 15: 25703141–25703162(1) L1MCc EST/mRNA/KG/RS
787092_0_�_65 Chromosome 15: 35993736–35993832(�) Eulor5A —
896537_0_1_81 Chromosome 16: 30749660–30749680(1) MIR EST
928869_0_1_74 Chromosome 16: 70304015–70304037(1) MIR3 EST/mRNA/KG/RS
976169_0_1_86 Chromosome 17: 24040248–24040268(1) L1ME4a EST/mRNA/KG/RS
989909_0_1_100 Chromosome 17: 34009010–34009024(1) MIR3 EST/mRNA/KG/RS
1000039.8_0_1_109 Chromosome 17: 39468501–39468532(1) L1MC4 EST/mRNA/KG/RS
1077028_0_�_58 Chromosome 18: 33875730–33875789(�) MIRb —
1105916_0_�_78 Chromosome 18: 71369451–71369514(�) UCON11 —
1435354_0_�_79 Chromosome 20: 44235903–44235921(�) MIR EST/mRNA/KG/RS
1443968_0_�_61 Chromosome 20: 53838763–53838824(�) UCON29 —
1466070_0_�_70 Chromosome 21: 33853177–33853203(�) L2 EST/mRNA
1496941_0_1_79 Chromosome 22: 35289947–35289989(1) L1MC4 EST

a Name of the EvoFold locus from the hg18 UCSC Genome Browser annotation. The last field in the name corresponds to the
EvoFold score.

b Genome coordinates and strand of the EvoFold locus.
c Source of the expression data for the locus: KG, UCSC Genome Browser known gene annotation; RS, NCBI RefSeq annotation.
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following their divergence, evolved under strong selec-
tive constraint. From this, they reasoned that these
selectively constrained sequences probably play some
role related to gene regulation, although no specific
functional role was ascribed to them. Here, we show that
at least some of these conserved L2 and MIR fragments
provide miRNA sequences with the potential to regulate
numerous human genes.

As in the case of L2 and MIR (Silva et al. 2003),
comparative genomic approaches are used to infer func-
tionally important genomic regions, particularly noncod-
ing regions, by virtue of their high sequence conservation

(Zhang and Gerstein 2003). It is becoming increasingly
apparent that a number of such highly conserved genomic
sequences correspond to TEs (Bejerano et al. 2006; Kamal

et al. 2006; Nishihara et al. 2006; Xie et al. 2006). While
enhancer activity has been demonstrated for one of these
conserved TEs (Bejerano et al. 2006), for the most part,
the specific function encoded by conserved TE sequences
remains unknown. The collection of conserved TE se-
quences recently assembled by Repbase corresponds to
,1% of all human genome TEs, but these sequences
contribute .50% of all TE-encoded conserved secondary
structures that we detected (Figure 2). Thus, our results

Figure 7.—Ab initio prediction of human TE-derived miRNA genes. (A) Multiple sequence alignment of the MER135 consensus
sequence with the human genome sequence and orthologous genomic regions from 11 other vertebrate genomes. The predicted
secondary structure is shown below the alignment with paired and unpaired positions indicated by parentheses and dots, respec-
tively. Residues are colored according to the annotated secondary structure base pairs and their substitutions: gray, unpaired and
no substitution; purple, unpaired and substitution; black, paired and no substitution; blue, paired and single substitution; green,
paired and double substitution; red, not compatible with annotated pair. (B) Phylogenetic tree of the aligned species showing the
double substitutions that maintain the secondary structure. Paired double substitutions are indicated with brackets and their po-
sitions in the alignment are shown. (C) Secondary structure of the predicted miRNA gene. Positions of the double substitutions
are indicated by red arrows.
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suggest that many conserved TE sequences may encode
miRNAs or perhaps other noncoding regulatory or struc-
tural RNAs.

Lineage-specific effects of TE-derived miRNAs: Most
of the TE-derived miRNAs analyzed here are not evolu-
tionarily conserved (Table 1). This is not surprising when
you consider that TEs are the most lineage-specific and
nonconserved elements found in eukaryotic genomes
(Lander et al. 2001). The overrepresentation of non-
conserved sequences among TE-derived miRNAs is also
consistent with previous work that has shown TE-derived
cis-regulatory binding sites to be more divergent than
non-TE-derived cis sites (Mariño-Ramirez et al. 2005).
From a practical perspective, this means that computa-
tional discovery methods that employ conservation as a
criterion will necessarily overlook many TE-derived reg-
ulatory sequences. In terms of evolution, this means that
the greatest differences between eukaryotic genomes
will correspond to TE sequences. In this sense, TEs can
be considered as drivers of genome diversification. This
may be uninteresting if TEs serve only to replicate them-
selves and do not play any role for their host genomes as
the selfish DNA theory of TEs holds (Doolittle and
Sapienza 1980; Orgel and Crick 1980). However, if
some TEs are in fact functionally relevant to their hosts,
as we have shown here for the case of TE-derived miRNAs,
then their divergence may have important evolutionary
implications. Indeed, TE-derived regulatory sequences
may be particularly prone to contribute to regulatory
differences among species that lead to lineage-specific
phenotypes. This has been shown for the case of TE-
derived regulatory sequences that are associated with
high levels of expression divergence between humans
and mice (Mariño-Ramirez and Jordan 2006).

While most computational efforts to discover non-
coding regulatory sequences have focused on conserved
genomic elements, recent studies have begun to em-
phasize rapidly evolving regions as well (Pollard et al.
2006a,b; Prabhakar et al. 2006). The rationale behind
this is the notion that rapidly evolving regulatory regions
may yield species-specific differences. An emphasis on
the discovery of TE-derived regulatory sequences would
complement current approaches to the discovery of
rapidly evolving regulatory regions that are likely to
contribute to the phenotypic divergence among species.

Genome defense and global gene regulatory mech-
anisms: Finally, we speculate that our results point to a
connection between genome defense mechanisms ne-
cessitated by TEs and the emergence of global gene
regulatory systems that may have allowed for the com-
plex regulatory phenotypes characteristic of multicellu-
lar eukaryotes. TE insertions are highly deleterious and,
as a consequence, a number of global gene-silencing
mechanisms, including methylation (Yoder et al. 1997),
imprinting (McDonald et al. 2005), and heterochro-
matin (Lippman et al. 2004), may have evolved originally
as TE defense mechanisms. siRNAs are also thought

to have evolved as a defense mechanism against TEs
(Matzke et al. 2000; Vastenhouw and Plasterk 2004;
Slotkin et al. 2005), and the results reported here and
elsewhere (Smalheiser and Torvik 2005; Borchert

et al. 2006; Piriyapongsa and Jordan 2007) indicate
that miRNAs can emerge from TEs as well. More recently,
an analogous TE defense mechanism based on small
RNAs complementary to TEs in Drosophila has been
reported (Brennecke et al. 2007). Apparently, different
RNA interference systems may have evolved conver-
gently on multiple occasions to help silence TEs. Later,
these regulatory mechanisms could have been co-opted
to exert controlling effects over thousands of host genes
as is the case for miRNAs. The evolution of such com-
plex gene regulatory systems can be considered non-
adaptive (Lynch 2007) in the sense that they did not
evolve by virtue of selection for the role that they play
now. However, neither did these global regulatory mech-
anisms evolve passively since they were swept to fixation
by selective pressure to defend against TEs. Therefore,
the emergence of TE-related global regulatory systems,
exemplified by RNA interference, can be considered to
be exaptations (Gould and Vrba 1982) driven by the
internal mutational dynamics (Stoltzfus 2006) of the
genome.
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Aberrant expression of the human homeobox-containing
proto-oncogene TLX1/HOX11 inhibits hematopoietic
differentiation programs in a number of murine model
systems. Here, we report the establishment of a murine
erythroid progenitor cell line, iEBHX1S-4, developmen-
tally arrested by regulatable TLX1 expression. Extinction
of TLX1 expression released the iEBHX1S-4 differentia-
tion block, allowing erythropoietin-dependent acquisition
of erythroid markers and hemoglobin synthesis. Coordi-
nated activation of erythroid transcriptional networks
integrated by the acetyltransferase co-activator CREB-
binding protein (CBP) was suggested by bioinformatic
analysis of the upstream regulatory regions of several
conditionally induced iEBHX1S-4 gene sets. In accord
with this notion, CBP-associated acetylation of GATA-1,
an essential regulator of erythroid differentiation, increased
concomitantly with TLX1 downregulation. Coimmuno-
precipitation experiments and glutathione-S-transferase
pull-down assays revealed that TLX1 directly binds to
CBP, and confocal laser microscopy demonstrated that
the two proteins partially colocalize at intranuclear sites
in iEBHX1S-4 cells. Notably, the distribution of CBP
in conditionally blocked iEBHX1S-4 cells partially over-
lapped with chromatin marked by a repressive histone
methylation pattern, and downregulation of TLX1 coin-
cided with exit of CBP from these heterochromatic regions.
Thus, we propose that TLX1-mediated differentiation
arrest may be achieved in part through a mechanism that
involves redirection of CBP and/or its sequestration in
repressive chromatin domains.
Oncogene (2007) 26, 4115–4123; doi:10.1038/sj.onc.1210185;
published online 8 January 2007

Keywords: TLX1/HOX11 oncogene; erythropoiesis; condi-
tional differentiation block; CBP; GATA-1; repressive
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Introduction

The murine ortholog of human TLX1 (previously known
as HOX11 and TCL3), which is a member of the
dispersed NK homeobox gene family, is essential for
splenogenesis and the proper development of certain
sensory neurons. Although TLX1 is not expressed in the
hematopoietic system, its inappropriate activation –
frequently owing to translocations involving T-cell
receptor (TCR) gene loci – is a recurrent event in human
T-cell acute lymphoblastic leukemia (T-ALL) (Owens and
Hawley, 2002). We previously reported that enforced
expression of TLX1 immortalizes various myeloerythroid
progenitors in murine bone marrow, yolk sac and
embryonic stem cell (ESC)-derived embryoid bodies
(Hawley et al., 1994, 1997; Keller et al., 1998; Owens
et al., 2003). Based on these results, we postulated that
TLX1 exerts its T-cell oncogenic effects in part by
impeding hematopoietic differentiation programs. In
support of this hypothesis, we recently demonstrated that
retroviral expression of TLX1 disrupted T-cell-directed
differentiation of primary murine fetal liver precursors
and human cord blood CD34þ stem/progenitor cells in
fetal thymic organ cultures (Owens et al., 2006).

The mechanism of the TLX1-mediated differentiation
block and, by extension, the manner in which deregulated
TLX1 expression induces neoplastic conversion remain to
be elucidated (Hawley et al., 1997). Several lines of
evidence indicate that TLX1 functions as a transcriptional
regulator that can either activate or repress gene expres-
sion via direct or indirect modes of action (Dear et al.,
1993; Greene et al., 1998; Owens et al., 2003; Riz and
Hawley, 2005). A plausible assumption has been that some
TLX1 transcriptional activity is mediated by selective
recognition of DNA sequences (Dear et al., 1993; Allen
et al., 2000). Of note, however, although several genes
downstream of TLX1 transcriptional cascades have been
identified to date, in no instance has direct binding of
TLX1 to the promoter sequences of primary target genes
been demonstrated. On the contrary, TLX1 has been
shown in many instances to indirectly regulate gene
expression in vivo through cooperative protein–protein
interactions with other molecules (Kawabe et al., 1997;
Zhang et al., 1999; Riz and Hawley, 2005).
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Recent investigations have identified new recurrent
TCR chromosomal translocations in human T-ALL that
deregulate theHOXA cluster of the HOX homeobox gene
family (Soulier et al., 2005). Genome-wide expression
analysis showed that theHOXA-translocated cases shared
multiple transcriptional networks with TLX1þ T-ALL
samples (Soulier et al., 2005), suggesting a common
mechanism underlying these malignancies. Many HOX
proteins have been reported to interact with the
ubiquitously expressed acetyltransferase co-activator
CREB-binding protein (CBP) and its paralog p300 (Shen
et al., 2001). In particular, all 14 HOX proteins tested in
one study, representing 11 of the 13 paralogous groups,
were shown to associate with CBP in a DNA-binding-
independent manner and inhibit CBP acetyltransferase
activity (Shen et al., 2001). CBP regulates gene expression
in most if not all cell types, functioning as a molecular
integrator linking a large number of transcription factors
to the basal transcriptional machinery. CBP can acetylate
a broad range of these transcription factors, which, in
most cases, potentiates transcription. Additionally, acety-
lation of histones by CBP facilitates gene transcription by
providing an open chromatin structure (Blobel, 2000).
Importantly, mice with CBP haploinsufficiency develop
multilineage defects in hematopoietic differentiation and
increased hematologic malignancies with age (Kung et al.,
2000), whereas conditional inactivation of CBP in murine
T-cell precursors results in a high incidence of T-cell
tumors (Kang-Decker et al., 2004).

As ectopic expression of HOXA homeobox genes
implicated in the pathogenesis of T-ALL also perturbs
myeloerythroid differentiation in several model systems
(Owens and Hawley, 2002), we reasoned that TLX1 and
HOXA oncogenes may act in part by targeting global
regulatory circuits that impact cell proliferation and
differentiation outcomes. In this regard, a number of
oncogenic transcription factors have been observed to
inhibit CBP activity in the context of cell differentiation
arrest (Blobel, 2000). Among the best characterized
examples are those that interfere with CBP-mediated
acetylation of the transcription factor GATA-1, a key
regulator of erythropoiesis (Blobel et al., 1998; Hung
et al., 1999; Hong et al., 2002). In the present work, we
established a murine erythroid progenitor cell line,
iEBHX1S-4, from ESC-derived embryoid bodies by
conditional TLX1 expression and we used this cell line
to investigate the mechanism by which TLX1 achieves
differentiation arrest. The results suggest a mechanism
by which sequestration of CBP by TLX1 within
particular subnuclear compartments might limit its
access to critical acetylation substrates, such as
GATA-1 in the case of erythroid differentiation.

Results

Upregulation of erythroid transcriptional networks in
iEBHX1S-4 cells following release of the TLX1-mediated
differentiation block
As described in the accompanying Supplementary Infor-
mation, iEBHX1S-4 cells exhibit a proerythroblast-like

phenotype and require interleukin-3 plus stem cell
factor for survival and proliferation (Supplementary
Figure 1). Downregulation of TLX1 expression releases
the iEBHX1S-4 differentiation block, allowing erythro-
poietin-dependent acquisition of erythroid markers and
hemoglobin synthesis (Supplementary Figure 2). Global
gene expression profiles were determined by micro-
array profiling for iEBHXIS-4 cells at 0, 6, 12 and
24 h following doxycycline withdrawal. TLX1 protein
levels progressively decreased with a half-life of B6 h,
approaching basal levels that were below detection by
Western blot analysis by 24 h (Supplementary Figure 2g;
see Figure 2a). Unsupervised hierarchical clustering of
the expression data created a condition tree that showed
corresponding progressive changes in the iEBHX1S-4
transcriptome during the 24 h time course experiment
(Figure 1a and b). Gene tree clustering revealed two
major subtrees of genes whose transcript levels increased
from 0 to 24 h (Figure 1c), which displayed nonrandom
overlap (P¼ 0.011) with a subset of genes induced
upon restoration of GATA-1 activity during differentia-
tion of ESC-derived GATA-1-null G1E erythroid
cells (NCBI GEO Accession Number GDS568). We
employed quantitative reverse transcription–polymerase
chain reaction (qRT–PCR) to validate the expression
pattern of a representative example from this set, Ccne1
(cyclin E1), and selected examples of other induced
genes that demonstrated different kinetics of upregula-
tion, that is Hba-x (z-globin), Hemgn (hemogen) (Yang
et al., 2001) and Apobec2 (Kostic and Shaw, 2000). The
corresponding expression profiles for these genes are
illustrated in Figure 1c.

To identify putative regulatory hierarchies downstream
of TLX1, sets of conditionally regulated genes classified
according to the Gene Ontology (GO) term ‘Transcription’
were subjected to bioinformatic promoter analysis. These
included 85 gradually induced genes from the combined
subtrees shown in Figure 1c (Supplementary Table 1), 46
representatives of the Ccne1-like profile (k>0.995) (Sup-
plementary Table 2), 42 representatives of the Hba-x-like
profile (k>0.985) (Supplementary Table 3), 31 representa-
tives of the Hemgn-like profile (k>0.985) (Supplementary
Table 4) and 27 representatives of the Apobec2-like profile
(k>0.975) (Supplementary Table 5). For comparison, we
included representatives from two subclusters of genes
obtained by K-means clustering of the entire data set,
whose transcripts were downregulated by 6 (44 representa-
tives; Supplementary Table 6) or 12h (45 representatives;
Supplementary Table 7) following doxycycline withdrawal.
A common feature of all of the transcription factors
implicated through this analysis – GATA-1, KLF1, NF-Y,
C/EBP and SCL – is that their transcriptional activity is
regulated by CBP (see Supplementary Information). Given
these observations, we hypothesized that TLX1 might
impede iEBHX1S-4 differentiation by interfering with CBP.

Impaired acetylation of GATA-1 in TLX1-expressing
iEBHX1S-4 erythroid cells
We first determined whether the acetylation levels
of GATA-1, an essential target for CBP-facilitated
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erythroid differentiation (Blobel et al., 1998; Hong
et al., 2002), changed in iEBHX1S-4 cells upon release
of the TLX1-mediated differentiation block. Indeed,
following doxycycline withdrawal, the levels of
acetylated GATA-1 increased (B2.5-fold), whereas the
levels of CBP-associated GATA-1 increased (B1.6-fold)
inversely proportional to the decreasing TLX1 protein
levels during the 24 h time course experiment (r¼�0.90
and �0.93, respectively) (Figure 2a). Transcription

factor acetylation levels are the result of a dynamic
equilibrium between acetyltransferases and deacetylases
(Yang, 2004). In particular, GATA-1 has been demon-
strated to associate with class I and class II histone
deacetylase (HDAC) enzymes (Watamoto et al., 2003;
Rodriguez et al., 2005). Because it was shown that
treatment with the class I/II HDAC inhibitor, tricho-
statin A, markedly augmented acetylation of GATA-1
in transfected Cos 7 cells (Hernandez-Hernandez et al.,

Figure 1 Overall analysis of the entire set of data showing expression changes in iEBHX1S-4 cells upon TLX1 downregulation. Each
microarray data set was normalized to the 50th percentile and then relative to corresponding signal intensities obtained for t¼ 0 h.
(a) Condition and gene trees colored for significance. Blue corresponds to �3s and red to 3s. (b) Condition and gene trees colored for
trust and expression levels. Blue corresponds to 0 and red to 2. Levels of trust increase with brightness. Graphs were generated using
GeneSpring. (c) Selected subtrees for genes showing gradual increase during the observation period. Arrow indicates the corresponding
expression profiles. Comparison of qRT–PCR (J) and microarray data (’) for selected induced transcripts (Ccne1/cyclin E1, Hba-x/
z-globin, Hemgn and Apobec2).
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2006), we next investigated whether class I/II HDAC
inhibitor treatment would result in increased levels of
acetylated GATA-1 in iEBHX1S-4 cells. We found that
24 h treatment of doxycycline-supplemented iEBHX1S-
4 cell cultures with three specific class I/II HDAC
inhibitors, sodium butyrate, valproic acid and trichos-
tatin A, induced acetylation of GATA-1 comparable
to the levels observed upon TLX1 downregulation
(Figure 2b). Based on these observations, we were
interested in determining whether HDAC inhibitor
treatment was sufficient to bypass the TLX1-mediated
iEBHX1S-4 differentiation block (Yoshida et al., 1987).
Indeed, treatment of iEBHX1S-4 cells cultured in
doxycycline-supplemented medium for 3 days with
HDAC inhibitors resulted in considerable differentia-
tion as reflected by upregulation of glycophorin
A/TER119 expression, a target gene of the SCL-
LMO2-GATA-1 complex (Lahlil et al., 2004), with
levels approaching that observed during the same period
following doxycycline withdrawal (Figure 2c). These
findings are consistent with the notion that insufficient
GATA-1 acetylation levels are an important aspect of
the TLX1-mediated differentiation arrest in iEBHX1S-4
cells.

TLX1 interaction with CBP in iEBHX1S-4 and 293T
cells and targeting to heterochromatin
To obtain evidence in support of the possibility that
TLX1 might interfere with CBP function in iEBHX1S-4
cells, we performed coimmunoprecipitation experiments
to determine whether TLX1 was capable of physically
associating with CBP in vivo. As shown in Figure 3a,
TLX1 coimmunoprecipitated with endogenous CBP
from iEBHX1S-4 lysates. Coimmunoprecipitation of
exogenous TLX1 with exogenous mouse CBP from
lysates of human 293T embryonic kidney cells cotrans-
fected with expression vectors encoding TLX1 (Owens
et al., 2003; Riz and Hawley, 2005) and mouse CBP
(Chrivia et al., 1993; Kwok et al., 1994) was also
demonstrated (Figure 3b, left panels). In addition,
a monoclonal antibody directed against ectopically
expressed FLAG epitope-tagged TLX1 (Owens et al.,
2003) was shown to coimmunoprecipitate exogenous
human CBP from lysates of 293T cells cotransfected
with corresponding expression vectors in separate
experiments (Figure 3b, right panels). We extended
these studies by performing in vitro pull-down experi-
ments with glutathione-S-transferase (GST)–TLX1
fusion proteins. Both endogenous CBP from iEBHX1S-4

Figure 2 CBP interaction with GATA-1 in differentiating iEBHX1S-4 cells. (a) Change in GATA-1 acetylation and protein levels
upon TLX1 downregulation. The two top panels show Western blotting of anti-GATA-1 immunoprecipitates with anti-acetylated
lysine or anti-GATA-1 antibodies. The ratios of acetylated GATA-1 to total GATA-1 are indicated. The two middle panels show
Western blotting of anti-CBP immunoprecipitates with anti-GATA-1 or anti-CBP antibodies. The relative increase in CBP-associated
GATA-1 levels is indicated. The two bottom panels show the corresponding decrease in total TLX1 protein levels and an a-tubulin
loading control. (b) Changes in GATA-1 acetylation following Dox withdrawal or treatment with HDAC inhibitors. The two top
panels show Western blotting of anti-GATA-1 immunoprecipitates with anti-acetylated lysine or anti-GATA-1 antibodies. The two
bottom panels show the corresponding TLX1 protein levels and an a-tubulin loading control. þDox indicates untreated iEBHX1S-4
cells cultured in the presence of 1mg/ml doxycycline; �Dox indicates cells grown without doxycycline for 24 h. Cells were treated with
the indicated HDAC inhibitors for 24 h. Abbreviations: NaB, 1mM sodium butyrate; VPA, 0.5mM valproic acid; TSA, 50 nM
trichostatin A. (c) The graph depicts levels of glycophorin A/TER119 surface antigen expression following doxycycline withdrawal or
treatment with HDAC inhibitors. þDox indicates untreated iEBHX1S-4 cells cultured in the presence of 1 mg/ml doxycycline; �Dox
indicates cells grown without doxycycline for 3 days. Cells were treated with the indicated HDAC inhibitors for 3 days. HDAC
inhibitor abbreviations and concentrations as above. Glycophorin A/TER119 levels 3 days after doxycycline withdrawal were denoted
as 100%.
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lysates (Figure 3c) as well as ectopically expressed mouse
CBP from 293T lysates (Figure 3d) bound to immobi-
lized full-length GST–TLX1 fusion protein but not to
control GST beads. Moreover, a GST–TLX1 fusion
protein missing the homeodomain (TLX1 HD mutant)
was incapable of coprecipitating exogenous mouse CBP
from 293T lysates, whereas reduced binding was
observed with a GST–TLX1 fusion protein containing
a 70-amino-acid carboxy-terminal deletion (TLX1 D6
mutant), which truncated the TLX1 protein immediately
after the homeodomain (Figure 3d). By comparison,
coprecipitation of exogenous mouse CBP from 293T
lysates with a GST–TLX1 fusion protein containing a
97-amino-acid amino-terminal deletion (TLX1 D2
mutant) was comparable to that achieved with the full-
length GST–TLX1 fusion protein (Figure 3d). The
combined results indicated that: (1) TLX1 is capable of
interacting with endogenous and exogenous CBP under
in vivo conditions; (2) in vivo TLX1–CBP complex
formation did not depend on an erythroid lineage- or
stage-specific nuclear structure or on erythroid-specific
cofactors; (3) TLX1 directly interacts with CBP in vitro
and (4) the homeodomain of TLX1 was required for

in vitro interaction with CBP, as was previously
demonstrated for a number of clustered HOX proteins
(Shen et al., 2001).

We next investigated the intracellular distribution of
TLX1 and CBP. iEBHX1S-4 cells grown in the presence
or absence of doxycycline were fixed, immunolabeled
with anti-TLX1 and/or anti-CBP antibodies, and
examined by immunofluorescence staining and confocal
laser scanning microscopy. As expected from previous
findings (Chrivia et al., 1993; Dear et al., 1993; Owens
et al., 2003), TLX1 and CBP localized selectively within
the nucleus. In the presence of doxycycline, significant
colocalization of the two proteins was observed
(Figure 4a, þDox Merge). Because a recent publication
reported that a proportion of TLX1 in human T-ALL
cells unexpectedly localizes to heterochromatin domains
(Heidari et al., 2006), we were interested in examining
whether TLX1 inhibition of CBP might result from the
‘intranuclear marshaling’ of CBP to heterochromatic
regions (Schaufele et al., 2001). Therefore, we next
determined the intranuclear distribution of CBP in
conditionally arrested iEBHX1S-4 cells with respect to
heterochromatin markers. Lysine 9 methylation of

Figure 3 TLX1 interacts with CBP in vivo and in vitro. (a) Nuclear lysates of iEBHX1S-4 cells cultured in the presence of 1mg/ml
doxycycline (þDox) or grown without doxycycline for 3 days (�Dox) were immunoprecipitated with anti-CBP or anti-GAL4
(irrelevant control) antibodies followed by Western blot analysis with anti-TLX1 or anti-CBP antibodies. The TLX1 band is indicated
by the arrowhead. (b) Left Whole-cell lysates of 293T cells transiently transfected with TLX1 or CBP expression vectors were
immunoprecipitated with anti-CBP or anti-GAL4 (irrelevant control) antibodies followed by Western blot analysis with anti-TLX1 or
anti-CBP antibodies. Under the conditions used, some nonspecific (background) immunoprecipitation of TLX1 was observed with the
anti-GAL4 antibody. Right Whole-cell lysates of 293T cells transiently transfected with TLX1 (FLAG-tagged) or CBP expression
vectors were immunoprecipitated with an anti-FLAG antibody followed by Western blot analysis with anti-CBP or anti-FLAG
antibodies. TLX1 bands are indicated by the arrowheads. (c) iEBHX1S-4 nuclear lysates were incubated with immobilized GST–TLX1
fusion protein or with control GST beads and the bound proteins eluted and subjected to Western blot analysis with anti-CBP and
anti-GST antibodies. The amount of eluate loaded to detect the GST–TLX1 fusion protein represents 0.5% of the amount loaded to
detect CBP. (d) Nuclear lysates of 293T cells transiently transfected with a CBP expression vector were incubated with immobilized
GST–TLX1 fusion proteins or with control GST beads and the bound proteins eluted and subjected to Western blot analysis with anti-
CBP and anti-GST antibodies. The amount of each eluate loaded to detect GST–TLX1 fusion proteins represents 5% of the amount
loaded to detect CBP. Abbreviations: TLX1, GST-FLAG-TLX1; TLX1 D2, GST-FLAG-TLX1 D2 (consisting of amino acids
98–330), GST-FLAG-TLX1 D6 (consisting of amino acids 2–260) and GST-FLAG-TLX1 HD (containing an internal deletion from
amino acid 201 to amino acid 260).
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histone H3 (K9H3) is an epigenetic modification that
has been correlated with both local and global repres-
sion of transcription, and a number of studies have
suggested that the di- (Me2K9H3) and trimethylation
(Me3K9H3) states of K9H3 largely reside in separate
subnuclear compartments, possibly distinguishing facul-
tative and constitutive heterochromatin, respectively
(Guenatri et al., 2004; Wu et al., 2005). In addition,
the a isoform of the non-histone adapter heterochro-
matin protein 1 (HP1a) is frequently concentrated at
Me3K9H3-enriched heterochromatin (Guenatri et al.,
2004). In this regard, it was notable that costaining of
iEBHX1S-4 cells grown in the presence of doxycycline
with anti-CBP and anti-Me2K9H3 antibodies revealed
partially overlapping regions of fluorescence (Figure 4b,
þDox). In contrast, no overlap of CBP and Me2K9H3
fluorescence was observed 18 h following doxycycline
withdrawal (Figure 4b, �Dox), indicating exit of CBP
from this subnuclear compartment concomitant with
TLX1 downregulation. By comparison, no overlap of
the CBP distribution pattern with Me3K9H3 or with
HP1a was revealed by immunofluorescence confocal
microscopy of iEBHX1S-4 cells similarly cultured in the
presence or absence of doxycycline (Figure 4b). These
results suggested that TLX1 might inhibit CBP function
in iEBHX1S-4 cells by sequestering a sub-population of
the protein in particular subnuclear compartments,
including those associated with heterochromatin do-
mains enriched in Me2K9H3.

In light of these observations, we were interested in
directly studying the effect of TLX1 expression on the
intranuclear distribution of CBP. Therefore, we tran-
siently transfected 293T cells with the FLAG-tagged
TLX1 and/or mouse CBP expression vectors and

examined their intranuclear locations by immunofluor-
escence staining and confocal laser scanning microscopy
(Figure 4c; Supplementary Figure 3). Under these
experimental conditions, TLX1 was preferentially lo-
cated at the nuclear periphery, whereas in the absence of
TLX1, CBP was distributed throughout the nucleus.
Quantitative image analysis (Supplementary Figure 3)
revealed that there was a statistically significant
difference between the distribution of TLX1 in the
peripheral versus the central region of the nucleus
(P¼ 0.024) but not in the case of CBP (P¼ 0.328,
peripheral versus central localization). However, when
TLX1 was coexpressed with CBP, a substantial fraction
of CBP exhibited a striking redistribution to the nuclear
periphery (P¼ 0.001, peripheral versus central localiza-
tion), colocalizing with TLX1 (Pearson correlation
coefficient, r¼ 0.672). These results provided direct
evidence for the recruitment of CBP to subnuclear
compartments occupied by coexpressed TLX1.

Discussion

We inferred from previous work in various murine
model systems that TLX1 functions in human leukemia
etiology at least in part by disrupting hematopoietic
differentiation programs (Hawley et al., 1994, 1997;
Keller et al., 1998; Owens et al., 2003, 2006). The
collective observations thus raised the possibility that
TLX1 might interfere with hematopoietic differentiation
pathways by interacting with shared signaling compo-
nents or transcriptional coregulators. To gain a better
understanding of the underlying mechanism of the
TLX1-mediated differentiation block, we generated the

Figure 4 Partial colocalization of TLX1 and CBP in iEBHX1S-4 and 293T cells. (a) iEBHX1S-4 cells cultured in the presence of
1 mg/ml doxycycline (þDox) or grown without doxycycline for 18 h (�Dox) were labeled with anti-TLX1 (TLX1; Alexa Fluor 568,
red) and anti-CBP (CBP; Alexa Fluor 488, green) antibodies and immunofluorescence staining was analysed by confocal laser scanning
microscopy. The right panels show the merged green and red images at the same focal plane with overlapping regions of protein
distribution appearing yellow. (b) iEBHX1S-4 cells cultured in the presence of 1mg/ml doxycycline (þDox) or grown without
doxycycline for 18 h (�Dox) were labeled with anti-CBP (CBP; Alexa Fluor 488, green) and either anti-dimethyl-histone H3 (Lys9)
(Me2K9H3; Alexa Fluor 568, red) or anti-trimethyl-histone H3 (Lys9) (Me3K9H3; Alexa Fluor 568, red) antibodies, or with anti-CBP
(CBP; Alexa Fluor 568, red) and anti-HP1a (HP1; Alexa Fluor 488, green) antibodies and immunofluorescence staining was analysed
by confocal laser scanning microscopy. The panels shown are the merged green and red images at the same focal plane. Overlapping
distributions of CBP and dimethyl-histone H3 (Lys9) staining in þDox cultures of iEBHX1S-4 cells appear yellow. (c) 293T cells
transiently transfected with TLX1 and/or CBP expression vectors (indicated to the left of the panels) were labeled with anti-TLX1
(aTLX1; Alexa Fluor 568, red) and anti-CBP (aCBP; Alexa Fluor 488, green) antibodies, and immunofluorescence staining was
analysed by confocal laser scanning microscopy. The right panels show the merged green and red images at the same focal plane with
overlapping regions of protein distribution appearing yellow. Note that coexpression of TLX1 caused redistribution of a substantial
fraction of CBP to the nuclear periphery (see Supplementary Figure 3 for details). Size bar, 10 mm.
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factor-dependent iEBHX1S-4 progenitor cell line by
conditional immortalization with doxycycline-inducible
TLX1 expression. We then performed genome-wide
expression profiling of iEBHX1S-4 cells released from
the differentiation block at early time points following
doxycycline withdrawal. A key feature of our experi-
mental design was the bioinformatic analysis of func-
tionally related sets of genes exhibiting similar
expression profiles following TLX1 extinction. This
analysis revealed coordinated upregulation of erythroid
transcriptional networks integrated by the acetyltrans-
ferase co-activator CBP. Among erythroid-lineage
transcription factor targets of CBP, previous work had
highlighted CBP acetylation of GATA-1 as being essen-
tial for erythroid differentiation (Blobel et al., 1998;
Hung et al., 1999; Hong et al., 2002). Accordingly, we
found immediate increases in the levels of CBP-
associated GATA-1 as well as the acetylated form of
GATA-1 upon TLX1 downregulation, whereas class
I/II HDAC inhibitor treatment of conditionally arrested
iEBHX1S-4 cells stimulated GATA-1 acetylation and
differentiation (Yoshida et al., 1987; Watamoto et al.,
2003). We subsequently demonstrated by coimmuno-
precipitation experiments and GST pull-down assays
that TLX1 binds to CBP in vivo and in vitro, and we
provided evidence that the homeodomain of TLX1 is
required for its direct interaction with CBP in vitro. We
also showed by confocal laser microscopy that CBP
partially colocalizes with TLX1 and Me2K9H3-marked
heterochromatin in iEBHX1S-4 cells, relocating from
these heterochromatic regions concomitant with TLX1
downregulation. Further, we documented that coex-
pression of TLX1 with CBP in a heterologous cell line
(293T cells) resulted in the redistribution of its intra-
nuclear location. The combined results presented here
can therefore be interpreted to suggest a mechanism by
which TLX1 modulates CBP function by binding and
recruiting it to particular subnuclear compartments,
including those organized into repressive chromatin
domains (Schaufele et al., 2001; Heidari et al., 2006).

Transforming viral proteins such as adenovirus E1A,
which force cells into S phase, target CBP as well
as the retinoblastoma (Rb) protein (Blobel, 2000;
Helt and Galloway, 2003). We previously showed that
TLX1 regulated multiple G1/S transcriptional networks
in TLX1þ human T-ALL cell lines by inhibiting Rb
function (Riz and Hawley, 2005). Whereas it is clear
that the adenovirus E1A oncoprotein represses Rb acti-
vity, opposing effects of E1A on CBP activity have
been reported (Ait-Si-Ali et al., 2000). Notably, although
E1A interferes with CBP-mediated acetylation of
GATA-1 (Blobel et al., 1998; Hung et al., 1999), E1A
modulates expression of certain cell cycle-related genes
such as the proliferating cell nuclear antigen in part by
disrupting CBP interaction with other transcriptional
regulators (Karuppayil et al., 1998). Thus, the current
findings leave open the possibility that TLX1 may also
redirect as well as inhibit CBP-facilitated differentiation
signals, converting them into proliferative responses.

CBP and the closely related p300 protein function
as global coregulators of transcription, purportedly

interacting physically or functionally with over 300
proteins (Kasper et al., 2006). It is not surprising
therefore that many developmental pathways culminate
in interactions that involve CBP. In particular, a full
complement of CBP is required for normal differentia-
tion along multiple hematopoietic lineages (Kung et al.,
2000; Kasper et al., 2006). The current studies using the
novel iEBHX1S-4 erythroid progenitor cell model
suggest that the mechanism by which TLX1 contributes
to erythroid differentiation arrest occurs in a manner
analogous to that for several other oncoproteins (Blobel
et al., 1998; Hung et al., 1999; Hong et al., 2002). In this
regard, it is worth noting that subversion of erythroid
transcriptional networks is observed in human T-ALL
cases in connection with the SCL and LMO2 transcrip-
tion factors, which normally form a DNA-binding
complex containing GATA-1 in erythroid cells (Wad-
man et al., 1997). Similar to TLX1 (Owens et al., 2006),
enforced expression of SCL or LMO2 in thymocyte
precursors causes deregulation of the transition check-
point from the CD4� CD8� double-negative to CD4þ

CD8þ double-positive stages of T-cell development
(Larson et al., 1995; Herblot et al., 2000), a consequence
mimicked by attenuating CBP activity during thymocyte
development (Kasper et al., 2006). In the case of SCL,
both activator and repressor functions have been
ascribed to multiprotein complexes, exerted through
SCL association with CBP and other protein partners
(Huang et al., 1999; Schuh et al., 2005). Of further
interest is the recent observation that SCL associates
with heterochromatin domains and mediates regional
transcriptional repression by a chromatin remodeling
mechanism that is sensitive to the class I/II HDAC
inhibitor trichostatin A (Wen et al., 2005).

Modulation of CBP function in the context of
differentiation arrest is also a recurring theme in human
acute myeloid leukemia, with chromosomal transloca-
tions frequently targeting CBP directly or the resulting
fusion proteins – for example, MOZ–TIF2, AML1–
ETO – shown to interact with CBP (Deguchi et al., 2003;
Iyer et al., 2004; Choi et al., 2006). It is noteworthy, for
example, that interaction with CBP is necessary for
immortalization of murine myeloid progenitors by the
MOZ-TIF2 oncoprotein (Deguchi et al., 2003). Interac-
tion with CBP has also been proposed to play a role in
the immortalization of murine myeloid progenitors by
the E2A–PBX1 fusion oncoprotein of human pre-B-cell
ALL (Kamps and Wright, 1994; Bayly et al., 2004). Of
particular relevance to the current study is the demon-
stration that the differentiation of certain murine
myeloid progenitor cell lines conditionally immortalized
by E2A-PBX1 could be arrested by ectopic expression of
a variety of oncogenes, including AML1-ETO, HOXA7
and HOXA9 as well as other HOX genes (Sykes and
Kamps, 2001). The accumulated data, considered
together with previous observations that many HOX
proteins were found to interact with CBP, commonly via
the homeodomain (Shen et al., 2001), suggest a shared
indirect mechanism of hematopoietic cell differentiation
arrest mediated by these homeodomain-containing
transcription factors. In view of the recent appreciation
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of deregulated HOXA homeobox gene expression in
human T-ALL and the finding that HOXA-translocated
samples could be grouped together with TLX1þ cases
based on genome-wide expression analysis (Soulier
et al., 2005), it is tempting to speculate that modulation
of CBP function may contribute to T-ALL evoked by
the TLX1 and HOXA homeodomain proteins (Kang-
Decker et al., 2004).

Materials and methods

iEBHX1S-4 erythroid progenitor cell line derivation
The ploxTLX1 targeting plasmid was electroporated into the
doxycycline-inducible ESC line Ainv15 and selected for G418
resistance as described (Kyba et al., 2002). Embryoid body
formation, and iEBHX1S-4 progenitor cell line derivation and
characterization were essentially as described (Keller et al., 1998;
Kyba et al., 2002). See Supplementary Information for details.

Microarray profiling
Microarray profiling was performed in The George Washing-
ton University Medical Center Genomics Core Facility

essentially as described previously (Krasnoselskaya-Riz et al.,
2002; Riz and Hawley, 2005). The expression profiles of
selected genes obtained by microarray analysis were validated
by real-time qRT–PCR using TaqMan probe sets (Applied
Biosciences, Branchburg, NJ, USA) according to the manu-
facturer’s protocol. Details of bioinformatic analysis are
provided in Supplementary Information.

Immunoprecipitations, GST pull-downs and Western blotting
Immunoprecipitations, GST pull-downs and Western blotting
were performed essentially as described previously (Berger and
Hawley, 1997; Owens et al., 2003; Akimov et al., 2005; Riz and
Hawley, 2005).

Confocal laser scanning microscopy and image analysis
Confocal images were acquired using the � 60 oil immersion
objective of a Bio-Rad MRC-1024 confocal laser scanning
microscope equipped with an argon-krypton ion laser and
LaserSharp 2000 software (Carl Zeiss MicroImaging Inc.,
Thornwood, NY, USA) and were analysed using Image-Pro
Plus (Media Cybernetics, Silver Spring, MD, USA) as
described previously (Popratiloff et al., 2003) as detailed in
Supplementary Information.
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Eukaryotic chromatin is composed of DNA and protein components—core histones—that act to compactly pack the DNA

into nucleosomes, the fundamental building blocks of chromatin. These nucleosomes are connected to adjacent nucleo-

somes by linker histones. Nucleosomes are highly dynamic and, through various core histone post-translational modifica-

tions and incorporation of diverse histone variants, can serve as epigenetic marks to control processes such as gene

expression and recombination. The Histone Sequence Database is a curated collection of sequences and structures of

histones and non-histone proteins containing histone folds, assembled from major public databases. Here, we report a

substantial increase in the number of sequences and taxonomic coverage for histone and histone fold-containing proteins

available in the database. Additionally, the database now contains an expanded dataset that includes archaeal histone

sequences. The database also provides comprehensive multiple sequence alignments for each of the four core histones

(H2A, H2B, H3 and H4), the linker histones (H1/H5) and the archaeal histones. The database also includes current informa-

tion on solved histone fold-containing structures. The Histone Sequence Database is an inclusive resource for the analysis of

chromatin structure and function focused on histones and histone fold-containing proteins.

Database URL: The Histone Sequence Database is freely available and can be accessed at http://research.nhgri.nih.gov/

histones/.

.............................................................................................................................................................................................................................................................................................

Introduction

Histones play central roles in both chromatin organization

and gene regulation, as they constitute the fundamental

protein units of the nucleosome (1). The nucleosome con-

sists of DNA wrapped around an octameric core histone

complex, composed of a central H3–H4 tetramer and two

adjacent H2A–H2B dimers; the nucleosome is commonly

identified as the first order of compaction of eukaryotic

chromatin (2). Core histone genes also display conserved

expression patterns that show periodic expression across

the eukaryotic cell cycle, with a pronounced peak during

S-phase (3). This allows for histone proteins to be produced

at the same time DNA is being synthesized. Thus, the his-

tone proteins can be readily assembled into nucleosomes

and then compacted into chromatin.

Core histones are highly conserved across eukaryotes in

terms of sequence and structure. Despite overall sequence

conservation, extensive histone tail post-translational modi-

fications, in addition to histone variants present during de-

velopment, contribute to epigenetic mechanisms that

signal transcriptional activation, repression and recombin-

ation events. Histone proteins and their variants have an

.............................................................................................................................................................................................................................................................................................
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essential function in gene regulation (4–6). Nucleosomes

are disassembled at transcriptionally active promoters via

histone post-translational modifications (7), specific histone

variants are known to mark active promoters and regula-

tory regions (8), and other variants are involved in the tran-

sition between transcriptionally active or silent chromatin

(9). In recent years, much progress has been made toward

genome-wide profiling of chromatin modifications (10),

where histones play critical roles in defining the overall

structure and function of chromatin and, by extension, in

gene regulation.

The histone fold is a common structural motif shared by

each of the four core histones, which mediates interactions

between the individual core histones. The histone fold is

structurally composed of three a-helices connected by two

loops, and this overall architecture allows for heterodimeric

interactions between core histones (11). Interestingly, even

though each individual histone protein family is highly con-

served, the histone fold is not conserved at the sequence

level but, rather, at the structural level (12). Higher-

resolution crystal structure of the nucleosome core particle

has demonstrated detailed structures of the histone folds in

each of the histones (13, 14). The DNA wrapped around

each nucleosome is held in place by linker histones (called

H1, or H5 in avian species). The linker histones, which do

not contain the histone fold motif and have a different

evolutionary origin from the core histones (15), are critical

to chromatin higher-order compaction and facilitate inter-

nucleosomal interactions (16). In addition, H1 variants have

been shown to be involved in the regulation of develop-

mental genes (17). The overall structural state of chromatin

controls DNA replication, recombination and gene expres-

sion, with histones playing critical roles during these

processes (18).

Interestingly, despite the conservation of core histone

gene expression patterns, the regulatory machinery that

controls core histone gene expression has changed greatly

among eukaryotic evolutionary lineages. Specifically, the

identity of the core histone gene cis-regulatory sequence

motifs and the protein factors that bind these motifs are

distinct for the yeast Saccharomyces cerevisiae, as well as

for other fungi, plants, insects and mammals (19).

Therefore, different species have developed unique gene

regulatory mechanisms for core histone genes that con-

verge in the same gene expression phenotype, high expres-

sion levels specifically during S phase, concomitant with

DNA replication.

Although the core histones are among the most slowly

evolving eukaryotic proteins, members of the histone H2A

and H3 families have diversified extensively, assuming spe-

cialized roles in DNA repair, gene silencing, gene expression

and centromere function (5, 6). Interestingly, the centro-

mere H3 variant appears to form tetrameric nucleosomes

that induce positive supercoils, and these specialized

‘centromeric nucleosomes’ have been proposed as the epi-

genetic inheritance mechanism for centromeres (20).

The histone fold motif—common to all core histones—

has also been found in a variety of non-histone proteins.

The large majority of these non-histone proteins are loca-

lized in the nucleus and their functions are related to DNA

metabolism; they include nuclear factor Y (NF-Y) and

the TFIIB transcription factors (12). A few histone fold-

containing proteins localized in the cytoplasm include the

Ras activator Son of Sevenless (SOS) (21): SOS1 is localized

primarily in the nucleus and SOS2 localized in the cytoplasm

(22). Huntingtin interacting protein M (CXorf27) also con-

tains a histone fold and is localized in the cytoplasm. We

hypothesize that histone folds in cytoplasm-localized pro-

teins are used to mediate protein–protein interactions.

Given the central role of histones and related proteins in

a wide variety of critical cellular functions, we feel the need

to continue to provide a centralized, curated source of

important information on these proteins to the biomedical

community. To this end, the Histone Sequence Database

represents an organized collection of all histones and his-

tone fold-containing proteins (23). The information pre-

sented in this Database includes a list of published

three-dimensional structures for histones and histone

fold-containing proteins, as well as manually curated mul-

tiple sequence alignments for each histone family.

Database and software

Data tables

The Histone Sequence Database, which has been developed

and expanded significantly since its last release (23), has

three tables stored in a relational database schema using

Oracle 10 g (Figure 1). The HISTONES table stores informa-

tion about the histone category, its accession, the sequence

string, the submitting database, as well as NCBI’s taxonomic

information on the sequence. The ORGANISM table con-

tains detailed taxonomic information for the sequences

contained in the Histone Sequence Database. The

STRUCTURES table stores information on the experimental-

ly determined structures of proteins contained in the data-

base, including the method of determination (i.e. X-ray

crystallography or NMR spectroscopy).

Software

The Histone Sequence Database uses Common Gateway

Interfaces (CGIs) written in the Perl programming language

that communicate with the relational database software.

The connectivity between the CGIs and the Oracle 10 g

Relational Database Management Software was imple-

mented using Perl’s Database Interface (DBI) and the

Oracle database driver for the DBI module (DBD::Oracle),

available through the Comprehensive Perl Archive Network

.............................................................................................................................................................................................................................................................................................
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(CPAN; http://search.cpan.org/). The use of object-oriented

design methodologies and Perl modules that are both open

source and developed in-house allows for flexibility and

scalability. The Web pages displaying data, such as the sum-

mary of contents, non-redundant sets, and search pages are

dynamically generated using CGI. Comments concerning

the Web front-end are welcomed and encouraged.

Data sources and histone protein identification

The protein databases searched for the update and cur-

ation of the Histone Sequence Database were the NCBI

non-redundant (nr) database (18 November 2010); nr in-

cludes sequences of all non-redundant GenBank CDS trans-

lations (24), as well as the sequences of RefSeq proteins,

sequences of structures represented in the Protein Data

Bank (PDB) (25), and sequences from UniProtKB/Swiss-Prot

(26), the Protein Information Resource (PIR) (27), and the

Protein Research Foundation (PRF) (http://www.prf.or.jp/

index-e.html). The collection of histones was extended

and revised, using the HMMER3 software package (28).

We constructed hidden Markov models (HMMs) for each

of the four core histones and the linker histone H1 from

the alignments generated in the last release of the Histone

Database. Additional HMMs were generated for archaeal

histones (29) and bacterial proteins that contain a

histone-likefold (30); only the protein entries that have a

complete domain hit with an E< 0.01 are collected for fur-

ther analysis. For each histone family, multiple sequence

alignments were generated using MUSCLE (31). The align-

ments that are manually curated to include proteins with

complete folds are also available in PDF format and are

color-coded to allow easy identification of amino acid vari-

ants. The Histone Database uses a color scheme designed to

highlight the specific amino acid differences that a particu-

lar group of sequences may have inside the core or linker

histone alignments by coloring amino acids with similar

physicochemical properties differently. A summary table

of the number of sequences found grouped by family and

species represented in the database is provided (Table 1).

Identification of histone fold-containing proteins

Histone fold-containing proteins were identified using a

different search strategy. We used the sequences from

each of the four core histone MUSCLE alignments (H2A,

H2B, H3 and H4) as seeds for PSI-BLAST (32) searches.

The PSI-BLAST searches were run to convergence with an

E-value inclusion threshold of 0.01; the core histone seeds

were excluded from the final list of histone fold-containing

proteins. Additionally, related structures were identified

using NCBI’s VAST-related structures searches (33, 34), in

an effort to identify more distant histone fold-containing

proteins that could not be identified through PSI-BLAST

searches. Using this strategy, we were able to identify a

total of 2180 histone fold-containing proteins.

Results and Discussion

The computational approach presented here has identified

proteins throughout a wider evolutionary spread of gen-

omes. Currently, the Histone Database contains entries that

represent a total of 7356 unique NCBI taxonomic identi-

fiers, which correspond to approximately the same number

of organisms. The sequences of core histones, linker his-

tones and archeal histones are available in FASTA format.

Figure 1. Histone Database data model. The Histone Database
stores selected manually curated information from GenBank
records. The information stored as part of each record in-
cludes the GenBank unique identifier (GI), accession number,
definition line, sequence string, histone class, database source,
NCBI taxonomic identifier and organism name. The database
front-end is written in Perl, the data is stored in an Oracle 10 g
relational database, and data is retrieved using Perl DBI and
DBD libraries.

Table 1. Histone Database content

Core histone

profile

Number

of unique

sequences

Increase

since last

update (%) (23)

Number

of unique

taxonomic

identifiers

H1/H5 591 138.3 156

H2A 1016 214.6 331

H2B 755 161.2 308

H3 2287 476.1 7096

H4 341 181.8 344

Archaeal 182 – 89
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Figure 2. Histone Database query and results. The Histone Database main page displays a search engine that allows users to find
histone sequences from a large variety of organisms. Additionally, users have the possibility of exploring other features to access
complete collections of Histone Protein Sequences, Multiple Sequence Alignments, The Human Histone Gene Complement,
Non-Histone Proteins Containing the Histone fold Motif and Histone Structures. The upper panel shown (A) presents the criteria
used for the query, which requires the sequence to contain a fragment with amino acids PRK from the angulate sea urchin
(Parechinus angulosus) histone H2B. The search results presented in the lower panel (B) include two protein sequences that meet
the criteria specified by the query.
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They are also available as a series of multiple sequence

alignments, one for each class of proteins. A number of

search engines can be used to query the database in several

different ways: by protein family, organism, keyword or

based on a sequence pattern (Figure 2). Each histone se-

quence for which three-dimensional structure data is avail-

able is linked to the corresponding entry in both PDB and

the Molecular Modeling Database (MMDB) (35).

The Histone Sequence Database has been expanded sig-

nificantly since its last update (23) (Table 1). However, the

expansion is not proportional for each of the core histones.

The H3 sequences, which contain a large number of variants

with specialized roles in chromosome segregation and

transcription, show an increase over 400% since the last

database update. Similarly, the H2A core histone sequences

that include variants with specialized functions in DNA

repair and transcription regulation show an increase over

200% since the last update. In contrast, we observe a more

modest growth in sequence numbers for the relatively

invariant H4 and H2B core histones.

The Histone Sequence Database now includes archaeal

histone sequences. The current update contains 182

Figure 3. Histone-like folds in A. aeolicus and M. kandleri. Protein Aq_328 from the hyperthermophilic bacterium A. aeolicus
(PDB:1R4V) and archaeal histone from M. kandleri (PDB:1F1E) have two histone like folds. These are colored as dark blue and
dark green (for 1R4V) and light blue and light green (for 1F1E). The electrostatic surface potential ranges from +2 kTe�1 (blue) to
�2 kTe�1(red). (A) and (D) the front and back views, respectively, of the electrostatic surface potential of Protein Aq_328. (B) and
(E) superimposed structures of protein Aq_328 and the archaeal histone from M. kandleri. (C) and (F) the front and back views,
respectively, of the electrostatic surface potential of the archaeal histone from M. kandleri. The figures were generated with
PyMOL (49) and the APBS plug-in for PyMOL (50).
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sequences from 89 archaeal organisms, which includes

members of all classified archaeal phyla (i.e. euryarchaeota,

crenarchaeota, nanoarchaeota, korarchaeota and the

newly proposed phylum thaumarchaeota). The presence

of histone folds in all classified archaeal phyla indicates

that the histone fold originated before the archaeal and

eukaryotic lineage divergence (29). Most of the archaeal

histones have a single histone fold domain; however,

there are a number of sequences that contain two histone

folds, with the C-terminal histone fold sharing higher se-

quence similarity with archaeal histones with a single his-

tone fold. Archaeal histones containing two histone folds

have been proposed as intermediates between archaeal

and eukaryotic histones (36, 37), where both core histones

H3 and H4 would have originated at the same time, fol-

lowed by a second event that gave rise to core histones H2A

and H2B. In the current release of the Histone Sequence

Database, archaeal histones with two histone folds are con-

fined to two distinct branches: Halobacteriaceae and the

hyperthermophilic methanogen Methanopyrus kandleri.

Although archaeal histones containing two histone folds

have been previously identified in these lineages, it is not

clear how these histones could also contribute to pack DNA

in extreme high temperature or high salinity environments.

Structural comparisons confirmed the presence of the

histone fold in the extreme bacterial thermophile Aquifex

aeolicus (30). Additionally, the RIKEN Structural Genomics/

Proteomics Initiative (RSGI) (38) has solved two Thermus

thermophilus structures for a protein that also contain

the histone fold (PDB:1WWI and PDB:1WWS). The histone

fold was also found in diverse types of bacteria, including

aquificales, "-proteobacteria, thermaceae, actinobacteria

and nostocaceae. This suggests that the histone fold ap-

peared in bacteria by lateral gene transfer (29, 39).

Interestingly, the structure from T. thermophilus

(PDB:1WWS), predicted to be a dimer, is strikingly similar

to the H3–H4 tetramer. However, an analysis of the elec-

trostatic surface potential for protein Aq_328 from the

hyperthermophilic bacterium A. aeolicus (PDB:1R4V) and

archaeal histone from M. kandleri (PDB:1F1E) (Figure 3) re-

veals the DNA binding surface in the archaeal histone

(Figure 3F) but shows no conservation of any of the

DNA-binding residues present in both archaeal and eukary-

otic histones (Figures 3A and 3D) (29). Therefore, it is pos-

sible that histone fold-like bacterial proteins have functions

unrelated to DNA binding. However, it is likely that the

histone-like fold is used as a dimerization domain in these

species.

Conclusions

Researchers studying chromatin structure and function

have traditionally relied on the Histone Sequence

Database to explore the taxonomic breadth of histones

and their variants (40–43). Others have focused on epigen-

etics and transcriptional regulation and use the database to

discover newly reported core histones and histone-fold-

containing proteins (44–48). The Histone Database con-

tinues to be a comprehensive bioinformatic resource that

organizes and stores histone sequences and groups them

into families (that now includes archaeal histones), main-

tains a collection of histone fold-containing sequences, and

provides information on three-dimensional structures avail-

able in PDB. In the future, we will enhance our histone fold

identification pipeline with state-of-the-art sequence- and

structure-based methods to continue to identify new mem-

bers of this biologically critical family of proteins. We

also plan to integrate functional information from other

publicly available Web resources.
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Abstract

Physalis peruviana, commonly known as Cape gooseberry, is an Andean Solanaceae fruit with high nutritional value and
interesting medicinal properties. In the present study we report the development and characterization of microsatellite loci
from a P. peruviana commercial Colombian genotype. We identified 932 imperfect and 201 perfect Simple Sequence
Repeats (SSR) loci in untranslated regions (UTRs) and 304 imperfect and 83 perfect SSR loci in coding regions from the
assembled Physalis peruviana leaf transcriptome. The UTR SSR loci were used for the development of 162 primers for
amplification. The efficiency of these primers was tested via PCR in a panel of seven P. peruviana accessions including
Colombia, Kenya and Ecuador ecotypes and one closely related species Physalis floridana. We obtained an amplification rate
of 83% and a polymorphic rate of 22%. Here we report the first P. peruviana specific microsatellite set, a valuable tool for a
wide variety of applications, including functional diversity, conservation and improvement of the species.
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Introduction

Physalis peruviana commonly known as Cape gooseberry or golden

berry is an Andean tropical fruit from the Solanaceae family native to

South American countries including Colombia, Ecuador and Peru.

Physalis peruviana grows wild in various parts of the Andes, typically

2,200 meters above sea level. The Cape gooseberry was known to

the Incas but their origins are not clear, after Christopher Columbus

the Cape gooseberry was introduced into Africa and India [1]. In

Colombia, over the last three decades, P. peruviana went from being a

neglected species to be the most promissory and successful exotic

fruit for national and international markets; thus, since 1991, the

Cape gooseberry market has been growing annually and in 2007

exports brought USD 34 million into the country. The main

consumers of the Colombian Cape gooseberry are Europe with

97%, along with Asia and the United States with the remaining 3%

[2]. The commercial interest in this fruit has grown due to its

nutritional properties related to high vitamins content, minerals and

antioxidants as well as its anti-inflammatory, anti-cancer and other

medicinal properties [3,4,5,6,7,8].

Despite growing interest in the Cape gooseberry, little is known

about its genetic diversity and population structure. The

collections kept in germplasm banks have been partially evaluated

for morphologic and agronomic traits [9,10,11]. Although it has

been reported that Cape gooseberry is a diploid species with

2n = 48 [12]; different chromosome numbers might exist among

genotypes since 2n = 24 has been reported for wild ecotypes,

2n = 32 for the cultivated Colombia ecotype and 2n = 48 for the

cultivated Kenya ecotype [13]. The genetic diversity of the Cape

gooseberry at the molecular level has been poorly studied, to our

knowledge there is only one report applying dominant markers

RAMs (Random Amplified Microsatellites) in 43 individuals from

five geographical regions in Colombia suggesting high hetero-

zigocity and genetic diversity [14]. Additionally, in our experience,

the use of heterologous microsatellite markers previously devel-

oped for several other Solanaceae species have not been successful in

identifying polymorphic markers in Cape gooseberry.

Microsatellites or SSRs are defined as highly variable DNA

sequences composed of tandem repeats of 1–6 nucleotides with co-

dominant inheritance which have become the markers of choice

for a variety of applications including characterization and

certification of plant materials, identification of varieties with

agronomic potential, genetic mapping, assistance in plant-

breeding programs, among others [15,16,17,18,19]. However,

no SSR markers specific for P. peruviana have been developed. The

genetic analysis with microsatellites is simple and robust, although

their identification and development present significant challenges

in emerging species [16,20]. According to the origin of the

sequences used for the initial identification of simple repeats, SSRs

are divided in two categories: Genomic SSRs which are derived
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from random genomic sequences and EST-SSRs derived from

expressed sequence tags or from coding sequences. Genomic SSRs

are not expected to have neither genic function nor close linkage to

transcriptional regions, while EST-SSRs and coding-SSRs are

tightly linked with functional genes that may influence certain

important agronomic characters. The de novo identification of

simple sequence repeats has usually involved large-scale sequenc-

ing of genomic, SSR-enriched genomic or EST libraries, which

are expensive, laborious and time-consuming. Next generation

sequencing technologies have enabled rapid identification of SSR

loci derived from ESTs which can be identified in any emergent

species [17,19,21].

The goal of the present study was to identify polymorphic SSR

loci using the assembled leaf transcriptome sequences from a

commercial Colombian ecotype of P. peruviana developed in our

laboratory (http://www.ncbi.nlm.nih.gov/bioproject/67621). Im-

perfect as well as perfect repeat searches in non-coding or

untranslated regions (UTRs) were performed. From these loci,

primers were designed for amplification of UTR SSR loci. The

effectiveness of these primers was tested via PCR in seven P.

peruviana accessions, among them, the ecotypes Colombia, Kenya

and Ecuador, as well as one closely related species Physalis floridana.

The molecular markers developed here are valuable tools for

assessing functional diversity, aid in species conservation and plant

breeding programs.

Materials and Methods

SSR loci identification and marker development
A collection of Physalis peruviana leaf transcript sequences was

used as the source for SSR development (Transcriptome Shotgun

Assembly (TSA) Database, GenBank Accession numbers

JO124085-JO157957). The transcripts were compared for se-

quence similarity with the non-redundant protein sequences

database from NCBI using BLASTX. SSR loci were searched in

both coding and non-coding sequences. Candidate SSR loci were

identified using Phobos [22] in both coding and non-coding

sequences using perfect and imperfect repeat searches with a

minimum length of 18 bp for dinucleotides, 24 bp for tri and

tetranucleotides, 30 bp for pentanucleotides and 36 bp for

hexanucleotide repeats.

Primer design and amplification of SSR loci by PCR
Primer3 version 0.4.0 [23] was used to design primers for

microsatellite amplification in P. peruviana. In addition, the

oligocalculator - SIGMA Aldrich (http://www.sigma-genosys.

com/calc/DNACalc.asp) was used to predict secondary structures

(i.e. hairpins, primer dimers) for each primer pair designed. To

determine the success of the microsatellite primer design, we

carried out PCR tests to amplify the SSR loci in seven P. peruviana

accessions (including Kenya, Ecuador and Colombia ecotypes)

and one Physalis floridana accession, a closely related species

(Table 1). The following PCR conditions were used: 1X PCR

buffer: 1.5 to 3 mM MgCl2 depending on the primer pair, 0.2 mM

dNTPs, 0.2 to 0.3 mM of each primer (depending on the primer

pair), 0.05 U/ml Taq polymerase and 25 ng of genomic DNA, in a

15 ml reaction volume. The temperature conditions were 95uC for

3 minutes followed by 35 cycles of 95uC for 30 seconds, 50 to 52uC
(depending on the primer pair) for 30 seconds and 72uC for 90

seconds, and a final extension of 72uC for 8 minutes. The PCR

amplification products were analyzed by polyacrylamide gel

electrophoresis (PAGE).

Gene Ontology analysis of SSR loci
A gene ontology (GO) analysis was performed using blast2go

[24] with the assembled transcript sequences containing the 30

polymorphic SSRs described here. These sequences were

compared with the UniProtKB/Swiss-Prot database with a cutoff

e-value of 161025.

Table 1. Plant material used for SSR development and characterization.

Species Work Code Accession/Common Name Accession Code Origin

Source/region Country

P. peruviana 1 ILS 3804* 09U086-1 CORPOICA/Ambato Ecuador

P. peruviana 2 Ecotype Kenia 09U215-1 Universidad de Nariño/+NA Colombia

P. peruviana 3 Ecotype Colombia 09U216-1 Universidad de Nariño/NA Colombia

P. floridana 4 ILS 1437* 09U139-1 Botanical Garden of Birmingham/NA U.K.

P. peruviana 5 Novacampo (commercial) 09U 274-1 CORPOICA/Cundinamarca Colombia

P. peruviana 6 ILS 3807* 09U089-1 CORPOICA/Antioquia Colombia

P. peruviana 7 ILS 3826* 09U108-1 CORPOICA/Antioquia Colombia

P. peruviana 8 ILS 3817* 09U099-1 CORPOICA/Caldas Colombia

ILS* = Introduction maintained at La Selva Research Center, CORPOICA; NA = Not available; +NA = Not available (in vitro propagated material).
doi:10.1371/journal.pone.0026719.t001

Table 2. SSR loci identified in Physalis peruviana leaf
Expressed Sequence Tags (ESTs).

Repeat Type Perfect Imperfect Frequency

CDS UTRs Total CDS UTRs Total

Dinucleotide - 34 34 2 98 100 134 8%

Trinucleotide 36 81 117 178 249 427 544 36%

Tetranucleotide 1 16 17 13 69 82 99 7%

Pentanucleotide - 6 6 47 160 207 213 14%

Hexanucleotide 46 64 110 64 356 420 530 35%

Total 83 201 284 304 932 1236 1520 -

Frequency 6% 13% 19% 20% 61% 81%

The number of SSR loci identified at coding sequences (CDS) and Untranslated
Regions (UTRs) by using perfect and imperfect repeat search criteria.
doi:10.1371/journal.pone.0026719.t002

Microsatellite Markers in Physalis peruviana
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Results

Identification of SSR loci in P. peruviana
A total of 1,520 SSR loci were identified and a large fraction

were located in UTRs (74%) as compared to coding sequences

(CDS) with 26%. The highest number of SSR loci found

contained trinucleotide and hexanucleotide repeats with 544

(36%) and 530 (35%) respectively (Table 2).

Microsatellite primer design and PCR analysis
The SSR loci selected for primer design were located at UTRs

and identified with an imperfect repeat search to increase the

probabilities for finding polymorphisms within the individuals

analyzed. Using this strategy a total of 162 primers pairs were

designed. A successful PCR amplification was obtained for 138

(83%) of the 162 primers designed from microsatellite loci using

seven P. peruviana and one P. floridana genotype (Table 1).

Polymorphisms among the eight genotypes were observed for 30

(22%) loci whereas the remaining 108 loci were monomorphic

(Figure 1, Tables 3 and 4).

Functional relationships of polymorphic SSR markers
A significant GO annotation was found for 10 of the 30

markers, which are related to 43 different ontology terms, of these

27 (67%) were related to biological process, 11 (25%) to molecular

function and 5 (8%) to cellular component (Table 5).

Discussion

Here we present the first collection of EST-derived microsat-

ellite markers in Physalis peruviana. The highest number of SSR loci

found contained trinucleotide and hexanucleotide repeats

(Table 2), which is consistent with results reported in Solanaceae

and other plant species [19,20,25,26,27,28,29,30,31]. 1,236 out of

1,520 SSR loci are composed of imperfect repeats increasing the

probability of polymorphism among Physalis species. This

inference is bolstered by the fact that 30 of the 162 imperfect

SSRs (22%) were polymorphic in the panel of 8 accessions from P.

peruviana and the related species P. floridana (Table 1), suggesting

the potential utility of these genetic based SSR markers for future

studies. i.e. germplasm diversity and breeding applications

[17,19,32].

Our results show that most of the SSR loci were located at UTRs

(Table 2) in agreement with the results reported by Morgante and

others [27] who hypothesize that in plants most of the SSR loci from

transcribed regions are distributed along the UTRs. Increased

numbers of SSR loci at UTRs could be related to changes in

transcription (59UTRs) or RNA silencing (39UTRs), which are

sources of variation among species [18,19,20,29,30]. Cereal species

appear to have a different SSR distribution; Yu and others [33]

found that most of the 444 EST derived SSR markers (62%) were

located at coding regions, while 38% were located at UTRs.

Since the SSR loci found in this study were derived from genes,

they may be related to some traits of interest [18,20,27] such as

resistance to Fusaruim oxysporum, which is one of the main

constraints for Cape gooseberry production at the commercial

level. According to the functional annotation obtained by the GO

analysis, two polymorphic SSR markers (SSR54 and SSR77

respectively) were related with proteins involved in defense

responses to pathogens such as programed cell death and ethylene

as well as jasmonic acid pathways. These two polymorphic SSR

makers would be useful in P. peruviana breeding programs focused

on F. oxysporum resistance.

The high rate of successful PCR amplification for the primer

pairs designed (84%, Table 4) is related to the fact that these loci

are specific to P. peruviana and they were also developed from

genes, increasing the transferability within species of the same

genus i.e. P. floridana. These results are in agreement with Zeng

Figure 1. SSR alleles in eight Physalis genotypes and four polymorphic loci. The polymorphic SSR loci were visualized in 6% polyacrylamide
gels, samples 1–8 correspond to the work code shown in Table 1. M = Molecular size marker, 10 bp DNA Ladder (Invitrogen, Carlsbad, CA).
doi:10.1371/journal.pone.0026719.g001

Table 3. Polymorphisms in Physalis peruviana SSR loci.

SSR Type Polymorphic Monomorphic Total

Dinucleotide 19 53 72

Trinucleotide 10 39 49

Tetranucleotide - 5 5

Pentanucleotide 1 1 2

Hexanucleotide - 10 10

Total 30 108 138

doi:10.1371/journal.pone.0026719.t003
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et al. and Csencsics et al. [19,21], who used full-length cDNA and

ESTs and found rates of successful PCR amplification larger than

80%.

This study reports the first set of microsatellite markers

developed for P. peruviana and related species. A total of 1,520

SSR loci were identified, including 932 imperfect SSRs located at

Table 5. Functional annotation of 10 P. peruviana contigs containing polymorphic SSR markers.

SSR Marker GO Category: ID Functional Annotation

SSR2 P:0006350 Transcription

SSR37 F:0016301 Kinase activity

C:0005886 Plasma membrane

SSR54 P:0006952 Defense response

P:0012501 Programmed cell death

C:0044464 Cell part

F:0000166 Nucleotide binding

SSR55 P:0051865 Protein autoubiquitination

F:0004842 Ubiquitin-protein ligase activity

P:0048437 Floral organ development

P:0046621 Negative regulation of organ growth

SSR77 P:0009789 Positive regulation of abscisic acid
mediated signaling pathway

P:0006979 Response to oxidative stress

P:0052544 Callose deposition in cell
wall during defense response

P:0009753 Response to jasmonic acid stimulus

P:0031348 Negative regulation of defense response

P:0008219 Cell death

P:0009651 Response to salt stress

P:0042742 Defense response to bacterium

P:0009926 Auxin polar transport

P:0010119 Regulation of stomatal movement

P:0009408 Response to heat

F:0005515 Protein binding

P:0010150 Leaf senescence

P:0048765 Root hair cell differentiation

P:0009871 Jasmonic acid and ethylene-dependent systemic resistance, ethylene mediated signaling pathway

P:0001736 Establishment of planar polarity

P:0050832 Defense response to fungus

P:0010182 Sugar mediated signaling pathway

SSR92 F:0004674 Protein serine/threonine kinase activity

P:0045449 Regulation of transcription

P:0007169 Transmembrane receptor protein tyrosine kinase signaling pathway

F:0005524 ATP binding

F:0003700 Transcription factor activity

P:0010030 Positive regulation of seed germination

P:0006468 Protein amino acid phosphorylation

SSR110 C:0044444 Cytoplasmic part

SSR126 F:0005488 Binding

F:0003824 Catalytic activity

SSR138 F:0016740 Transferase activity

SSR146 C:0005730 Nucleolus

C:0016020 Membrane

F:0003677 DNA binding

Gene ontology (GO) functional Categories: C = Cellular component, F = Molecular function, P = Biological process.
doi:10.1371/journal.pone.0026719.t005
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UTRs. From these loci a total of 162 SSR primers were developed

to assay their utility as microsatellite markers in a panel of seven

accessions of P. peruviana and one accession of P. floridana by PCR

amplification. A total of 138 (83%) primer markers amplified, with

a polymorphism rate of 22%. The markers developed here can be

used in plant breeding programs that may ultimately lead to

superior phenotypic characteristics such as increase in fruit size,

reduction in the tendency to split during transport, reduction in

the plant susceptibility to pests and diseases, and improvement of

fruit quality.
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Abstract

Experimentally characterized enhancer regions have previously been shown to display specific patterns of enrichment for
several different histone modifications. We modelled these enhancer chromatin profiles in the human genome and used
them to guide the search for novel enhancers derived from transposable element (TE) sequences. To do this, a
computational approach was taken to analyze the genome-wide histone modification landscape characterized by the
ENCODE project in two human hematopoietic cell types, GM12878 and K562. We predicted the locations of 2,107 and 1,448
TE-derived enhancers in the GM12878 and K562 cell lines respectively. A vast majority of these putative enhancers are
unique to each cell line; only 3.5% of the TE-derived enhancers are shared between the two. We evaluated the functional
effect of TE-derived enhancers by associating them with the cell-type specific expression of nearby genes, and found that
the number of TE-derived enhancers is strongly positively correlated with the expression of nearby genes in each cell line.
Furthermore, genes that are differentially expressed between the two cell lines also possess a divergent number of TE-
derived enhancers in their vicinity. As such, genes that are up-regulated in the GM12878 cell line and down-regulated in
K562 have significantly more TE-derived enhancers in their vicinity in the GM12878 cell line and vice versa. These data
indicate that human TE-derived sequences are likely to be involved in regulating cell-type specific gene expression on a
broad scale and suggest that the enhancer activity of TE-derived sequences is mediated by epigenetic regulatory
mechanisms.
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Introduction

Transposable elements (TEs) are repetitive genetic sequences

that can move from one location in the genome to another. TE-

derived sequences are abundant in eukaryotes and make up

substantial fractions of their genomic DNA. TEs have long been

dismissed as selfish DNA elements that make little or no

contribution to the function of their host genomes [1,2]. This

idea was supported by theoretical demonstrations that TEs can

persist and proliferate in a genome without providing any function

or benefit to the host [3]. In the last couple of decades however, a

number of anecdotal cases of TEs contributing regulatory or

coding sequences to the host genome were reported. This has led

to the development of a more nuanced view of TE sequences,

whereby the relationship between TEs and the host genome can

be characterized as a continuum ranging from extreme parasitism

to obligate mutualism with their host [4,5]. Indeed, TEs have been

implicated in numerous functions that benefit the human genome.

One way in which TEs can provide functional utility to the host

genome is by donating enhancer sequences that can regulate the

expression of host genes.

Enhancers are distal regulatory sequences, found outside of

proximal promoter regions, which can increase the expression of

genes by interacting with transcription factors. There are a

handful of studies that provide experimental evidence for the

exaptation of TE sequences as functional enhancers in the human

genome. The first example comes from a study in 1993 by

Hambor et al. which shows that an Alu element serves as part of an

enhancer that up-regulates the CD8 alpha gene in accordance

with its role in differentiation along the hematopoietic lymphoid

lineage [6]. A few years later another study reported that an L1

element sequence donates an enhancer to up-regulate the

expression of the APOC (Apolipoprotein) gene by more than

10-fold in cultured hepatocyte cells [7]. Similarly, ancient SINE

elements have been shown to serve as enhancers in mammalian

specific brain formation. Santangelo et al. demonstrated the
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selection of a MAR1 element as an enhancer for the POMC

(Proopiomelanocortin) gene expressed in the pituitary gland of

jawed vertebrates [8]. Another gene FGF8 (fibroblast growth

factor 8) has also been shown to be regulated by the AmnSINE1

element in mammalian neuronal tissues [9]. A final study by

Bejerano et al. showed that an ancient SINE element drives the

expression of ISL1 (insulin gene enhancer protein) in an in-vivo

mouse enhancer assay [10].

In addition to the experimental evidence showing that

individual TE sequences provide functional enhancers to host

genomes, we previously found evidence to suggest that human TEs

may provide numerous enhancer sequences genome-wide. Our

prior analysis showed that TE sequences reside in a substantial

fraction of DNaseI hypersensitive (DHS) sites [11]. The location of

DHS sites signal ‘open chromatin’ regions which are involved in

the regulation of transcription such as promoters and enhancers

[12]. The genome-wide analysis of DHS revealed that 23% of

these sites contain TE sequences and are associated with higher

expression levels of nearby genes in CD4+ T-cells [11]. These data

suggested that TEs may provide a large number of regulatory

sequences that can increase the expression of genes in various

tissues. Given the evidence from the experimental cases of TE-

derived enhancers and the presence of TE sequences in DHS sites

genome-wide, our goal in this study was to further explore the

contribution of TEs in donating enhancers to various human cell

types.

Experimentally characterized active enhancers display a distinct

pattern of chromatin modifications that is significantly different

from other regulatory regions as well as the genomic background

[13,14,15]. Specifically, functionally active enhancers are enriched

for a suite of individual histone modifications – H3K4me1,

H3K4me2, H3K4me3, H3K9ac, H3K27ac – and their enrich-

ment patterns can be used to predict novel enhancers [13,14]. We

used the chromatin signature of active enhancers to guide the

search for putative TE-derived enhancers in two human

hematopoietic cell lines, GM12878 and K562, characterized as

part of the ENCODE project [16,17]. We employed a

computational approach to identify novel enhancers by building

a training set based on ChIP-Seq tag counts of the five enhancer-

characteristic histone modifications found over a set of previously

defined enhancer regions. Using genome-wide histone modifica-

tion maps for the GM12878 and K562 cell lines, we identified

hundreds of enhancers donated by TEs in each cell line. We also

investigated the functional effect of these enhancers on gene

expression and observed that TE-derived enhancers play a role in

regulating gene expression in a cell type specific manner.

Results and Discussion

Specific chromatin modification profiles have been shown to

mark functionally active enhancer regions in the human genome

[13,14,15]. We employed a computational approach that uses the

patterns of histone modifications to predict novel active enhancers

in two human cell lines. The ENCODE project recently

characterized genome-wide locations for several histone modifi-

cations in different human cell lines [16,17]. We chose two cell

lines derived from the hematopoietic stem cell lineage: GM12878

and K562. GM12878 is a lymphoblastoid cell line derived from a

female donor of northern and western European descent, whereas

K562 is an immortalized cancer cell line derived from a northern

European female patient suffering from immortalized Chronic

Myelogenous Leukemia (CML). In each cell line, we analyzed the

distribution of eight histone modifications (H3K4me1, H3K4me2,

H3K4me3, H3K9ac, H3K27ac, H3K27me3, H3K36me3,

H4K20me1) characterized using chromatin immunoprecipitation

followed by sequencing (ChIP-Seq). Functional enhancers have

also been associated with ‘open chromatin’ as described by DHS

sites. Therefore, we also incorporated data of the genomic

locations of DHS characterized by the ENCODE project in

GM12878 and K562 cells [16,17].

Enhancer training set
Functionally active enhancers are marked by an enrichment of

the transcription co-activator protein p300 [18,19]. As an integral

part of the enhancer-associated protein complex, p300 has been

found at enhancer locations across the human genome [20,21,22].

A set of p300 bound genomic locations has recently been

characterized using the ChIP-chip technique in human K562

cells, and these p300 binding sites have been taken to represent a

genome-wide map of functional enhancers [13,14]. In order to

determine the chromatin modification profile of enhancers, we

evaluated eight histone modifications at experimentally character-

ized p300 binding sites in the K562 cell line. We found that five of

these modifications (H3K4me1, H3K4me2, H3K4me3, H3K9ac,

H3K27ac) display distinct patterns at p300 binding sites that can

be used to predict putative enhancers (Figure 1). Therefore, we

selected 137 of the p300 binding sites that are significantly

enriched for all five modifications above the genomic background

to build an enhancer training set. The training set consists of five

vectors, each representing ChIP-Seq tag counts of individual

histone modifications over a 10 kb region divided in 100 bp bins

and summed over the 137 p300 binding sites (see Methods).

We employed two controls to validate the discriminatory power

of the chromatin modification profile captured by our enhancer

training set. As a first control, we compared the genomic location

profiles for mapped ChiP-Seq tags of the five enhancer enriched

histone modifications with the three remaining modifications

around the 137 p300 binding sites. The five enhancer enriched

histone modifications present in our training set (H3K4me1,

H3K4me2, H3K4me3, H3K9ac, H3K27ac, H3K27me3) display

unique patterns of enrichment, with tag count peaks centered

around the p300 binding sites, whereas the other three histone

modifications (H3K27me3, H3K36me3, H4K20me1) do not show

any specific pattern of enrichment over enhancer regions (Figure

S1). As a second control, we sampled 137 random genomic

sequences and compared the profiles of histone modification tag

counts against those in our training set derived from p300 binding

sites. We observed that random genomic locations do not display

any pattern of histone modification enrichment characteristic of

experimentally characterized enhancers (Figure S2). Taken

together, these controls demonstrate that experimentally charac-

terized enhancers display unique patterns of enrichment of five

histone modifications, which are significantly different from the

genomic background. Thus, the epigenetic histone modification

profile captured by our enhancer training set possesses the

discriminating features necessary to search for novel enhancers.

We attempted to further ascertain the discriminating power of

our enhancer training set by performing cross-validation together

with receiver operating characteristic (ROC) analysis on the

genomic loci that constitute our enhancer training set (see

Methods). The resulting ROC curve provides a graphical method

to distinguish between optimal and suboptimal models in their

diagnostic ability. The curve is plotted as the rate of true positives

against false positives at given intervals, and the departure of the

optimal model from the unity line is taken as a measure of its

performance.

To plot the ROC curve, for each of 10 cross-fold validations, we

computed Spearman’s rank correlations (r) between ChIP-seg tag
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counts that represent the chromatin profile of the enhancer

training sets as an ensemble against tag counts for the p300 bound

regions that make up the validation sets (true positives). Then, as a

control, we performed similar correlations between the chromatin

profile of the training sets and a sets of random genomic loci the

same size of the validation sets (false negatives). Across a range of

r-values, the fraction of true positives represented by the

validation set loci was plotted against the fraction false positives

from random genomic loci to yield the ROC curve in Figure 2.

The plot demonstrates that our enhancer training set is clearly

distinct from the one derived from sampling random genomic loci

and thereby possesses the discriminating capability essential for its

use in enhancer predictions.

Enhancer prediction
Having established the validity of our enhancer training set, we

used it to search for regions that display similar chromatin profiles

in order to identify potential TE-derived enhancers, which may or

may not be bound by p300, genome-wide. To that end, we built a

test set made up of the DHS sites in the GM12878 and K562 cell

lines. Using a 10 kb window and a step size of 100 bp, we

computed Spearman’s rank correlations between the enhancer

training set histone modification profile and test set profiles at each

step. For each DHS site, the genomic site that yields the highest

correlation value was recorded, and the results were filtered using

a correlation cut-off of 0.5 or higher (Spearman’s r= 0.5, n = 98,

P = 1E27).

Several histone modifications are also known to be enriched at

the transcription start sites and promoter regions of human genes

[13,15]. Since actively transcribing genes are also associated with

DHS, there is a possibility that our enhancer prediction method

can potentially misidentify some promoters as enhancers. In order

to control for this possibility, we used CAGE (Cap Analysis of

Gene Expression) data in each cell line to filter any promoters that

may have been identified as enhancers. CAGE tags are obtained

by capping the 59 end of messenger RNA and are known to mark

the transcriptional start sites of genes [23,24]. We identified loci

that are significantly enriched for CAGE tags by using a Poisson

distribution parameterized by the background CAGE tag count

[16,17]. The potential enhancer predictions that overlapped with

CAGE tags were marked as promoters and removed from

consideration. After filtering out the promoters in this way, (Delete

– CAGE analysis removed) we obtained 11,311 and 8,051

enhancers in the GM12878 and K562 cell lines respectively. A

majority of enhancers we identified are unique to each cell line as

only 2,114 (10.7%) of these enhancers are shared between both

(Figure 3).

Since we limited our search for enhancers to DHS sites, these

data reflect the number of enhancers associated with actively

Figure 1. An enhancer training set based on histone modifi-
cation enrichment. The enhancer training set is derived from five
histone modifications in 10 KB windows over 137 p300 binding sites in
the K562 cell line. (A) Heat map showing ChIP-Seq tag counts at
137 p300 binding sites for eight histone modifications. The first five of
the modifications are significantly enriched and display distinctive
patterns at p300 binding sites, whereas the last three modifications do
not show any specific pattern over p300 binding sites. (B) Visual
representation of the enhancer training set with ChIP-seq tag counts
summed over 137 p300 bound genomic loci corresponding to the five
enhancer enriched histone modifications binned in 100 bp bins over a
10 kb window.
doi:10.1371/journal.pone.0027513.g001

Figure 2. Discriminating ability of the enhancer training set.
Receiver operating characteristics (ROC) curve showing the discrimi-
nating ability of the enhancer training set. The rate of true positives
(TPR) is calculated as the correlations between the chromatin profiles of
individual sequences that make up the enhancer training set with the
entire enhancer training set considered as an ensemble, and the rate of
false positives is calculated as the correlations between the chromatin
profiles of randomly sampled genomic loci and the training set (see
Methods). Departure of the curve from the unity line is taken as a
measure of the discriminating ability of the training set.
doi:10.1371/journal.pone.0027513.g002
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transcribing genes. Histone modifications in each cell type are

dynamic and can change to accommodate the regulatory needs of

cell. Thus, the enhancers predicted using the histone modification

profiles are also not universally active as reflected by the small

percentage of enhancers that are shared between GM12878 and

K562 cell lines. As such, these figures provide a snapshot of active

enhancers in two human cell lines, each going through a particular

stage of differentiation. Accordingly, the divergent genomic loci of

these enhancers suggest their role in regulating cell type specific

gene expression as discussed in later sections.

TE-derived enhancers
In order to identify functionally active TE-derived enhancers,

we intersected the genomic loci of our predicted enhancers in each

cell line with TE annotations produced by the RepeatMasker

program [25]. We identified 2,107 and 1,448 enhancers derived

from TEs in the GM12878 (Table S1) and K562 (Table S2) cell

lines respectively with 121 (3.5%) enhancers that are shared

between both cell lines (Figure 3 and Table S3). There is a

significantly smaller fraction of TE-derived enhancers that are

common between the cell lines compared to all predicted

enhancers (Hyper-geometric test, P = 2E263), suggesting that

TE-derived enhancers are more cell type specific.

To evaluate the contribution of various families of TEs in

donating enhancers, we divided TE-derived enhancers into 6

major families, based on the Repbase classification system [26,27],

namely Alu, L1, LTR, DNA, L2, and MIR (Figure 4A). We also

normalized the number of enhancers contributed by each TE

family by the family’s relative genomic abundance (Figure 4B). In

both cell lines, Alu and L1 elements are under-represented,

whereas LTR, DNA, L2 and MIR are over-represented TE

families that contribute enhancers to the human genome (x2 test,

GM12878: P = 9E2272, K562: P = 4E2217 –Table S4, Student’s

t test, GM12878: t = 5.6, P = 1E23, K562: t = 4.6, P = 3E23). In

absolute terms, LTR elements donate the highest number of

enhancers (387) in the K562 and the second highest number of

enhancers (383) in the GM12878 cell lines. A number of previous

studies have demonstrated that LTRs provide transcription start

sites and protein coding sequences to the human genome [28,29].

Thus, our analysis extends what is known regarding the extensive

regulatory contributions of LTR elements to the human genome.

Our data also indicate that MIR elements contribute the largest

number of enhancers relative to their genomic abundance. MIRs

represent the oldest family of TEs in the human genome, and their

over-representation in donating enhancers indicates that older

TEs are more likely to provide regulatory and coding sequences

for the host genome [30]. Indeed, the relative age of TE families is

directly correlated with the number of enhancers it donates (Figure

S3, GM12878: r= 0.94, P = 3E219, K562: r= 0.89, P = 2E217).

The observation that older TE families donate relatively more

enhancers than younger ones suggests that older elements may

possess a stronger ability to recruit epigenetic marks, making them

more likely to be exapted by the host genome. We have also

previously shown that older TEs are bear more histone

modifications than younger ones and therefore demonstrate a

higher potential to be exapted by the human genome [31].

TE-derived enhancers and cell type specific gene
expression

To evaluate the functional effect of TE-derived enhancers, we

investigated their role in the regulation of gene expression.

Enhancers can influence the expression of genes that lie as many

as tens-of-thousands of bases away from the transcriptional start

site of genes. We determined the functional effect of our predicted

TE-derived enhancers by relating them to cell type specific gene

expression. To do this, we mapped enhancers to genes by finding

enhancers in 100 kb windows surrounding transcriptional start

sites.

We analyzed GM12878 and K562 gene expression data

characterized by exon array experiments as part of the ENCODE

project (see Methods) and calculated the average expression of

genes that possess different numbers of TE-derived enhancers in

their vicinity. For each gene in our dataset, we searched a window

of 100 kb surrounding its transcription start site for TE-derived

enhancers and binned the average expression of genes with respect

to the number of enhancers they possess. The expression of genes

without a TE-derived enhancer is significantly lower than that of

genes with one or more TE-derived enhancers in the 100 kb

region surrounding their transcription start sites (Students’ t test,

GM12878: t = 31.2, P = 3E2208; K562: t = 31.4, P = 4E2211).

Furthermore, the expression level of genes is strongly positively

correlated with the number of TE-derived enhancers it has in its

vicinity (Figure 5) (Spearman’s GM12878: r,1, p = 3E23, K562:

r,1, p = 3E23). These findings suggest that TE-derived enhanc-

ers make a contribution to the up-regulation of the expression of

nearby genes. As a control, we did the same analysis using non-TE

derived enhancer sequences predicted in the same way; the results

are qualitatively identical underscoring the potential functional

significance of TE-derived enhancers (Figure S4).

Figure 3. Common and exclusive enhancers between the
GM12878 and K562 cell lines. (Top) Venn diagram showing the
numbers of enhancers that are shared between the GM12878 and K562
cell lines as well as unique enhancers in the two cell lines, and (bottom)
numbers of the enhancers from above that originate in TE sequences
are shown.
doi:10.1371/journal.pone.0027513.g003
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TE-derived enhancers and differential expression
Having established the likely functional relevance of TE-derived

enhancers in regulating cell type specific gene expression, we

evaluated their role in driving differential expression between cell

lines. For each gene in our dataset, we computed expression

divergence between the GM12878 and K562 cell lines and related it

to the difference in the number of gene associated TE-derived

enhancers between the two cell lines. We sorted the genes based on

their expression divergence and binned them into ten bins

according to their increasing expression divergence. We found that

expression divergence is directly correlated with the difference in the

number of TE-derived enhancers between the GM12878 and K562

cell lines (Figure 6; Spearman’s r= 0.89, P = 1E23). In addition,

the trend is not entirely linear; the most extreme bins on either end

show the greatest relationship between gene expression divergence

and TE-enhancer frequency divergence. This suggests that the

strongest influence of TE-derived enhancers is observed for the most

differentially expressed genes. Non-TE derived enhancers show a

similar, if more linear and stronger, positive correlation between

gene expression divergence and enhancer divergence (Figure S5).

In order to further investigate this phenomena, we used

ANOVA on 20 and 21 samples of normalized exon array data

from the GM12878 and K562 cell lines respectively to determine

the maximally differentially expressed genes. We found 4,118

genes that are significantly differentially expressed (P = 1E27) with

1,970 genes that are up-regulated in GM12878 and down-

regulated in K562 and 2,148 genes that are down-regulated in

GM12878 and up-regulated in K562 cell lines (see Methods). We

computed the average number of enhancers in a 100 kb window

surrounding differentially expressed genes and found that genes

that are up-regulated in one cell line have more enhancers in their

vicinity in the same cell line compared to the other cell line

(Figure 6). In our dataset of 1,970 genes that are up-regulated in

GM12878 and down-regulated in K562, there are an average of

0.43 TE-derived enhancers per gene in GM12878 and 0.17 TE-

derived enhancers per gene in K562 cell line (Wilcoxon signed-

rank test, W = 183,472, P = 1E237). Similarly, the 2,148 genes

that are up-regulated in K562 and down-regulated in GM12878

have 0.37 TE-derived enhancers per gene in K562 and 0.30 TE-

derived enhancers per gene in GM12878 cell line (Wilcoxon

signed-rank test, W = 143,897, P = 4E24). These analyses dem-

onstrates that there are more TE-derived enhancers present near

genes that are differentially up-regulated in one cell line versus the

other, highlighting their contribution to the regulation of

differential expression between cell types.

Since we are comparing two cell lines here, it is formally

possible that the differences in expression between cell lines are not

related to up-regulation of genes associated with cell-type specific

TE-derived enhancers in one cell line. Rather, it may be that the

corresponding enhancer sequences, which bear distinct chromatin

profiles in the alternate cell line, are actually exerting some

negative regulatory effect therein. To control for this possibility,

we compared the levels of expression for genes associated with cell-

type specific TE-derived enhancers against the expression levels of

all genes within cell types. We found that the genes associated with

cell-type specific TE-derived enhancers are expressed at signifi-

cantly higher levels than other genes within the same cell type

(Student’s ttest; GM12878, t = 18.9, P = 2E273; K562, t = 40.0,

Figure 4. Contribution of various TE families in providing
enhancers to the human genome. (A) The number of enhancers
provided by six TE families in GM12878 (blue) and K562 (brown) cell
lines. (B) Contribution of enhancers by TE families normalized by their
genomic abundance (see Methods).
doi:10.1371/journal.pone.0027513.g004

Figure 5. Functional role of TE-derived enhancers in regulating
gene expression. Average expression levels (y-axis) of genes that are
co-located with different numbers of TE-derived enhancers (x-axis)
shown for GM12878 (blue) and K562 (brown) cell lines.
doi:10.1371/journal.pone.0027513.g005
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P = 4E2216). These results are consistent with a positive

regulatory role, i.e. activation of expression, for the cell-type

specific TE-derived enhancers identified here.

Conclusions
Unlike promoters, enhancers can influence the expression of

genes that lay tens-of-thousands of bases away from them [32,33].

The distribution of TE derived enhancers around genes ranges

from hundreds of bases from the transcription start site to several

thousand bases. Enhancers in general have also been shown to

provide for the most cell type specific mode of gene regulation

[13], and the locations of the TE-derived enhancers we discovered

here are even more cell type specific than those of the non-TE-

derived enhancers. We used two metrics to investigate the possible

functional role of TE-derived enhancers in regulating the

expression of genes in a cell type specific manner. Our first

analysis revealed that the frequency of TE-derived enhancers in

the vicinity of genes is strongly correlated with increasing gene

expression. Secondly, genes that are differentially up-regulated in

each cell line possess significantly more TE-derived enhancers in

the same cell line when compared to the other cell line. These

results provide evidence for the functional relevance of TE-derived

enhancers in helping to differentially regulate genes between

human cell types. Nevertheless, experimental interrogation of

individual TE-derived enhancers sequences predicted here will be

needed to validate the extent and nature of their regulatory

activity. We hope that the list of predicted TE-derived enhancers

that results from this work can serve as a guide for further

experimental studies on the regulatory contributions of human

TEs.

Methods

Enhancer training set and identification of novel
enhancers

A dataset of 211 p300 binding sites characterized genome-wide

from the K562 cell line was taken to represent functionally active

enhancer sequences as previously described [13,14]. We downloaded

genome-wide ENCODE histone modification ChiP-Seq data [16,17]

for the GM12878 and K562 cell lines from the USCS Genome

Browser for 8 histone modifications characterized in the Bernstein

Laboratory at the Broad Institute [34,35,36]: H3K4me1, H3K4me2,

H3K4me3, H3K9ac, H3K27ac, H3K27me1, H3K36me1,

H4K20me1. ChIP-Seq tags were mapped to the human genome

(UCSC hg18) using the program MAQ with the read-rescue option,

which accommodates ambiguous tags that map to multiple genomic

regions.

Previously, enhancer locations were predicted using chromatin

profiles based on three histone modifications [13]. Here, we have

taken a similar approach using additional information afforded by
Figure 6. Functional role of TE-derived enhancers in regulating
differential gene expression. (A) Gene expression divergence

between GM212878 and K562 (y-axis) is plotted against normalized
differenced in the numbers of cell type specific TE-derived enhancers (x-
axis) co-located with the genes. Expression divergence and enhancer
frequency divergence between the GM12878 and K562 cell lines is
calculated by subtracting the values of K562 from those of GM12878
cell line. (B) Differentially expressed genes determined by performing
ANOVA on the 21 and 20 samples of GM12878 and K562 cell lines
respectively (see Methods). (C) The average numbers of co-located TE-
derived enhancers found in the GM12878 (blue) and K562 (brown) cell
lines are shown for differentially expressed genes that are up-regulated
in GM12878 and K562.
doi:10.1371/journal.pone.0027513.g006
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a total of five enhancer-characteristic modifications as well as DHS

sites. DHS sites analyzed were aggregated across 10 kb windows

and represent relatively open chromatin; although, they are not

entirely devoid of nucleosomes. The p300 binding sites were

evaluated for enrichment with five enhancer-characteristic histone

modifications: H3K4me1, H3K4me2, H3K4me3, H3K9ac,

H3K27ac. The remaining three histone modifications (H3K27me1,

H3K36me1, H4K20me1) were used as negative controls for

enhancer regions. A total of 137 p300 binding sites in K562 cells

that were found to be significantly enriched for all five enhancer-

characteristic histone modifications, but not for enhancer-negative

modifications, were used to predict the locations of TE-derived

enhancers genome-wide.

For each histone modification, enrichment significance was

calculated using a Poisson distribution parameterized by the genomic

background ChIP-Seq tag count and the threshold was adjusted using

the Bonferroni correction for multiple tests. The enhancer training set

was generated using 10 kb windows center-aligned and surrounding

137 p300 binding sites and divided into 100 bins of 100 bp each.

Thus, the training set consists of five vectors representing individual

histone modifications each made up of 100 bins containing ChIP-Seq

tag counts summed over 137 p300 binding sites.

The test set vectors were fashioned in a similar way except in

this case individual DHS sites were used instead of p300 binding

sites as in the training set. Individual enhancer test set profiles were

centered at the start point of the DHS sites and Spearman’s rank

correlations were computed individually between the five vectors

of the training and the test set profiles and the resulting

correlations were averaged. We used a sliding window with a step

of 100 bp from the start of the DHS sites, computed correlations

at every step and took the highest average correlation computed

from all the steps within a DHS site. Average Spearman’s

correlation values of (r= 0.5, P = 1E27) or higher were taken for

further evaluation as potential enhancers.

Cross-validation and receiver operating characteristic
(ROC) curve analysis

Ten-fold cross-validation was combined with ROC analysis to

evaluate the discriminating power of the enhancer histone

modification model. For the 10-fold cross-validation, we parti-

tioned the training set of 137 p300 binding sites into 10

subsamples (with 13 or 14 sequences each), taking 9 of the

subsamples as the histone modification training set and a single

subsample as the validation set for testing the model. This

procedure was iterated 10 times with each of the subsamples used

one time as the validation set for testing the model. Then for each

cross-validation, Spearman rank correlation coefficients (SCCs)

between the histone modification profile of the enhancer training

set versus the histone modification profiles of the validation set

were computed along with SCCs for the histone modification

profile of the training set versus modification profiles of a set of

random genomic sequence the same size as the validation set. The

resulting ROC curve is based on the relative distributions of the

SCC for all ten of the enhancer training versus validation sets (true

positives) along with the SCC all ten of the enhancer training

versus random genomic sequence sets (false positives). The rates of

true positives and false positives were calculated by taking the

normalized frequency of correlation values i at regular intervals as

described below:

TPRi~iz0:02
{1viv1

~
FoCTrue Positives wi

N

FPRi~iz0:02
{1viv1

~
FoCFalse Positives wi

N

where interval i = 0.02, N = 137 (total number of correlation values

in each dataset), and FoC = frequency of correlation values in

range. The rate of true positives (TRP) was plotted against the rate

of false positives (FPR) to yield the ROC curve in Figure 2.

Gene expression analysis
We downloaded Affymetrix exon array signal intensity data

from the GEO database under accession number GSE12760. This

dataset contains 20 samples of GM12878 and 21 samples of K562

cell lines collected from the different laboratories that are part of

the ENCODE project [16,17]. We normalized the dataset using

the MAS5 algorithm provided by the Bioconductor package

Exonmap [37]. The normalized data was mapped to a genomic

locus by averaging the expression values of all probes whose

genomic coordinates lay within that the boundaries of that locus

for all replicates. We used Refseq genes from the UCSC genome

browser to define transcriptional units (TU) [15,38,39]. The TU’s,

referred to as genes in the text for clarity, encompass the all

overlapping co-directional mRNA transcripts at a genomic loci.

We defined the boundaries of TUs as the upstream most

transcription start site and the downstream most transcription

end site.

Differentially expressed genes
Differentially expressed genes were identified using one way

ANOVA (Analysis of variance) implemented in the Genesis

software package [40]. ANOVA was performed on 20 and 21

samples from GM12878 and K562 cell lines respectively. We used

a stringent significance cut-off of P = 1E27 obtained after using

Bonferroni correction for multiple tests, to calculate ANOVA.

Sequence annotation datasets
We used five sequence annotation datasets from the March

2006 build (NCBI Build 36.1; UCSC hg18) of the human genome.

Three of these datasets were obtained from the ENCODE section

of the UCSC Genome Browser [38]. These datasets include

histone modifications, DNaseI hypersensitive sites and CAGE

data, for both GM12878 and K562 cell lines [16,17]. These data

are produced from ChIP-Seq, DNaseI-Seq and CAGE experi-

ments respectively and are available as aligned reads in tagAlign

files. Refseq genes and RepeatMasker 3.2.7 data was downloaded

from the UCSC Table Browser [39].

Statistical analyses
We used the statistical software R for calculating the Spear-

man’s rank correlation coefficients r for all correlation analyses.

The statistical significance of Spearman’s rank correlation

coefficients r was determined using the Student’s t distribution

with d.f. = n22 with the formula t~r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(n{2)=(1{r2)

p
[41].

We used a two tailed x2 test with d.f. = 5 and Student’s t test with

d.f. = 1 to determine the statistical significance of the over- and

under-represented TE-families that donate predicted enhancers in

each cell line (Figure 4 and Table S4). The genomic abundance of

TE families was used to compute the expected number of

enhancers derived from each family.

The Wilcoxon signed-rank test was used to establish the

statistical significance for the difference in the average number
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of enhancers in the vicinity of genes that are differentially

expressed between each cell line (Figure 6C).

Supporting Information

Figure S1 Control 1: Relevant versus non-relevant
histone modifications. Histone modifications at 137 p300

binding sites in the K562 cell line are shown. The first five

modifications were used to build the training set (H3K4me1,

H4K4me2, H3K4me3, H3K9ac, H3K27ac), whereas other

modification that show no specific pattern of enrichment over

the p300 binding sites and were thus excluded from further

analysis (H3K9me1, H3K27me3, H3K36me3, H4K20me1).

(PPT)

Figure S2 Control 2: Histone modification enrichment
patterns at p300 binding sites versus random genomic
loci. Epigenetic histone modification levels at 137 p300 binding

sites as well as 137 random genomic loci in the K562 cell line are

shown. Random genomic loci do not show any discernable pattern

of histone modification enrichment compared to p300 binding

sites.

(PPT)

Figure S3 Over and under-represented TE families in
contributing enhancers. Number of TE-derived enhancers

observed for different TE families in the GM12878 (blue) and

K562 (brown) cell lines normalized by the relative genomic

abundances of TE families.

(PPT)

Figure S4 Functional role of non TE-derived enhancers
in regulating gene expression. Average expression levels (y-

axis) of genes that are co-located with different numbers of non

TE-derived enhancers (x-axis) shown for GM12878 (blue) and

K562 (brown) cell lines.

(PPT)

Figure S5 Functional role of non TE-derived enhancers
in regulating differential gene expression. Gene expression

divergence between GM212878 and K562 (y-axis) is plotted

against normalized differenced in the numbers of cell type specific

non TE-derived enhancers (x-axis) co-located with the genes.

Expression divergence and enhancer frequency divergence

between the GM12878 and K562 cell lines is calculated by

subtracting the values of K562 from those of GM12878 cell line.

(PPT)

Table S1 1,986 TE-derived enhancers in the GM12878
cell line.

(TXT)

Table S2 1,127 TE-derived enhancers in the K562 cell
line.

(TXT)

Table S3 121 TE-derived enhancers shared between the
GM12878 and K562 cell lines.

(TXT)

Table S4 x2 statistics for over and under represented
TE families in contributing enhancers.

(PPTX)
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Abstract

Meiotic recombination is not distributed uniformly throughout the genome. There are regions of high and low
recombination rates called hot and cold spots, respectively. The recombination rate parallels the frequency of DNA double-
strand breaks (DSBs) that initiate meiotic recombination. The aim is to identify biological features associated with DSB
frequency. We constructed vectors representing various chromatin and sequence-based features for 1179 DSB hot spots
and 1028 DSB cold spots. Using a feature selection approach, we have identified five features that distinguish hot from cold
spots in Saccharomyces cerevisiae with high accuracy, namely the histone marks H3K4me3, H3K14ac, H3K36me3, and
H3K79me3; and GC content. Previous studies have associated H3K4me3, H3K36me3, and GC content with areas of mitotic
recombination. H3K14ac and H3K79me3 are novel predictions and thus represent good candidates for further experimental
study. We also show nucleosome occupancy maps produced using next generation sequencing exhibit a bias at DSB hot
spots and this bias is strong enough to obscure biologically relevant information. A computational approach using feature
selection can productively be used to identify promising biological associations. H3K14ac and H3K79me3 are novel
predictions of chromatin marks associated with meiotic DSBs. Next generation sequencing can exhibit a bias that is strong
enough to lead to incorrect conclusions. Care must be taken when interpreting high throughput sequencing data where
systematic biases have been documented.
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Introduction

Meiosis is the biological process by which the genome is divided

in half to generate daughter cells that can participate in sexual

reproduction. In eukaryotes, this process is accompanied by

meiotic recombination, which involves pairing of homologous

chromosomes and exchanging of genetic material. Meiosis serves

to increase genetic diversity in progeny (for review see [1] and [2]).

Recombination does not occur with a uniform frequency across

the genome. Instead, there are regions with high and low

recombination rates called hot and cold spots, respectively.

Recombination is initiated by double-strand breaks (DSBs) which

are catalyzed by Spo11 [3]. In this biological event, broken DNA

ends are processed to produce single-strand ends that can invade

the homologous chromosome [4].

Mapping DSB hot spots [5,6,7] and factors correlated with hot/

cold spot formation is an active area of research. Several biological

features have been found to correlate with higher levels of Spo11-

catalyzed DSBs. Genome-wide mapping and analysis of Spo11-

catalyzed DSB sites in the yeast Saccharomyces cerevisiae showed that

regions with a high break frequency had a high G+C content [7].

A recent study using this same dataset revealed that several types

of microsatellites were associated with recombination hot spots [8].

Additionally, studies using machine learning-based techniques and

sequence-based features have differentiated DSB hot and cold

spots somewhat successfully [9,10], suggesting that differences in

sequence composition between these regions exist.

In addition to sequence-based factors, chromatin structure is

associated with regions of high and low recombination. Many hot

spots exhibit an open chromatin structure constitutively in both

meiotic and mitotic cells [11,12]. Some of these hot spots also

show an increase in micrococcal nuclease (MNase) sensitivity in

meiotic cells shortly before DSB formation [13], indicating active

chromatin remodeling to a more open configuration upon the

onset of meiosis. Some posttranslational histone marks are also

associated with increased DSB frequency, with H3K4me4 and

bulk histone acetylation (in Schizosaccharomyces pombe) showing a

positive correlation [14,15] and H3K36 methylation exhibiting a

negative correlation. Here we used a multivariate feature selection

approach to determine the sequence and chromatin features that

best distinguish hot and cold spots in S. cerevisiae. The histone

modifications and nucleosome occupancy data used in our analysis

were derived from vegetatively growing mitotic cells, which is a

different cell state than meiotic cells. Genome-wide epigenetic

studies using both mitotic and meiotic states were used to increase

the amount of useable data; there is good reason to believe that
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epigenetic marks found at hot or cold spots in mitotic cells will also

be present at those same sites in meiotic cells (see Discussion).

Feature selection is a dimensionality reduction technique

designed to identify the subset of features that is most informative

in producing robust predictive models. Feature selection has been

used successfully in microarray gene expression studies [16,17]

and biomarker identification [18,19]. When attempting to build a

classifier based on vectors of features, many features are irrelevant.

For example, a common task in microarray studies is to identify

which genes are relevant in distinguishing between two or more

experimental conditions. In this case, the expression level of

thousands of genes (i.e., features) is measured, but only a small

subset is relevant in discriminating between the experimental

conditions. Many pattern recognition techniques were not

designed to deal with circumstances in which the number of

relevant features is outnumbered by irrelevant ones [20]. In these

instances, feature selection can be used to reduce over fitting,

improve predictive performance by identifying a subset of relevant

features, and provide insight into the underlying biological

processes that generated the data. Machine learning-based

approaches have already been applied to the problem of

discriminating between hot and cold spots [9,10]. However, these

studies analyzed low resolution data and feature selection was not

performed. Here we report the results of applying feature selection

to identify factors associated with recombination hot and cold

spots. A feature vector as used in this study is a string of numerical

features; each feature in the string represents a measurement of a

biological quantity.

Methods

Definition of hot and cold regions
Buhler et al. [5] mapped the frequency of meiotic DSBs in S.

cerevisiae with high resolution tiling arrays. Using this data, we

obtained 1179 and 1028 regions identified as hot and cold spots,

respectively, for a total of 2207 regions. Each region was 600 base

pairs (bp) in length. Buhler et al. produced a set of peaks representing

hot spots with 5-fold and 2-fold enrichment over background. In our

analysis, hot spots were defined by centering a 600-bp window at the

midpoint of peaks that were enriched 5-fold over background. Cold

spots were obtained by finding at least three adjacent probes with a

log2 hybridization ratio of less than 0.75, and then centering a 600-

bp window at the midpoint of the centermost probe. For each

region, we produced a vector of length 350 to represent features

such as the chromatin-associated factors ‘‘Nucleosome occu-

pancy’’, ‘‘H3K14ac’’, ‘‘H3K36me3’’, ‘‘H3K4me1’’, ‘‘H3K4me2’’,

‘‘H3K4me3’’, ‘‘H3K79me3’’, and ‘‘H3K9ac’’.

Pan et al. [21] identified hot spots by mapping the binding of

Spo11 using high throughput sequencing. We centered 600-bp

windows at the middle of hot spots as defined by Pan et al. Cold

spots were defined by a set of non-overlapping 600 bp windows

with no reads aligned that did not overlap to any extent simple

repeats as downloaded from the UCSC genome browser.

Generation of chromatin structure-based features
Pokholok et al. used tiling arrays to map histone modifications in

S. cerevisiae. We obtained this data from the public database

ArrayExpress Archive (http://www.ebi.ac.uk/arrayexpress/) and

normalized using MA2C normalization [22]. There are a number

of publically available datasets containing additional chromatin

marks mapped genome wide that potentially could have been

included in this study. Unfortunately they are low resolution; one

microarray element per ORF or intergenic region or they do not

control for differences in nucleosome occupancy. For each region,

we obtained the degree of enrichment by averaging the

normalized hybridization values of the probes within that region.

For example, the feature ‘‘H3K14ac’’ represents the average

degree of acetylation of lysine 14 in histone H3 for the given

region. A similar approach was used for each histone modification.

To calculate the degree of nucleosome occupancy we used a

dataset produced by Kaplan et al. [23]. For most positions in the

genome, Kaplan and co-authors calculated a nucleosome

occupancy score. The average nucleosome occupancy was

normalized to zero. A value greater than zero represents

nucleosome enrichment relative to the genome-wide average,

while a value less than zero signifies nucleosome depletion. For

each hot or cold region, nucleosome occupancy was calculated by

averaging the nucleosome occupancy scores for that region.

Generation of sequence-based features
In this study, 342 out of 350 features were sequence-based in

which each sequence feature represented the normalized frequen-

cy of the region for one of the 1–4 possible k-mers. For example,

feature 9 for region 6 would be the number of times the 2-mer

‘‘AT’’ was found in the region divided by the number of k-mers of

size 2 found in the region. Hence the feature represents the

enrichment of AT relative to all 2-mers found in the region.

Similarly, feature 300 for region 6would be the number of times

‘‘AAGT’’ was found in the region divided by the number of k-mers

of size 4 found in the region. We also included two sequence

features ‘‘AT content’’ and ‘‘GC content’’, reflecting the overall

AT and GC content for that region, respectively. It would seem

the sequence features could further be reduced by removing the

reverse complement of the given k-mer (CG is the same as GC).

Whether or not the reverse complement is redundant is based on

whether or not strand specific processes are acting at Hot spots.

There are examples of strand specific trans-acting factors

operating at hot spots [24]. Hence reverse complements were

retained in the final set of features.

Feature selection
Feature selection can be described as finding the subset of

features from the set of all possible combinations of features that

can best distinguish classes of interest. Because the search space of

all possible combinations of features grows exponentially with the

number of features, it is rarely feasible to perform an exhaustive

search. Instead, various heuristic search methods can be used to

identify meaningful feature subsets that can be used to build

classifiers with high accuracy. Here we used a genetic algorithm

(GA)- based approach [25] similar to those published previously

[26,27,28]. We used the R package Galgo [29] to implement the

algorithm.

The dataset of 2207 features was divided randomly into two

groups, a training dataset containing 1471 regions and a testing

dataset containing 736 regions. Each dataset contained roughly

equal numbers of hot and cold regions. The training dataset was

further divided into three pairs of sub-training and validation

datasets. Each pair of the sub-training datasets contained 981

regions, while those of the validation dataset contained 490

regions. The GA was then applied to these datasets in search of a

subset of features with optimal accuracy based on the average

accuracy across all sets of sub-training and validation data. More

specifically, the GA searched for a feature subset that optimized a

score defined as Atotal = (A1+A2+A3)/3, in which Ai is defined as

the accuracy of the given subset of features using a random forest

classifier built utilizing the sub-training dataset i and tested on the

validation dataset i and i = {1, 2, 3}. In general, accuracy was

defined as the total number of regions classified correctly divided
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by the total number of regions in the validation dataset. The search

space of 350 features was prohibitively large, and running the GA

twice on the same training and validation datasets would most likely

have yielded two different solutions representing local optima. Thus,

a sampling of the fitness landscape was used in which the GA was

run 10,000 times on different random divisions of the training

dataset into the sub-training and sub-validation datasets. The final

solution was obtained by combining the results of these independent

runs. Features were ranked according to their frequency of

occurrence within the subset of optimal features selected by the

GA. Features that were present across many runs were presumed to

be more important than those that were selected less often (Figure 1).

For example, if feature one was present in 9,000 of the 10,000

optimal subsets returned by the GA, while feature two was present

in only 5,000, then feature one would be considered more important

and thus ranked higher than feature two. The final subset of features

was obtained using a forward selection approach. Features were

added individually based on ranking until no significant improve-

ment in accuracy was observed. The corresponding accuracy was

calculated using the testing dataset.

Alignment methodology
Alignments were performed using BLASTN with default

parameters [30]. When allowing multimapping of reads we

followed the procedure as defined in [31]; briefly any alignment

yielding an identify less than 90% was discarded and, for

alignments between 90% and 95%, only the maximum score

was retained. All alignments with greater than 95% identity were

kept. Identity was defined as alignment length divided by read

length.

MNase control subtraction methodology
Normalizing for differences in sequencing coverage was

accomplished by dividing read counts at each base pair by the

total number of unique mappable reads for each dataset, similar to

the procedure used in [32]. The following formula was used to

subtract out the normalized counts of the MNase control. Given

two sequencing datasets D1 and a control D2 with normalized

counts of read coverage at each base pair represented by c1 = {c1,1,

c1,2 ,….c1,m} and c2 = {c2,1, c2,2 ,….c2,m}, the subtracted read

density was defined at each base pair as

Figure 1. Overview of the feature selection procedure. The initial set of 2207 regions was divided into a training set of 1471 regions and a
testing dataset containing 736 regions. The training dataset was further divided into sub-training and validation datasets. (a) The (Genetic Algorithm)
GA was run 10,000 times on different sub-training and validation datasets, producing a subset of optimal features for each run (see Methods). We
divided the number of times each feature occurred in an optimal feature subset by the total number of times the GA was run (i.e., 10,000) to calculate
the frequency of observation (FOO). Features that occurred most often in many different optimal subsets across different splits of the training dataset
were ranked higher than features that were selected less often. (b) To obtain the final subset, features were added individually based on their FOO
score from highest to lowest. Then, the corresponding accuracy using the testing dataset was calculated. Features were added until no substantial
improvement in accuracy was observed, indicated in the figure panel (b) by the solid black line. Panels (c) and (d) are identical to (a) and (b) except
random regions were used (i.e., 1179 and 1028 regions randomly selected and labeled as ‘‘hot’’ and ‘‘cold’’, respectively).
doi:10.1371/journal.pone.0029711.g001
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c ið Þ~log
c1,iza

c2,iza
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where a is a constant set to 2 to avoid division by zero errors and

to dampen noise.

Results

A dataset consisting of 2207 regions (1179 hot spots, 1028 cold

spots) was first randomly divided such that two-thirds were

analyzed by feature selection (see Materials and Methods) and

one-third was set aside as a testing dataset. The testing dataset was

used to test how accurately the features identified can distinguish

between hot and cold spots. Setting aside a testing dataset ensures

a fair test with the features being tested on data not used to obtain

the features. Hot spots as used in this manuscript refer to regions of

increased meiotic DSBs and cold spots to regions of decreased

meiotic DSBs. Features were first ranked in order of importance

based on the training dataset. The final subset of features was

obtained using a forward selection approach. Features were added

individually based on ranking until no significant improvement in

accuracy was observed. The corresponding accuracy was calcu-

lated using the testing dataset. Thus, accuracy using only highly

ranked features was estimated based on data not used to rank the

features. A subset of five features (i.e., H3K4me3, H3K14ac,

H3K36me3, H3K79me3, and GC content) was identified

(Figure 1) with a classification accuracy of 80.4%, sensitivity of

80.5%, and specificity of 80.3%. Many of the identified features

were found to be associated with recombination, according to

published literature.

Chromatin Structure
All of the histone modifications used in this study were mapped

in vegetatively growing mitotic cells. While the DSB frequency

dataset used to map meiotic hot and cold spots was obtained from

meiotic cells we address this issue in more detail in the discussion

section. The feature selected as having the highest predictive

importance was the degree of H3K4me3 methylation. Published

literature strongly associates this mark with recombination hot

spots. In S. cerevisiae, the methyltransferase Set1 is responsible for

H3K4 methylation. Set1 mutants exhibit dramatically reduced

DSB frequency at well-characterized hot spots [33]. Additionally,

H2B ubiquitination promotes Set1 activity [34], thereby increas-

ing H3K4 methylation. Preventing this mark leads to decreased

DSB frequency [35]. Importantly, Borde et al. [14] demonstrated

that deleting Set1 reduced or eliminated DSBs at 84% of the

hottest sites in S. cerevisiae. In addition, recent work has associated

PRDM9, a sequence-specific DNA binding methyltransferase,

with hot spot activity in mammalian meiosis [36,37,38]. Our

results are consistent with these studies, indicating that H3K4me3

associates positively with areas of high recombination (Figure 2).

H3K14ac is a histone mark associated with active transcription.

Like H3K4me3, H3K14ac is localized primarily to the 59 end and

promoter region of open reading frames and is correlated with the

rate of transcription [39,40,41]. Research has linked histone

acetylation with meiotic DSB frequencies. For instance, Sir2

deacetylates histones H3 and H4 [42]. Mutants deficient in Sir2

exhibit widespread changes in meiotic DSB frequencies with 12%

of yeast genes showing altered DSB frequency [43]. Moreover, the

histone deacetylase Rpd3 represses meiotic recombination at the

well-studied hot spot HIS4 in S. cerevisiae [44]. Finally, deletion of

the histone acetyltransferase GCN5, which preferentially acetylates

H3 histones, leads to decreased recombination at the ade6-M26 hot

spot in S. pombe [15]. Our analysis indicates that H3K14ac is

associated with DSB hot regions, with high levels of this mark

corresponding to hot spots and low levels to cold spots (Figures 2

and 3).

H3K36me3 is a post-translational modification catalyzed by the

methyltransferase Set2, and is found primarily in the coding region

of genes being actively transcribed [39,40]. By recruiting the

repressor Rpd3, H3K36me3 suppresses spurious transcription

initiation [45]. H3K36me3 may also play a role in differentiating

exons from introns [46]. Our results indicate that the presence of

H3K36me3 may play a largely inhibitory role in DSB frequency

as this mark is enriched in cold spots relative to hot spots (Figures 2

and 3). In addition, studies have shown that Set2 the methyl-

transferase responsible for H3K36me3 represses meiotic recom-

bination at the HIS4 hot spot in yeast [44].

Like H3K36me3, H3K79me3 is found primarily within coding

regions. Unlike H3K36me3, however, the degree of H3K79me3

presence is not strongly associated with transcription [40]. The

exact function of this mark is unknown, although some evidence

suggests that H3K79me3 may play a role in histone H3 exchange

[47]. Our results indicate H3K79me3 may play a minor repressive

role in DSB frequency since cold spots appear to be enriched for

H3K79me3 (Figures 2 and 3). Most of the histone modification

features show a strong partitioning with hot spots being either

enriched or depleted for the chromatin mark and vice versa for

cold spots. H3K79me3 is an exception cold spots are enriched for

this mark but hot spots are not depleted instead showing about the

genome average of H3K79me3 (Figure 2 panel a). This trend

could be explained by H3K79me3 having a lesser effect on DSB

frequency or by an indirect effect.

Computational analysis is rarely capable of demonstrating a

causal relationship. Feature selection can identify which biological

features out of a large number of candidate features are associated

with regions of high/low meiotic DSBs. The method cannot

identify the reason behind the association. Once an association is

discovered it is important to identify potential confounding

variables and test whether they may be solely responsible for the

correlation of biological features. Such an analysis cannot prove a

causal relationship but it is helpful in elucidating uninteresting

correlations.

An important confounding variable that arises when working

with recombination hot spots is their tendency to localize to

promoter regions while cold spots localize to coding regions.

Many of the histone marks we studied also have a tendency to

localize either to the 59 end of genes or to coding regions.

Therefore, it is possible that the results of our analysis reflect this

co-localization effect. To explore this, we compared promoter

regions of genes with a hot spot within 500 bp upstream of the

transcription start site (TSS) (N = 218) to those genes whose TSS

is at least 3000 bp away from a hot spot (N = 2491) (Figure 3

panels a and d). Divergent promoters were removed from this

analysis. Gene coordinates were obtained from the UCSC

genome browser.

Both H3K14ac and H3K4me3 exhibit a ‘‘peak’’ of modification

in promoters of genes that contain hot spots. This ‘‘peak’’ is absent

in promoters that lack hot spots. H3K14ac and H3K4me3 are

positively correlated with transcription. It is possible that the

enrichment of H3K14ac and H3K4me3 observed upstream of

genes close to hot spots is due to increased transcriptional rates. To

test this we obtained gene expression data [48] and compared

transcription rates. The set of genes with a hot spot upstream of

the TSS, on average do have a higher transcriptional rate

compared with genes whose TSS is at least 3000 bp away from a

hot spot (2.2 mRNA/h compared to 1.7 mRNA/h, p-val-
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ue = 0.003, Wilcox rank sum test), an association that has

previously been reported [7].

To test whether this difference in transcription could explain the

extra enrichment of H3K14ac and H3K4me3 upstream of the

TSS we plotted these marks for genes with an upstream hot spot

whose transcriptional rate was less than 1 mRNA/h (Figure 3

panels b and e) (N = 43). The peaks of upstream enrichment are

retained even for inactive genes. This analysis indicates that

H3K14ac and H3K4me3 enrichment in areas of high recombi-

nation is likely not due solely to the tendency of hot spots to

localize to promoter regions or to differences in transcriptional

activity. Similarly, we compared coding regions that entirely

contain a cold spot to those that do not overlap to any extent with

cold spots (Figure 3, panels c and f). Genes that contain cold spots

show an increased enrichment for both H3K36me3 and

H3K79me3. Both H3K36me3 and H3K79me3 within gene

bodies are positively correlated with transcriptional activity [40],

H3K36me3 is strongly correlated and H3K79me3 is weakly

correlated. Perhaps the increased enrichment of H3K36me3 and

H3K79me3 in genes containing cold spots compared to genes

without cold spots is due to the fact that cold spots are

preferentially located in active genes. We compared transcriptional

rates for genes with (N = 498) and without cold spots (N = 4516).

Genes with cold spots have lower transcription rates than genes

without cold spots (median transcriptional rate 1.3 mRNA/h

compared to 2.3 mRNA/h, p-value,1e-16 Wilcox rank sum test).

Even though genes containing cold spots have on average lower

transcriptional rates than genes without cold spots they exhibit a

higher degree of H3K36me3 and H3K79me3 methylation

(Figure 3 panels c and f).

Holstege et al. measured gene expression in mitotic cells. The

purpose behind the preceding analysis is to check whether the

observed patterns of histone modifications at hot or cold spots are

due to differences in gene activity and not to the presence or

absence of a hot or cold spot. Given that the histone modifications

were measured in mitotic cells, the appropriate dataset for the

above analysis is gene expression also measured in mitotic cells.

While this manuscript was in preparation, a high resolution map of

DSB hot spots was published [21]. This map was produced by

sequencing and mapping oligos bound by Spo11 where the hot

spots were mapped at much higher resolution than the Buhler et al.

dataset. We obtained the set of hot spots mapped by Pan et al. in

order to check if the association of meiotic DSB frequency with the

histone marks H3K14ac, H3K4me3, H3K36me3 and H3K79me3

observed using the Buhler et al. dataset were also observed using an

independently produced higher resolution hot spot map. The Pan

et al. hot spots, like the Buhler et al. hot spots, strongly localized to

promoter regions [21]. Hence, a positive correlation with

H3K14ac and H3K4me3 and a negative correlation with

H3K36me3 and H3K79me3 would be expected.

We duplicated the analysis described in Figure 3 using the Pan et

al. hot spots, and found similar results to what was seen using the

Buhler et al. hot spots. Additionally, we show that the H3K14ac

and H3K4me3 peaks observed upstream of genes with a hot spot

are in general proportional to the strength of the hot spot (Figure

S1). The comparison of gene expression rates between hot spot

associated genes and non-hot spot associated genes and cold spot

associated genes with non-cold spot associated genes was

performed using gene expression obtained in vegetatively growing

mitotic cells. To check if the same patterns are observed with

meiotic cells we repeated the above comparisons with gene

expression measured at different time points after cells were placed

in sporulation media (Figure S2) gene expression data was taken

from [49]. The expression dataset used measured gene expression

for four yeast strains SK1, non-sporulating SK1 control, W303

and a non-sporulating W303 control. For the non-sporulating

controls which do not enter meiosis the above described patterns

held true for all time points. That is hot spot associated genes are

transcriptionally more active than non-hot spot associated genes

and cold spot associated genes are transcriptionally less active than

non-cold spot associated genes.

Interestingly, this pattern did not hold true in the case of hot

spot genes compared to non-hot spot genes in meiotic cells. Upon

the entrance to meiosis the difference in gene expression between

hot and non-hot genes gradually falls to zero (Figure S2 panel’s b

and d). This could be explained by the observation that hot spot

associated genes have a tendency to be repressed in meiosis [7].

Cold spot associated genes are transcriptionally less active than

non-cold spot genes in both mitotic and meiotic cells (Figure S2

panel’s e, f, g and h).

As discussed above there is ample evidence from multiple

studies that H3K4me3 is involved in hot spot selection. Given that

histone marks are in general correlated with one another [39], is it

possible the association of H3K14ac, H3K79me3, and

H3K36me3 with DSB frequency is simply a consequence of these

marks being correlated with H3K4me3? In the case of H3K36me3

there is previous research linking this mark with hot spot activity at

a well-studied hot spot in yeast [44]. As discussed above multiple

studies have linked histone acetylation with hot spot activity.

H3K4me3 in general is correlated with other histone marks but

it is particularly strongly correlated with H3K14ac (r = 0.85, p-

value,2.2 e-16) compared to its correlation with H3K4me2 which

is the next strongest correlation (r = 0.62, p-value,2.2 e-16). Even

when comparing a large number of histone marks H3K4me3 is

inordinately strongly correlated with H3K14ac [39]. Taken

together with the previous work linking histone actylation with

recombination, the usually strong correlation of H3K4me3 with

H3K14ac combined with our results suggests these marks may act

together at meiotic DSB hot spots. While there is a statistically

significant correlation between H3K4me3 and H3K79me3

(r = 0.09, p-value,2.2 e-16) this correlation is too small and in

the wrong direction to explain the association of H3K79me3 with

meiotic DSB frequency.

AT/CG Content
One of the features selected by the feature selection algorithm

was a sequence based feature AT content. AT content and GC

content measure the same quantity and both were included in the

Figure 2. Selected histone marks are correlated with meiotic DSB frequency. (A) Presence of histone marks at hot or cold spots. The first
row displays histograms of the log ratios for all probes on the microarray. The higher the log ratio, the more enriched is the given mark. The second
row is the enrichment of the histone marks at hot spots. Log ratios were binned in 600-bp windows centered at hot spots and the averages for each
bin plotted. The third row is the enrichment of the histone marks at cold spots. Log ratios were binned in 600-bp windows centered at cold spots and
the averages for each bin plotted. (B) Histone mark enrichment is correlated with DSB frequency. Probes on both microarrays measuring DSB
enrichment and histone modification were paired based on whether they mapped to the same genomic location. Pairs of probes were then grouped
in 100 bins according to their DSB enrichment (x-axis). The corresponding log ratios measuring histone modification for the given mark were then
averaged for the probes in each bin (y-axis). Bins representing extreme DSB enrichment values had a very low number of probes ,1–10 hence the
histone modification averages for these bins was highly variable. Therefore any bin containing less than 50 probes was discarded.
doi:10.1371/journal.pone.0029711.g002
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input feature set as a ‘‘sanity check’’ or control. If our

computational method is working correctly, then these features

should rank similarly. Indeed, this is what was observed AT

content ranks 2nd out of 350 features GC content ranks 7th

(Figure 1) . Our analysis is in agreement with published results [7]

indicating that GC content in hot spots is higher than the overall

average in S. cerevisiae. More specifically, the mean GC content

within a 600-bp window centered on hot spots was 39.6%, while

the GC content of the entire genome was 38.1%. Not surprisingly,

the mean AT content in cold spots (63.8%) is greater than that

across the entire genome (61.9%).

To further explore the relationship between GC content and

recombination cold spots we examined the set of cold spots found

entirely within coding sequences. Coding sequences in yeast have

a GC content of 39.6%, which is GC rich relative to the genome

as a whole. The mean GC content of cold spots found entirely

within coding sequences was 37.0% compared to the genome

average of 38.1% and compared to 36.0% percent GC content

calculated for the entire set of cold regions. Cold spots found

within otherwise GC-rich regions (i.e., coding sequences) still

showed reduced GC content contrary to the overall trend of

coding regions as a whole. Studies have shown that hot spots are

Figure 3. Plots of average modification level around transcription start sites (TSS). The x-axis represents- position relative to the TSS set at
zero. Positive numbers represent positions downstream of the TSS, while negative numbers are upstream. The y-axis indicates the average histone
modification enrichment log ratios. Black dots represent points statistically significantly different (p-value,0.01 wilcox rank sum test) than the
corresponding point in the other curve. Forpanels (a, b, d and e) the blue line represents TSS at least 3000 bps away from the center of a hot spot, log
ratios were binned in 200-bp windows and the average for each bin plotted. The black line represents genes with the center of a hot spot located
within 500 bp upstream of the TSS,log ratios were binned in 200-bp windows and the average for each bin plotted. For panels (c and f) the black line
represents the average histone modification in genes which entirely contain a cold spot (for definition of cold spot see Methods). The blue line
represents the average histone modification in genes which do not overlap to any extent a cold spot. Plots were produced by binning histone
modification log ratios in bins proportional to gene size (each bin was 1/10 the size of the given gene) the average for each bin is plotted.
doi:10.1371/journal.pone.0029711.g003
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generally absent from protein coding sequences despite their high

GC content [50,51]. Our results suggest that cold spots may be

associated with regions of low GC and high AT content within

coding sequences.

Nucleosome Occupancy
Of the four biological features included in our analysis with

previous evidence from the literature associating them with

meiotic DSBs (H3K4me3, H4K36me3, GC content and nucleo-

some occupancy) three were selected by our method (H3K4me3,

H3K36me3, GC content). Our method did not identify nucleo-

some occupancy as an important feature distinguishing hot from

cold spots. This is surprising since multiple studies [11,12,52] have

suggested that recombination hot spots are typically found in

regions of increased sensitivity to nucleases, presumably reflecting

a local open chromatin structure. The dataset we used to test

nucleosome occupancy was produced by Kaplan et al. [23] and

based on high throughput sequencing technology.

One possible explanation for our results is that chromatin

remodeling may be occurring after cells have entered meiosis.

Kaplan et al. measured nucleosome occupancy using data derived

from vegetatively growing mitotic cells. There are examples of hot

spots showing a closed chromatin structure during mitosis but an

open one in meiosis [53]. However, a recent study that measured

nucleosome occupancy using formaldehyde-assisted isolation of

regulatory elements (FAIRE) showed that meiotic DSB hot spots

genome-wide overlapped with nucleosome-free regions in mitotic

cells greater than would be expected by random chance [54]

which greatly weakens the above hypothesis. To investigate this

further, we obtained a set of nine different nucleosome occupancy

maps from three microarray-based and six high throughput

sequencing-based studies and examined nucleosome occupancy

around hot spots in each dataset. All six sequencing-based datasets

are plotted together in Figure S3. All of the sequencing based

datasets fragmented DNA using nuclease digestion. Two of the

microarray based nucleosome positioning maps used sonication.

One of them, (Figure 4 (c)) similar to the sequencing based datasets

used micrococcal nuclease digestion [55]. The Lee et al. dataset

also mapped nucleosome positions at a high resolution ,4 bp

similar to the 1 bp resolution of the sequencing based studies. Our

analysis yielded a discrepancy in the results comparing micro-

array- and sequencing-based nucleosome occupancy maps. The

microarray-based results all show a well-defined valley represent-

ing nucleosome depletion centered at hot spots. Based on these

results and previously referenced studies, we conclude that the

microarray results best approximate what occurs in vivo. On

average, nucleosomes are depleted at hot spots for mitotically

dividing cells. Contrary to these results, the sequencing-based

datasets yielded a small peak of nucleosome occupancy at hot spots

(Figure 4). Some datasets exhibited a variable amount of bias

(compare peak to baseline differences Figure 4 panels d and e to

Figure 4 panel f).

Figure 4. Nucleosome occupancy at hot spots. Multiple nucleosome occupancy maps produced using three different technologies (i.e., FAIRE,
Chip-Chip, Chip-Seq) were obtained. Hot spots were aligned Z-score standardized nucleosome occupancy as is shown in 100 bp bins (y-axis). The
center of the aligned hot spots is zero on the x-axis. (a–c) Nuclesome occupancy maps based on microarray technology. The sign was reversed in
panel a to be consistent with how nuclesome depeletion is represented in the other microarry-based techniques. (d–f) Nuclesome occupancy maps
based on high throughput sequencing. The green line plots the mean GC content around hot spots as calcuated by averaging the GC content in 100-
bp bins. The y-axis scale on the right is for the GC content plot. The first word in each plot title is the last author on the paper in which the given
dataset was described. (references for datasets: a [54] , b [14], c [55], d [23], e [76], and f [77]). Nucleosome occupancy scores were used as calculated
by the authors.
doi:10.1371/journal.pone.0029711.g004
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We obtained and plotted read density at and around hot spots

using two publicly available control datasets (Figure 5). Control

dataset ‘‘a’’ was produced by micrococcal nuclease (MNase)

digestion of purified DNA followed by size selection for

nucleosome-sized fragments and subsequent sequencing using

the Solexa platform [56]. Control dataset ‘‘b’’ was the product of

sonicated purified DNA followed by size selection for nucleosome-

sized fragments and sequenced using the Solexa platform [57].

Both control datasets showed a peak of read density at hot spots

very similar to the peak of nucleosome occupancy observed in the

six sequencing-based nucleosome occupancy maps implying

nucleosome occupancy at hot spots, as measured by high

throughput sequencing, is likely dominated by experimental

artifacts. Because the read density peak was observed in both

controls, this bias was most likely not introduced by a MNase

sequence preference.

The nucleosome occupancy maps produced using high

throughput sequencing show a split peak with a small valley of

occupancy centered at hot spots. The low point of this valley is still

higher than or equal to the baseline nucleosome occupancy

(Figure 4 panels d, e and f). This split peak is likely due to the

competing influences of depleted nucleosome density at hot spots

with the peak of control read density also centered at hot spots.

Thus the trend observed with the sequencing datasets at hot spots

is the result of experimental bias as seen in the control datasets

combined with nucleosome depletion as seen in the microarray

results.

A recent study [21] mapped hot spots and nucleosome

occupancy in yeast at high resolution using high throughput

sequencing, showing nucleosome depletion at hot spots. Using this

dataset we plotted read density at and around hot spots for the

MNase and the sonication controls. Similar to the results seen for

the Buhler et al. hot spots, there is a spurious peak of read density

at the Pan et al. hot spots (Figure S4). This is likely due to GC

content bias, Pan et al. hot spots correlate with a higher GC

content similar to the Buhler et al. hot spots [21]. However, when

we plotted nucleosome occupancy at the Pan et al. hot spots using

the same six sequencing based nucleosome occupancy maps we

plotted at the Buhler et al. hot spots we observed a valley of

nucleosome occupancy centered at hot spots contrary to the peak

seen with the Buhler et al. hot spots (compare Figure S3 with

Figure S5). There is wide variability in the level of bias within the

sequencing based nucleosome occupancy datasets examined. This

can be seen comparing the distance of the peak height to the

baseline in Figure 4 panels d, e and f and Figure S3. The effects of

this variability in bias can also be seen when plotting nucleosome

occupancy at the Pan et al. hot spots (Figure S5). Those datasets

with the strongest bias exhibit a strong split peak with depletion

centered in the middle of a peak (Figure S5 panel a). Those

datasets with a weaker bias show a much smaller split peak (Figure

S5 panels c and f).

The Pan et al. hot spots are mapped with much higher resolution

than the Buhler et al. hotspots. A higher fraction of the mapped

Pan et al. hot spots will be located close to or at the real hot spot,

which is likely to be nucleosome depleted; therefore the Pan et al.

hot spots will have a higher signal to noise ratio than the Buhler et

al. hot spots. The lower signal to noise ratio of the Buhler et al. hot

spots is sufficient using microarray based nucleosome occupancy

maps, such that the correct biological conclusion can be obtained

(Figure 4 panels a, b and c). Using biased nucleosome occupancy

Figure 5. Read density for sequencing controls at hot spots. (a) Purified DNA digested with micrococcal nuclease (MNase) and sequenced
using the Solexa platform. (b) Purified DNA following sonication and sequencing using the Solexa platform. The black line indicates the z-score
standardized mapped read density, while the green line depicts GC content as calculated in Figure 4. Data was smoothed using loess smoothing.
doi:10.1371/journal.pone.0029711.g005
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maps the lower signal to noise ratio of the Buhler et al. hot spots is

not sufficient and an incorrect biological conclusions is drawn

(Figure 4 panels d, e and f). These same nucleosome occupancy

maps, when used with hot spots mapped with much higher

resolution and a corresponding greater signal to noise ratio like the

Pan et al. hot spots can qualitatively produce the correct biological

picture (Figure S5).

To further examine this issue using a single sequencing based

nucleosome occupancy map, we plotted nucleosome occupancy at

three different hot spot datasets: Buhler et al. [5], Borde et al. [14]

and Pan et al. [21]. Depending on which hot spot maps were used,

nucleosomes were either depleted at hot spots or nucleosome

occupancy at hot spots was more difficult to distinguish from

baseline (Figure S6 panels d, e and f). Also plotted is a single

nucleosome occupancy as mapped by ChIP-chip [55] for the three

different sets of hot spots. Contrary to the sequencing based

nucleosome occupancy maps, the ChIP-chip based map showed

clear nucleosome depletion regardless of which hot spot datasets

were used (Figure S6 panels a, b and c). Using high-resolution hot

spot datasets coupled with sequencing based nucleosome occu-

pancy maps supports an accurate qualitative interpretation.

However, it is quantitatively difficult to determine nucleosome

occupancy due to the bias imposed by the sequencing technolo-

gies.

It is tempting to conclude that the bias observed at hot spots is

due to a GC content bias in next generation sequencing. Our

results, in agreement with others [7] demonstrate that hot spots

have a tendency to be GC-rich. Several studies have reported

evidence of significant GC content bias in next generation

sequencing [58,59,60,61]. In support of this hypothesis, plots of

nucleosome occupancy near the center of hot spots closely mirror

those of GC content (Figure 4, panels d, e and f, and Figure S3).

To further explore this question, read libraries for all six

sequencing-based nucleosome occupancy maps plus two control

datasets were aligned against the yeast genome, and the GC

content of reads that aligned with at least 95% identity (alignment

length divided by read length) was calculated. This set was further

divided according to whether the reads mapped to intergenic or

coding regions (Table 1). An obvious GC bias was discovered in

mappable reads (Table 1, column 4). Studies have shown

intergenic regions are nucleosome poor compared to coding

regions [55,62]. Since nucleosomes are concentrated to some

extent in GC rich coding regions and coding regions are GC-rich

a genome-wide examination of sequence bound by nucleosomes

would be expected to find a high GC content relative to the

genome average. However, it is unlikely that this effect can

completely explain the GC bias shown by the six sequencing-based

datasets. The GC content in coding regions of the yeast genome is

39.6% whereas that shown by reads mapped to coding regions is

,42.0%. At 41.3%, the GC content of reads mapped to intergenic

regions is much higher than the GC content of intergenic regions

(34.8%).

Comparison of the GC bias between the two control datasets

was particularly interesting. The MNase control showed a strong

GC bias in mappable reads of 47.6%, which was nearly 10.0%

higher than the overall yeast GC content. The sonication control

displayed a much lower GC content bias (39.2%) for mappable

reads. All of the sequencing-based nucleosome occupancy maps

were produced using MNase digestion. Given the clear GC bias

calculated for the MNase control, it is possible that much of the

GC bias shown by these maps is a product of MNase cleavage

bias. Furthermore, our analysis indicates that the bias seen at hot

spots occurs regardless of sequencing platform. Nucleosome

occupancy maps produced using both Solexa and 454 sequencing

exhibited a bias at recombination hot spots. Given the differing

nature of these sequencing platforms, the bias may be introduced

during sample preparation and not by the sequencing technologies

themselves.

Not surprisingly, read mapping methodology can also

influence downstream analysis. Five of the six sequencing-based

datasets and all of the control datasets used only unique aligned

reads. However, Mavrich et al. [63] used a more lenient

mapping approach whereby any alignment yielding an identity

less than 90% was discarded and, for alignments between 90%

and 95%, only the maximum score was retained [31]. All

alignments with greater than 95% identity were kept. The key

difference is that their method retained reads that mapped with

high confidence to multiple areas along the genome. Using this

mapping strategy, a broad shallow valley of read density was

observed at hot spots (Figure 6, panel a). When only unique

aligned reads from the same dataset were used, a peak of read

density similar to that seen with other sequencing-based datasets

was seen (Figure 6, panel b). When the control datasets were

examined using the Mavrich et al. mapping approach, a similar

shallow depletion of read density was observed for the

sonication control (Figure S7, panel a). The MNase control

showed a similar shallow depletion, with the exception of a small

peak of read density centered at hot spots. This peak closely

mirrors the increase in GC content also centered on hot spots

and is likely due to the increased GC bias seen in the MNase

control (Table 1). Hence, depending on the mapping approach,

opposing biases can be introduced.

Table 1. Average GC content for reads mapped to the yeast genome.

Dataset Intergenic GC content Coding GC content Total GC content

Yeast Genome 34.84% 39.62% 38.15%

Segal 454 42.35% 42.60% 42.40%

Segal Solexa 41.69% 42.20% 41.97%

Pugh 454 41.49% 42.60% 41.81%

Rando Solexa 39.66% 42.26% 41.52%

Friedman Solexa 41.20% 42.99% 42.46%

MacAlpine Solexa 41.71% 42.96% 42.54%

MNase Control 47.84% 47.37% 47.51%

Sonicated Control 38.58% 39.66% 39.19%

doi:10.1371/journal.pone.0029711.t001
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Using uniquely aligned reads will bias mapped read density

towards unique sequence; including multimapping reads will bias

read density towards repetitive sequences. The broad shallow

depletion in read density observed at hot spots when allowing

multi mapping of reads may reflect the fact that hot spots have a

tendency to be located in unique sequences.

Next, we plotted the read density for the six sequencing-based

nucleosome occupancy maps following subtraction of the MNase

control (see Materials and Methods). When the MNase control

was subtracted from the nucleosome occupancy maps, the read

density at hot spots is qualitatively in agreement with the

microarray-based results, displaying a valley of nucleosome

occupancy at hot spots (see Figure S8).

Discussion

It is difficult using in silico analysis alone to demonstrate the

existence of a causal relationship between two biological features.

What it can do is to identify promising relationships to explore

further in vivo. Here we have shown that feature selection using

machine learning techniques can usefully be applied to a complex

biological process. While this manuscript was in preparation a

high resolution map of DSB hot spots was published [21].

Sequencing and mapping oligos bound by Spo11 produced this

map. Spo11 hot spots compared with hot spots identified by

ssDNA hybridization studies such as Buhler et al. show a strong

degree of concordance with Spo11 hot spots accounting for nearly

all hot spots mapped by ssDNA techniques [21].

Resolution of Hot Spots
The set of DSB hot and cold spots used in this study were

derived by mapping single stranded DNA produced by nucleolytic

processing of DSBs [5]. These ssDNA fragments may be quite

large, 1 to 2 kb. Hence the locations of hot spots as reported by

Buhler et al. are mapped with some imprecision. This will certainly

affect any study that attempts to use this data to elucidate genomic

features associated with DSB hot/cold spots.

It is not necessary in this computational analysis for the sites

defined as hot spots to exactly overlap the ‘‘true’’ hot spots. It is

only necessary that an appropriately sized window centered at the

sites defined as hot spots overlap to some degree with the genomic

features that are associated with true hot spots. A recent paper

studying the association of H3K4me3 with meiotic DSB found

enrichment of this mark in a broad region ,1–2 kb around DSBs

[14]. This indicates that regions of high DSB frequency mapped

by Buhler et al. are likely sufficiently precise to identify at least

some chromatin features associated with regions of high meiotic

DSBs. Our results strengthen this conclusion of the five features we

associated with meiotic DSBs. Three of them H3K4me3,

H3K36me3 and GC content have previously been associated

with meiotic DSBs. Additionally we obtained a set of recently

produced hot spots mapped at high resolution [21] and tested

whether the same patterns identified using the low resolution

Buhler et al. dataset are present using higher resolution data. The

same patterns were present using either dataset compare (Figure 3

with Figure S1).

Mitotic Histone Marks
All of the histone marks associated with recombination in this

study were obtained in vegetatively growing mitotic cells. The

DSB set we used was mapped in meiotic cells. How can we be sure

the histone marks do not change dramatically between these two

cell states? There are two major reasons suggesting patterns in

Figure 6. Effect of including multimapping reads. (a) Plot of nucleosome occupancy at hot spots using data produced by the Mavrich et al.
mapping approach. (b) Plot of nucleosome occupancy of the same dataset at hot spots using uniquely aligned reads only. Green line represents GC
content as calculated in Fig. 4.
doi:10.1371/journal.pone.0029711.g006
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histone modifications found at hot spots in mitotic cells may hold

true for meiotic cells. First, it has previously been shown that a

number of chromatin features present at hot spots in meiotic cells

are also present at hot spots in mitotic cells [14,54]. For example,

H3K4me3 does not change dramatically in mitotic compared to

meiotic cells [14]. The set of hot spots mapped in meiotic cells by

Buhler et al. have been shown to be on average nucleosome

depleted in mitotic cells [54] indicating that at least two chromatin

features associated with recombination hot spots in meiotic cells

are also present to some degree at those same sites in mitotic cells.

Additionally, a recent study examined the changes in chromatin

states from mitotic to meiotic cells for a number of nucleosome

associated biological features including H3K9ac, H3K4, H3K36

and H3K79 tri-methylation. The conclusion reached was that

histone modification states were remarkably stable changing little

between mitotic and meiotic cells [64]. These authors also

examined the distribution of H3K36me3, H3K4me3 and

H3K79me3 at hot and cold spots in meiotic cells. Their results

mirror our own obtained in mitotic cells. In addition, Zhang et al.

showed that in general the distribution of these marks change little

between mitotic to meiotic cell states suggesting that the chromatin

features associated with hot or cold spots are present in both

mitotic and meiotic cells.

Second, we show that, in general, histone modifications peak

heights for H3K14ac and H3K4me3 found in promoter regions of

genes with hot spots are proportional to the strength of the

corresponding hot spots and not dependent on transcriptional

rates. The fact that this pattern is present in mitotic cells is strongly

suggestive it will be present in meiotic cells. Our results showing an

association between DSB frequencies measured in meiotic cells

and enrichment for histone modifications measured in mitotic cells

suggests that nucleosome occupancy and H3K4me3 may not be

the only chromatin features that mark sites of meiotic DSBs in

mitotic cells before the entrance to meiosis. Although, this is a

question that cannot be answered by in silico analysis because it

requires further experimentation measuring the distribution of

these marks for both meiotic and mitotic cells.

Role of Histone Modifications
The role of histone modifications in specifying sites of Spo11-

catalyzed DSBs is unclear. Specific marks could serve to directly

recruit proteins involved in recombination. Alternatively, histone

modifications, such as acetylation, may act indirectly by modifying

the local chromatin structure. Histone acetyltransferases and ATP-

dependent chromatin remodeling factors have been shown to

regulate recombination at the ade6-M26 hotspot in S. pombe

[15,65]. Deletion of the histone acetyltransferase GCN5 gene

causes a significant delay in chromatin remodeling, leading to a

partial reduction in recombination frequency. Double deletion of

SNF22, a component of a chromatin remodeling complex, and

GCN5 leads to a complete loss of meiotic recombination. RSC4p,

a component of the chromatin remodeling complex RSC, contains

tandem bromodomains that recognize H3K14ac, suggesting that

this mark may recruit chromatin remodeling factors directly [66].

In addition, acetylation leads to a more open and less condensed

chromatin structure, allowing easier access for recombination

proteins or chromatin remodeling complexes.

Dot1p the methyltransferase responsible for lysine 79 methyl-

ation has been linked with DNA repair [67]. Deletion of Dot1p

confers increased sensitivity to radiation in yeast [68]. Additionally

the correct function of the DNA checkpoint response requires H3

methylation by Dot1p [69] . The presence of Dot1p is necessary

for efficient repair of DSB by sister chromatid repair [70]. This

suggests H3K79me3 may be associated with regions of low meiotic

DSBs frequency because it is a marker for DNA repair.

Another possibility is that specific histone modifications may

affect DSB frequencies indirectly by inhibiting or enhancing other

histone modifications that play a more direct role. For instance,

preventing H2B ubiquitination leads to decreased meiotic

DSBs[35]. By promoting H3K4me3, H2B ubiquitination may

be enhancing DSB formation [71]. Another possible example of

similar ‘‘cross-talk’’ between histone modifications is H3K36me3-

mediated repression of DSB formation at the well-studied HIS4

recombination hot spot in budding yeast [44]. H3K36me3 recruits

the Rpd3 histone deacetylase [45], suggesting that this mark may

have an indirect negative effect on DSB frequency by preventing

or reducing histone acetylation since there appears to be a positive

correlation between histone acetylation and DSB frequency at

some hot spots [15].

Nucleosome mapping
Locke et al. [56] were able to predict nucleosome positions using

nuclesome free control data they suggest this could be because

MNase sequence preference or sonication fragmentation coincides

with nucleosome excluding sequence. If this were the case any

‘‘peaks’’ of read density in the MNase or sonication control

datasets at hot spots may well reflect true nucleosome occupancy.

In support of this hypothesis a recent study in mice found evidence

of increased nucleosome binding at hot spots [72].

We do not think this is the case for the genomic loci in question

for a number of reasons. One the same set of genomic loci used in

our study i.e.(Buhler et al. Hot spots) were recently shown to be on

average nucleosome depleted using FAIRE [54]. This directly

contradicts the sequencing based results at these same loci (Figure 4

panels d, e and f). Two microarray based nucleosome occupancy

maps are in agreement with one another but disagree with the

results of the uncorrected sequencing based studies (Figure 4).

Finally a number of individual hot spots have been examined (see

above) and in general they are nucleosome depleted.

The extent to which nucleosome binding is based on sequence

preferences is currently an active area of research [23,57]. One

approach to answering this question is comparing nucleosome

maps produced in vitro and in vivo [23]. Our results, along with

others [73,74], indicate that a systematic bias can dominate at

certain genomic loci, thereby obscuring the true biological

representation. It is unknown to what extent this influences the

genome wide similarity observed between in vivo and in vitro

produced nucleosome occupancy maps.

Using control experiments to remove the systematic bias is an

obvious approach in dealing with experimental artifacts. Unfor-

tunately, producing suitable controls is not necessarily straightfor-

ward [75]. Previously, controls have rarely been used in

nucleosome mapping with high throughput sequencing methods.

When experimental bias is not controlled for, the opposite of the

most likely correct biological picture is observed at yeast meiotic

hot spots mapped at low resolution. However, when we subtract a

MNase control experiment from the nucleosome occupancy maps,

the correct biological interpretation can be derived indicating the

suitability of this control for the loci under investigation in this

study. Furthermore, our results underscore the importance of

addressing experimental bias in nucleosome mapping high

throughput sequencing experiments. Our analysis is not intended

to be a comprehensive examination of all possible biological

features potentially associated with meiotic DSB frequency Future

work could expand the set of genome wide features being

examined at sites of high/low meiotic DSB frequencies. Here we

have shown feature selection can productively be used to identify
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promising biological associations. Our approach successfully

identified previously known correlations while making several

novel predictions.

Supporting Information

Figure S1 Plots of average modification level around
transcription start sites (TSS) using Pan et al. hot spots.
Figure is produced as described for Figure 3 with one difference.

For panels a, b, d and e genes with a hotspot in their promoter

regions were further divided based on the strength of the hot spot.

The blue line is the given histone modification plotted upstream of

genes whose hot spot is below the first quartile. The red line is

genes whose hot spot strength falls between the first and second

quartile. The purple line is genes whose hot spots falls betweeen

the second and third quartile. The green line is genes whose hot

spots strength is greater than the third quartile.

(TIF)

Figure S2 Gene expression comparison in meiotic cells.
Panels a-d is comparing gene expression between genes associated

with hot spots to genes not associated with hot spots. Height of

bars represents the difference in median gene expression for genes

associated with hot spots to genes not associated with hot spots (i.e.

Median hot gene expression – Median not hot gene expression).

Time points represent time after yeast culture is placed in

sporulating media. Panels (a) an (c) represent gene expression

measured at the given time points for sporulation deficient SK1

and W303 strains these strains do not enter meiosis. Panels (b) and

(d) represent gene expression for sporulation-proficient SK1 and

W303 strains. An asterisk represents the difference in medians is

significant with p-value,0.05, p-value calculated using the Wilcox

rank sum test. Panels c-h is as described above except height of

bars represents the difference in median gene expression for genes

associated with cold spots to genes not associated with cold spots

(i.e. Median cold gene expression – Median not cold gene

expression). Gene expression is represented by hybridization

fluorescence intensities.

(TIF)

Figure S3 Nuclesome occupancy at Buhler et al. hot
spots for all sequencing-based datasets. For all datasets,

reads were mapped to the yeast genome. Only uniquely aligned

reads were retained and the count mapped to each base pair was

calculated. The z-score standardized count of reads is plotted using

the same procedure as described for Figure 4 with the green line

representing GC content. (references for datasets: a [76], b [23], c

[77] , d [78], e [63] and f [79].

(TIF)

Figure S4 Read density for sequencing controls at Pugh
et al. hot spots. (a) Purified DNA digested with micrococcal

nuclease (MNase) and sequenced using the Solexa platform. (b)

Purified DNA following sonication and sequencing using the

Solexa platform. The black line indicates the z-score standardized

mapped read density. Data was smoothed using loess smoothing.

(TIF)

Figure S5 Nucleosome occupancy at Pugh et al. hot
spots for all sequencing-based datasets. For all datasets,

reads were mapped to the yeast genome. Only uniquely aligned

reads were retained and the count mapped to each base pair was

calculated. The z-score standardized count of reads is plotted at

centered Pugh et al hot spots. Plot is produced similar to Figure 4

and Figure S3. (References for datasets: a [76], b [23], c [77] , d

[78], e [63] and f [79].

(TIF)

Figure S6 Nucleosome occupancy at recombination hot
spots obtained at various resolutions. Z-score standardized

nucleosome occupancy is shown in 100 bp bins (y-axis). The

center of the aligned hot spots is zero on the x-axis. Panels a, b and

c represent nucleosome occupancy data measured by ChIP-chip

produced by Lee et al. [55] at three different hot spot datasets from

left to right [5], [14], and [21]. Panels d, e and f represent

nucleosome occupancy in the same three datasets but now using a

nucleosome occupancy map produced by ChIP-seq [64]. This

sequencing based nucleosome occupancy map has previously been

used in analyzing nucleosome occupancy at hot spots as defined by

Borde et al. [14].

(TIF)

Figure S7 Sonication and MNase control plotted at
Buhler et al. hot spots allowing multimapping reads.
Reads for sonicated (a) and MNase-digested controls (b) were

mapped allowing multimapping of reads. Read density centered at

hot spots is plotted. Data was smoothed using loess smoothing.

(TIF)

Figure S8 Nuclesome occupancy at Buhler et al. hot
spots for all sequencing-based datasets following sub-
traction of the MNase control. Nucleosome occupancy was

plotted at hot spots for all sequencing-based nucleosome mapping

datasets following subtraction of the MNase control as described in

the text. Data plotted similarly to Figure 4.

(TIF)
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Abstract

The urea cycle converts toxic ammonia to urea within the liver of mammals. At least 6 enzymes are required for ureagenesis,
which correlates with dietary protein intake. The transcription of urea cycle genes is, at least in part, regulated by
glucocorticoid and glucagon hormone signaling pathways. N-acetylglutamate synthase (NAGS) produces a unique cofactor, N-
acetylglutamate (NAG), that is essential for the catalytic function of the first and rate-limiting enzyme of ureagenesis, carbamyl
phosphate synthetase 1 (CPS1). However, despite the important role of NAGS in ammonia removal, little is known about the
mechanisms of its regulation. We identified two regions of high conservation upstream of the translation start of the NAGS
gene. Reporter assays confirmed that these regions represent promoter and enhancer and that the enhancer is tissue specific.
Within the promoter, we identified multiple transcription start sites that differed between liver and small intestine. Several
transcription factor binding motifs were conserved within the promoter and enhancer regions while a TATA-box motif was
absent. DNA-protein pull-down assays and chromatin immunoprecipitation confirmed binding of Sp1 and CREB, but not C/
EBP in the promoter and HNF-1 and NF-Y, but not SMAD3 or AP-2 in the enhancer. The functional importance of these motifs
was demonstrated by decreased transcription of reporter constructs following mutagenesis of each motif. The presented data
strongly suggest that Sp1, CREB, HNF-1, and NF-Y, that are known to be responsive to hormones and diet, regulate NAGS
transcription. This provides molecular mechanism of regulation of ureagenesis in response to hormonal and dietary changes.
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Introduction

Ammonia, the toxic product of protein catabolism, is converted

to urea by the urea cycle in the liver of mammals. Incorporation of

two nitrogen atoms into urea is catalyzed by six enzymes: three of

them mitochondrial, N-acetylglutamate synthase (NAGS; EC

2.3.1.1), carbamylphosphate synthetase 1 (CPS1; EC 6.4.3.16)

and ornithine transcarbamylase (OTC; EC 2.1.3.3), and the other

three cytosolic, argininosuccinate synthetase (ASS; EC 6.3.4.5),

argininosuccinate lyase (ASL; EC 4.3.2.1) and arginase 1 (Arg1;

EC 3.5.3.1).

NAGS catalyzes the formation of N-acetylglutamate (NAG), an

essential allosteric activator of CPS1, in the mitochondrial matrix

of hepatocytes and small intestine epithelial cells [1,2]. Within

hepatocytes, NAGS activity and NAG abundance are regulated by

L-arginine, ammonia, and dietary protein intake [3,4,5] and

therefore, the NAGS/NAG system may play a critical role in the

regulation of ureagenesis in response to these factors [6]. While

studies in the 1980s and 1990s identified the cis-acting motifs

regulating transcription of the urea cycle enzymes CPS1

[7,8,9,10], OTC [11,12,13,14], ASS [15,16,17], ASL [18,19,20],

and Arg1 [21,22], the mammalian NAGS gene was not identified

until 2002 [2] and we can now report for the first time on its

transcriptional regulation.

Many studies have identified regulatory links between the urea

cycle genes and glucocorticoids and glucagon [23,24,25], however

the mechanism of regulation differs for each gene [24,26,27,28,29].

Transcription of CPS1 is activated by TATA-binding protein (TBP)

while its proximal and distal enhancers contain binding sites for

glucocorticoids and cAMP responsive factors including CCAAT-

enhancer bind protein (C/EBP), activator protein-1 (AP-1),

glucocorticoid receptor (GR) and cAMP response element binding

(CREB). Sites for binding tissue specific factors including hepatic

nuclear factor 3 (HNF-3) are also present [25,30,31]. Tissue specific

expression of the OTC gene is induced in the intestine and liver by

HNF-4, which binds in the promoter [13,14,32] while binding of

both HNF-4 and C/EBP to the enhancer, induces high expression

levels in the liver [12,13,14,25,33]. ASS transcription is regulated by

cooperative binding of multiple specificity protein 1 (Sp1)

[16,34,35,36]. ASL is regulated through Sp1 and the positive
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regulator, nuclear factor Y (NF-Y), which binds within the promoter

of ASL to activate its transcription [18,19,20,37]. Sp1 and nuclear

factor 1 (NF-1)/CCAAT-binding transcription factor (CTF)

activate ARG1 transcription while two C/EBP factors and two

unidentified proteins bind within an enhancer in intron 7 to confer

glucocorticoid responsiveness [22].

Abundance of urea cycle enzymes correlates with dietary protein

intake [3,28]. Transcription of urea cycle genes is in part regulated by

the glucocorticoid and glucagon signaling pathways [29,38]. There-

fore, we postulate that there exists a nitrogen sensing mechanism that

is both responsive to amino acid(s) and hormone stimulation and that

an understanding of the transcriptional regulation of NAGS could

contribute to the understanding of such mechanism.

In this study, we identified two regulatory regions upstream of

the NAGS translation start site that contain highly conserved

protein-binding DNA motifs. We subsequently confirmed that

these regions function as promoter and enhancer and that the

enhancer is most effective in liver cells. Avidin-agarose protein-

DNA pull-down assays have been used to confirm binding of Sp1

and CREB within the NAGS promoter and Hepatic Nuclear

Factor 1 (HNF-1) and NF-Y within the enhancer regions.

Chromatin immunoprecipitation (ChIP) and quantitative real-

time PCR have been used to independently verify that Sp1 and

CREB bind to the promoter region, and HNF-1 and NF-Y bind to

the enhancer region. We also used 59RACE analysis to identify

multiple transcription start sites for NAGS that may be species and

tissue specific. These findings provide new information on the

regulation of the NAGS gene, and suggest possible mechanisms for

coordinated regulation of the genes involved in ureagenesis.

Materials and Methods

Bioinformatic Analysis of the Upstream Regulatory
Regions

Pair-wise Alignment Analysis. Identification of highly

conserved regions was conducted by gathering 15 kilobases of

genomic sequence 59 of the NAGS translational start site and

sequence of intron one in 7 mammalian species including: human

(NM_153006.2), chimpanzee (XM_001152480.1), dog (XM_

548066.2), cow (XM_618194.4), horse (XM_001917302.1), mouse

(NM_145829.1) and rat (NM_001107053.1). The highly conserved

regulatory regions of CPS1 were identified by gathering 15 kilobases

of genomic sequences 59 of the translational start site from human

(NM_001875), chimpanzee (XM_001146604), dog (XM_856862),

mouse (NM_001080809), and rat (NM_017072). Genomic se-

quences were subject to pair-wise comparison using BLAST bl2seq

tool [39]. Parameters included expect threshold of 10, match and

mismatch scores of 1 and 22, respectively, gap existence and

extension scores of 5 and 2 respectively, and maximum expected

value E = 0.001. Regions of high conservation were identified as

sequences with more than 80% identity that were at least 100 bp

long and present in four or more species.

Cis-eLement OVERrepresentation (CLOVER) Analysis.

The Cis-element OVERrepresentation (CLOVER) [40] program

was used to predict the over-represented motifs within the highly

conserved regulatory regions of NAGS and CPS1. CLOVER analysis

of these conserved regions identified known protein binding DNA

motifs in the TRANSFAC Pro database by calculating over-

representation of these sequences compared to a background of

ppr_build_33.fa generated from NCBI build 33 [41]. Matrices

recognized by multiple transcription factors in the same family are

represented by one family member unless otherwise noted. Genomic

sequences of the highly conserved regions were aligned using

CLUSTALW version 2.0.10 [42].

Plasmid Constructs
The promoter and enhancer of NAGS, were amplified from

human genomic DNA with primer pairs hPromXH and hEnhXH

or hPromHXrev and hEnhHXrev (Table S1), respectively, to

introduce XhoI and HindIII restriction enzyme sites and allow

subcloning in forward and reverse orientation. Platinum Taq

PCRx DNA Polymerase (Invitrogen) was used for amplification

with the following conditions: initial denaturation at 95uC for

2 min., followed by 35 cycles of denaturation at 95uC for 30 sec.,

annealing at 57uC for 30 sec. and extension at 68uC for 1 min.,

and final extension at 68uC for 6 min. Promoter and enhancer

PCR products were ligated with TOPO-TA sequencing vector

(Invitrogen) according to manufacturer’s instructions and referred

to as TOPOProm, TOPOEnh, TOPOPromRev, and TOPOEnh-

Rev, respectively. Mouse Nags (mNags) promoter and enhancer

were inserted into TOPO-TA vector following the same methods.

Correct DNA sequences were confirmed using sequencing primers

specified by Invitrogen.

TOPOProm, TOPOEnh, TOPOPromRev, TOPOEnhRev,

pGL4.10 (Promega) basic vector containing firefly (Photinus pyralis)

luciferase luc2, and pGL4.23 (Promega) vector containing a

minimal TATA promoter with luc2 were cut with XhoI (New

England Biolabs) and HindIII (New England Biolabs). The vectors

were treated with Antarctic Alkaline Phosphatase (AAP) (New

England Biolabs) according to manufacturer’s instructions, and the

NAGS regions were ligated with the vectors to form the plasmids in

Table 1. TOPOEnh was also amplified with primer pair hEnhBS

(Table S1), to introduce BamHI and SalI restriction enzyme sites at

the 59 and 39 ends of the enhancer, respectively. The amplified

enhancer product and 4.10Prom were cut with BamHI (New

England Biolabs) and SalI (New England Biolabs), the vector was

treated with AAP, and the enhancer was ligated with the vector

(Table 1). Plasmids containing mouse NAGS promoter and

enhancer were generated using the same methods with the primer

pairs listed in Table S1 and plasmids in Table 1. Correct

sequences were confirmed using primers specified by Promega.

Point mutations in the binding sites for transcription factors

Sp1, HNF-1 and NF-Y were selected based on functional analysis

Table 1. Plasmids generated for luciferase reporter assays.

Name Vector Insert

4.10Prom pGL4.10 hNAGS promoter

4.10Enh pGL4.10 hNAGS enhancer

4.23Enh pGL4.23 hNAGS enhancer

4.10PromEnh 4.10Prom hNAGS enhancer

4.10PromRev pGL4.10 hNAGS promoter reverse

4.23EnhRev pGL4.23 hNAGS enhancer reverse

m4.10Prom pGL4.10 mNAGS promoter

m4.10Enh pGL4.10 mNAGS enhancer

m4.23Enh pGL4.23 mNAGS enhancer

m4.10PromEnh 4.10Prom mNAGS enhancer

4.10Sp1m pGL4.10 hNAGS promoter with Sp1 mutations

4.10CREBm pGL4.10 hNAGS promoter with CREB mutations

4.23HNF-1m pGL4.23 hNAGS enhancer with HNF-1 mutations

4.23NF-Ym pGL4.23 hNAGS enhancer with NF-Y mutations

Human or mouse promoter or enhancer were ligated with pGL4 vectors for use
with luciferase reporter assays.
doi:10.1371/journal.pone.0029527.t001
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of Sp1 [43,44,45], HNF-1 [46,47], and NF-Y [48,49] binding in

other genes. Mutations were engineered by Integrated DNA

Technologies and provided in pIDTSMART-KAN vectors (IDT)

(Table 2). Plasmids with mutant Sp1, HNF-1, and NFY were cut

with XhoI and HindIII. Reporter plasmids pGL4.10, and pGL4.23

were cut with XhoI and HindIII and treated with AAP. Mutated

inserts were ligated with vectors to form the plasmids 4.10Sp1m,

4.23HNF-1m, and 4.23NFYm (Table 1). Correct sequences were

confirmed using primers specified by Promega.

Point mutations in the CREB binding site, c.-7T.C and c.-

5T.A (Table 2), were selected based on functional analysis of

CREB binding [50,51] in other genes and were engineered into

the NAGS gene using QuickChange Lightening Site-Directed

Mutagenesis Kit (Agilent) according to manufacturer’s instruc-

tions. Primers hCREBm Fw and Rv (Table S1) amplified 50 ng of

template plasmid 4.10Prom to create 4.10CREBm. The correct

sequence was confirmed using primers specified by Promega.

The expression vectors encoding Sp1 or HNF-1 cDNA were

under control of the cytomegalovirus promoter (Origene).

Tissue culture
Cell culture and transfection. Human hepatoma cells

(HepG2) (donated by Dr. Marshall Summar, Children’s National

Medical Center, Washington, DC) were cultured in complete media

containing RPMI 1640 medium (Invitrogen) supplemented with 10%

fetal bovine serum (FBS) (ATCC) and 5% Penicillin/Streptomycin

(Invitrogen) under 5% CO2 at 37uC. Human alveolar basal epithelial

cells (A549) (donated by Dr. Mary Rose, Children’s National Medical

Center, Washington, DC) were cultured in complete media

containing Ham’s F-12 medium (Invitrogen) supplemented with

10% FBS and 5% Penicillin/Streptomycin. Human colorectal

adenocarcinoma cells (Caco-2) (ATCC) were cultured in Eagle’s

Minimum Essential Medium (Invitrogen) supplemented with 20%

FBS. Cells were plated at a density of 56105 cells/well on 24-well

culture plates 24 hours prior to transfection. The cells (90–95%

confluent for HepG2 and A549, 80–85% confluent for Caco-2) were

then transfected using Lipofectamine 2000 reagent (Invitrogen) and

cultured in transfection media containing medium and serum only. A

total of 0.25 ug of DNA was transfected with 0.225 ug of vector

expressing luc2 and 0.025 ug of pGL4.74 vector containing Renilla

reniformis luciferase (hRluc) as an internal control (Promega). For co-

transfections 0.225 ug of luc2 vector was combined with either

0.25 ug of expression vector or empty vector pUC19 (Invitrogen),

and 0.025 ug of hRluc control vector.

Reporter assays
24 hours following transfection, cells were assayed for both

firefly and Renilla luciferase activity using Dual-Luciferase

Reporter Assay System (Promega) and Berthold Centro 960

luminometer (Berthold) according to the manufacturer’s protocol.

All reporter assay measurements were corrected for transfection

efficiency by normalizing the firefly luciferase signal to the Renilla

luciferase values. Expression level of each construct was deter-

mined relative to luciferase expression under control of the NAGS

promoter in each cell line. All results are an average of three

independent experiments that were each carried out in triplicate.

Values were expressed as mean 6 SEM and analyzed using

Student’s t-test.

59 Rapid Amplification of cDNA Ends (RACE)
59 RACE (Version 2.0; Invitrogen) was performed using RNA

isolated from donated mouse livers by Trizol reagent (Invitrogen).

RNA from mouse small intestine (Origene), human duodenum

(Ambion), or human liver (Ambion) was commercially available.

Products were synthesized with human or mouse NAGS specific

primers complementary to sequence within Exon 1 (Table S2). All

reactions began with 5 ug of total RNA and the RACE procedure

was conducted according to manufacturer’s instructions. Second

strand synthesis was conducted using Ex Taq Polymerase

(TaKaRa Bio Inc.) PCR products were subcloned into pCR 2.1-

TOPO vector (Invitrogen) and RACE products were sequenced

with primers specified by the manufacturer.

Avidin-Agarose DNA-Protein Pull-Down Assay
Biotinylated DNA probes. Probes for Avidin-Agarose DNA-

Protein Pull-Down Assays were generated by PCR amplification of

genomic DNA isolated from donated mouse tails using Pure Gene

DNA Purification Kit (Gentra). Probes were generated using

biotinylated or non-biotinylated forward primer and non-

biotinylated reverse primers with Platinum Taq PCRx DNA

Polymerase (Invitrogen) and amplification conditions: initial

denaturation at 95uC for 2 min., followed by 35 cycles of

denaturation at 95uC for 30 sec., annealing at 60uC for 30 sec.

and extension at 68uC for 1 min., and final extension at 68uC for

6 min. The mouse Nags (mNags) promoter regions A and B

(Figure 1) were amplified with primer pair mNAGS-Prom Region

A, from +97 to 2259, relative to the translation initiation codon

and with mNAGS-Prom Region B, from 2302 to 2776,

respectively (Table S3). A region of mNags, that is not highly

conserved in mammals, 21056 to 21320, was amplified using

primer pair mNAGS-Prom-NC to serve as a negative control for

the promoter regulatory region. The enhancer region of mNAGS,

spanning from 22834 to 23167, was amplified using forward

primer pair mNAGS-enh. The negative control for the enhancer

region, a non-conserved region located close to enhancer, was the

amplification product of primer pair mNAGS-Enh-NC spanning

25569 to 25997 upstream of mNags. Additional negative controls,

non-biotinylated probes, were generated using each primer pair.

Preparation of nuclear extracts. Nuclear extract was

isolated from donated adult mouse livers of C57BL/6 mice

using Nuclear Extraction Kit (Origene) according to

manufacturer’s instructions. The protein concentration of the

nuclear extract was determined using bovine serum albumin as the

protein standard with Bradford Assay dye concentrate reagents

(Bio-Rad). On average, 10 mg of nuclear protein was obtained

from mouse liver.

Binding Protocol and Western Blot. For the avidin-agarose

protein-DNA pull-down assay [52], 1 mg of nuclear extract in PBS

buffer containing inhibitors (PBSI; 16 PBS with 0.5 mM PMSF,

Table 2. Mutations in Sp1 and CREB binding sites in the
promoter, and HNF-1 and NF-Y in the enhancer of human
NAGS.

Factor Wild-type Mutant

Sp1 59-CCGCCCCCGCC-39 59-AAGAACAAGAA-39

59-GGGGCGGGGG-39 59-GGTTCTTTGG-39

59-CCCCGCCCCC-39 59-CCAAGAAACC-39

59-CCCCGCCCCG-39 59-CCAAGAAACG-39

CREB 59-GGTTGTCGTCATGG-39 59-GGTCGACGTCATGG-39

HNF-1 59-TGGAGTTAATCATCTACTCTG-39 59-TGGAGTAAGTCTGCAACCAGG-39

NF-Y 59-GGCCCCATTGGCTGCCT-39 59-GGCCCCTCCAGCTG-39

doi:10.1371/journal.pone.0029527.t002
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25 mM b-glycerophosphate, mM NaF), 15 ug of DNA probe, and

avidin-agarose beads (Sigma) were combined and incubated for

16 hrs on a rotating shaker at 4u. The probe and bead

concentrations were in excess to ensure complete pull-down of

DNA–protein complexes. Following incubation, the supernatant

was reserved while the beads were washed 3 times with cold PBSI

and then resuspended and boiled in Laemmli protein denaturing

buffer (Bio-Rad) with 0.2 M DTT. The supernatant was also

combined with denaturing buffer with DTT and boiled; all samples

were loaded onto 10% SDS–polyacrylamide gel. The proteins were

separated by electrophoresis, transferred to a nitrocellulose

membrane, and then identified by immunoblotting using primary

antibodies at 1:2000 dilution of antibody to Sp1 (Santa Cruz

Biotech; Millipore), 1:1000 dilution of CREB-1a/b (Santa Cruz

Biotech), and 1:3000 dilution of C/EBPa/b (Santa Cruz Biotech)

for the promoter region and 1:500 dilution of HNF-1a/ß (Santa

Cruz Biotech), 1:1000 dilution of NF-Ya (Santa Cruz Biotech) and

1:2000 dilution of SMAD2/3 (Santa Cruz Biotech) for the 23 kb

conserved region. The membrane was than incubated with

1:20,000 dilution of donkey anti-rabbit secondary antibody

conjugated to horseradish peroxidase (Pierce) and bands were

visualized using SuperSignal West Pico Kit (Pierce) according to

manufacturer’s instructions.

Chromatin Immunoprecipitation
Tissue preparation and DNA immunoprecipitation.

Donated livers from adult C57BL/6 mice were minced and

chromatin was precipitated using SimpleChIP Enzyme Chromatin

Kit (Origene) with the variation for whole tissue. Briefly, fresh

tissue was minced and washed with PBS including Protease

Inhibitor Complete tablets (Roche). Proteins and DNA were cross-

linked with 1.5% formaldehyde, and tissue was disaggregated with

dounce homogenizer. Chromatin was sheared to an approximate

size of 100–1000 bp by micrococcal nuclease digestion followed by

sonication. Immunoprecipitation was conducted using antibodies

to transcription factors Sp1 (Millipore), CREB (Santa Cruz

Biotech), C/EBP (Santa Cruz Biotech), HNF-1 (Santa Cruz

Biotech), NF-Y (Santa Cruz Biotech), SMAD2 (Santa Cruz

Biotech) and AP-2 (Santa Cruz Biotech) and control antibodies

to histone H3 and non-specific rabbit IgG (Cell Signaling

Technologies). Chromatin was eluted from protein G agarose

beads, cross-linking was reversed, and DNA was purified

according to manufacturer’s instructions.

Real-time PCR quantification. ChIP enriched DNA

samples included 2% input control and dilutions for a standard

curve, positive control immunoprecipitate from anti-histone H3

antibody sample, negative control immunoprecipitation from

Figure 1. Regions upstream of the mammalian NAGS genes that are highly conserved. Conservation of mammalian NAGS DNA by
phastCons (green) and phyloP (blue) algorithms is shown with the highly-conserved regions indicated in red boxes (A). Pair-wise blast analysis of
mammalian non-coding regions of NAGS identified highly conserved sequences upstream of the translational start site termed the promoter (purple)
and enhancer (cyan) (B).
doi:10.1371/journal.pone.0029527.g001
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anti-rabbit IgG antibody, no antibody control, water control, and

test antibodies. Enriched DNA was subject to quantitative real-time

PCR using iTaq SYBR Green Supermix with ROX (Bio-Rad) and

gene specific primers (Table S4) including negative locus primers to

Chemokine ligand 2 (MIP-2) on a 7900HT Fast Real-Time PCR

System (Applied Biosystems). Amplification conditions included

initial denaturation at 95uC for 2 min., followed by 50 cycles of

denaturation at 95uC for 30 sec., annealing at 60uC for 30 sec. and

extension at 72uC for 30 sec., with dissociation steps of 95u for

15 sec. followed by 50u for 15 sec. and finally 95u for 15 sec.

Samples were amplified and analyzed using 7900HT Sequence

Detection System Software (Applied Biosystems). Values were

expressed as mean 6 SEM and analyzed using Student’s t-test.

Results

Selected regions of non-coding DNA upstream of NAGS
are highly conserved

15 kilobase of genomic DNA sequence 59 of the translational

start site of NAGS and sequence of the first intron from human,

chimpanzee, dog, horse, cow, mouse and rat were aligned and

compared using pair-wise BLAST. Comparisons showed three

highly conserved regions upstream of human NAGS at 257 to

2284, 2498 to 2576, and 22978 to 23344 relative to the start

ATG, and no significant conservation within the intron or

between 25 and 215 kb upstream (Figure 1). The region within

21 kb of the translational start site was designated as the putative

promoter while the region 3 kb upstream was designated a

putative regulatory element. Figure 1 also shows an alignment of

mammalian NAGS genes using phastCons (green) and phyloP

(blue), which identified three non-coding regions of conservation

located 3 kb upstream, immediately upstream, and within the first

intron of NAGS, respectively (Figure 1). The phastCons, phyloP

and our analyses of conservation within the NAGS gene differed

due to different algorithms that were used to identify regions of

conservation [39,53,54].

To validate our strategy for identification of conserved regions,

the same analyses were conducted for CPS1, a gene in which a

proximal promoter and an enhancer element located 6.3 kb

upstream of rat Cps1, have been characterized [55,56,57]. 15 kb of

CPS1 genomic DNA sequence 59 of the translational start site was

collected from human, chimpanzee, dog, mouse and rat and

compared using pair-wise BLAST. Five regions of high conserva-

tion were identified including the previously reported proximal

promoter located immediately upstream of the translation

initiation codon and the enhancer at 27392 to 27966 relative

to ATG of the human CPS1 gene (Figure S1). In addition, three

previously unknown regions, termed A, B and C, were also

identified at 25, 210.5 and 212 kb relative to CPS1 translation

initiation codon (Figure S1). PhastCons and phyloP alignment of

mammalian genomic DNA identified the same 5 conserved

regions (Figure S1).

Highly conserved, non-coding regions of NAGS function
as promoter and enhancer elements for gene
transcription

Reporter assays were used to examine the functionality of each

of the following: wild type NAGS promoter (4.10Prom), control

reversed promoter (4.10PromRev), enhancer alone (4.10Enh),

promoter and enhancer (4.10PromEnh), and enhancer in both

orientations with the heterologous TATA-box promoter (4.23Enh

and 4.23EnhRev) by measuring the expression of a luciferase

reporter gene in cultured HepG2 cells (Figure 2A). Vectors

pGL4.13, pGL4.23, and pGL4.10 containing firefly luciferase luc2,

with an SV40 promoter, a minimal TATA-promoter, or without a

promoter respectively, were used as positive, baseline reference,

and negative assay controls. Vector pGL4.74, containing Renilla

luciferase hRluc, was co-transfected with each plasmid to control

for transfection efficiency.

The human NAGS promoter alone (plasmid 4.10Prom),

stimulated transcription of the luciferase gene while the upstream

regulatory region (plasmid 4.10Enh) alone, did not (Figure 2A).

When the NAGS promoter and upstream regulatory region were

both present (4.10PromEnh plasmid), transcription increased by

50% compared to the promoter alone confirming that the

upstream conserved region can function as an enhancer of

transcription. When the NAGS enhancer was paired with a

heterologous promoter containing a TATA-box, in the 4.23Enh

construct, the transcription of luciferase about three times higher

compared to construct with minimal TATA-box. The backbone

vector 4.10 did not stimulate expression of the luciferase gene. As

expected, positive control vector 4.13, containing a strong

promoter, activated transcription in this cell culture system

(Figure 2A). The promoter in the reverse orientation (4.10Prom-

Rev) did not activate luciferase expression indicating that the

NAGS promoter acts in a direction dependent manner (Figure 2B).

The ability of the NAGS enhancer (4.23EnhRev) to stimulate

transcription with the heterologous promoter was orientation

independent (Figure 2C). Similar results were obtained for

reporter assays using mouse promoter and enhancer (Figure S2).

Transcription of NAGS initiates at multiple sites
Following discovery of the NAGS promoter, the transcriptional

start sites (TSS) in human and mouse liver and small intestine were

identified using 59 RACE (Figure 3A and B). Cloned and

sequenced amplification products from 59RACE were aligned

along the 59 non-coding region of NAGS along with TSS identified

in the Database of Transcriptional Start Sites (DBTSS) and

expressed sequence tags (ESTs) from Genbank. Results suggest

that NAGS has multiple TSS and that some may be species and

tissue-specific. Combined 59RACE, DBTSS, and Genbank results

indicate that within human liver, the most frequently occurring

TSS was at 242 bp upstream of the ATG codon, while in human

small intestine it was at 2146 bp (Figure 3A). Within mouse

tissues, no dominant TSS was evident, but transcription of the

NAGS gene initiated most often from 220 bp and 2108 bp in

liver and 220 bp and 295 bp in small intestine (Figure 3B).

Figure 3 also shows several other rare TSS that were identified.

Transcription factors bind highly conserved motifs within
the promoter and enhancer of NAGS

When promoters and enhancers from six mammalian NAGS

genes were aligned, there were multiple regions of base pair

conservation (Figure 4). Cis-eLement OVER-representation

(CLOVER) software analysis was employed to identify transcrip-

tion factor binding motifs in regulatory regions of human,

chimpanzee, horse, cow, dog, mouse, and rat NAGS. Analyses of

the region +9 to 2996 bp (relative to the translational start codon,

promoter, Table S6) and 22866 to 23620 bp (enhancer, Table

S7) predicted several transcription factor binding motifs that are

expressed in the liver, but no TATA-box for transcription

initiation. Sp1 binding sites, within the promoter, and the HNF-

1 binding motif, within the enhancer, received the highest over-

representation scores, but additional motifs with lower scores were

also over-represented.

Next, over-represented motifs were mapped on the CLUS-

TALW alignments (Figure 4A and 4B) and motifs with high

conservation, having been identified in at least four out of the
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seven mammalian species, were examined further. Throughout

the promoter, five binding sites for Sp1 were highly conserved, two

of which were conserved in all examined species. A binding site

recognized by CREB and Activating Transcription Factor-1

(ATF-1) was conserved in four species and overlapped with the

translation start codon; a C/EBP binding site was identified

farther upstream in region B of the promoter (Figures 4A & 5A).

Within the enhancer, a binding site for HNF-1 was conserved in

all species. Overlapping binding sites for NF-Y, AP-2 and Mothers

Against Decapentaplegic Homolog 3 (SMAD3) were also

conserved in all species, while an additional AP-2 binding site,

located 59 of the HNF-1 site, was conserved in four out of seven

species (Figure 4B & 5B).

To validate computational strategy for identification of

transcription factor binding sites, the enhancers of human,

chimpanzee, dog, mouse, and rat Cps1 were analyzed using

CLOVER, and the experimentally identified binding motifs for

C/EBP, CREB, GR, AP-1 and HNF-3 [55,56,57] were detected

along with additional unreported motifs for HNF-4, AR, C/EBP

and HNF-3 (Figure S3, Table S5). The detection of experimentally

confirmed binding motifs in CPS1 has made the use of CLOVER

for bioinformatic analysis of NAGS credible.

A DNA-protein pull-down assay was devised to test the

bioinformatic prediction of specific binding sites. Two biotin-

labeled DNA probes for the promoter (Figure 5A) encompassed

regions A and B (Lane 1 in Figure 5C) and one probe

(Figure 5B) encompassed the enhancer (Lane 1 in Figure 5D). A

biotinylated probe to a region upstream of the NAGS gene,

lacking any highly conserved motifs (Lane 3 in Figures 5C and

5D), and non-biotinylated probes to region A or B (Lane 2 in

Figures 5C and 5D) were used as negative controls. The

supernatant fluid from each pull-down was included as a

positive control for the presence of the transcription factor

(Lanes 5–8). Intensities of bands corresponding to each

Figure 2. Highly conserved regulatory regions, upstream of the NAGS gene, function as promoter and enhancer elements. In liver
derived cells the NAGS promoter (4.10Prom), promoter+enhancer (4.10PromEnh), enhancer with TATA promoter (4.23Enh), and positive control
promoter vector (pGL4.13) significantly simulate transcription while the enhancer (4.10Enh), basic vector (pGL4.10) does not stimulate transcription
above baseline (A). Reverse insertion of the promoter (4.10PromRev) did not stimulate transcription compared to 4.10Prom and pGL4.10 vector (B),
but reverse enhancer (4.23EnhRev) significantly stimulated transcription compared to 4.23Enh and pGL4.23 vector (C). Calculated results are an
average of three independent experiments that were each carried out in triplicate, normalized to Rluc expression, and expressed relative to the
promoter for each experiment with error reported as 6SEM. Lowercase letters indicate statistically significant differences.
doi:10.1371/journal.pone.0029527.g002
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transcription factor in supernatant fluids were also used as

indicators of pull-down efficiency.

Factors Sp1 and CREB bound to the probe of promoter region

A (Lane 1 in Figure 5C). Sp1 also bound to the probe of promoter

region B (data not shown) while C/EBP did not bind to this probe

(Lane 1 in Figure 5C). Within the enhancer region, transcription

factors HNF-1 and NF-Y bound to the probe, however SMAD2/3

and AP2 did not (Lane 1 in Figure 5D). Binding of Sp1, CREB,

C/EBP, HNF-1, NF-Y, SMAD2/3, and AP-2 was not detected in

the negative controls (Lanes 2–4 in Figures 5C and 5D) while each

transcription factor was detected in the positive controls of liver

nuclear extract supernatants (Lanes 5–8 in Figures 5C and 5D).

Each immunoblot result is representative of at least three replicate

experiments.

Binding of transcription factors to the predicted motifs was also

confirmed using chromatin immunoprecipitation (ChIP) followed

by Real-Time PCR. Measurement compared the enrichment of

target DNA regions to the negative control locus MIP-2. ChIP

with Sp1 and CREB antibodies significantly enriched the NAGS

promoter DNA compared to MIP-2 (p,0.005 and p,0.05,

respectively; Figure 6A). ChIP with C/EBP antibody did not

enrich the NAGS promoter DNA compared to the negative locus

(p.0.05; Figure 6A). The NAGS enhancer was enriched in

chromatin immunoprecipitated with antibodies against HNF-1

and NF-Y (p,0.005 and p,0.05, respectively; Figure 6B), but not

with antibodies against AP-2 and SMAD2/3 (p.0.05; Figure 6B).

Thus, Pull-down and ChIP assays confirmed that Sp1 and CREB

bind along the NAGS promoter and HNF-1 and NF-Y bind along

the enhancer.

Transcription factors and binding motifs are functionally
important for transcription

Reporter assays in liver hepatoma cells with mutated transcrip-

tion factor binding motifs demonstrate the functional importance of

each site. Following these sequence substitutions, transcription

factor binding motifs were no longer detected by CLOVER

(Table 2). Within the promoter, point mutations in the Sp1 binding

sites decreased the expression of reporter gene by 75% (p,0.005)

and point mutations in the CREB binding site resulted in a 40%

decrease (p,0.005; Figure 7A). Point mutations in the HNF-1 or

NF-Y binding sites, in the enhancer, decreased expression of

luciferase reporter by 50% (p,0.005 for both; Figure 7B).

While these results confirm that each motif is important for

transcription, the functional importance of Sp1 and HNF-1

proteins is demonstrated by co-expression of the proteins with

reporter assay constructs. Co-transfection of Sp1 expression

plasmid with the NAGS promoter (4.10Prom) increases expression

of luciferase more than 50% (P,0.005; Figure 7A) while co-

transfection of HNF-1 expression construct with the enhancer and

minimal TATA promoter (4.23Enh), increases expression of the

reporter gene by 25% (p.0.05; Figure 7B) suggesting that

endogenous Sp1 and, less so, HNF-1 do not saturate their binding

motifs on the transfected reporter plasmids.

Reporter assays to compare the effect of the enhancer in liver,

intestine and lung cells, included data that were normalized to the

reporter expression driven by the NAGS promoter. While the

NAGS enhancer (4.10PromEnh) increased expression of the

reporter gene by 50% in liver derived cells (Figure 2A), expression

of the luciferase gene did not increase in the intestine or lung

derived cells (Figure 8) suggesting that the enhancer may

determine tissue specificity of NAGS expression. When HNF-1

expression plasmid and 4.10PromEnh were co-transfected into

intestine and lung derived cells, transcription was stimulated to

levels that were not significantly different from 4.10PromEnh in

liver cells (p.0.05) (Figure 8). Because intestine and lung derived

cells lack HNF-1 (data not shown), this demonstrated the

importance of HNF-1 and NAGS enhancer for the tissue

specificity of NAGS expression.

Figure 3. Transcription start sites (TSS) are species and tissue specific. TSS identified in the promoter of NAGS by 59RACE analysis (blue
circles), the Database of Transcriptional Start Sites (DBTSS) (green circles) and 59 termination sites of Expressed Sequence Tags (ESTs) from Genbank
(orange circles) were aligned on the DNA sequence 59 of the human (A) and mouse (B) NAGS coding sequence. The arrow indicates the translation
start site.
doi:10.1371/journal.pone.0029527.g003
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Figure 4. Sequence alignment of NAGS promoters and enhancers from seven mammalian species indicate conserved motifs. DNA
sequence of the promoter (A) and enhancer (B) regions were aligned using CLUSTALW alignment software. CLOVER analysis was used to identify
transcription factor binding motifs. Binding sites for C/EBP (green), Sp1 (red), CREB/ATF (pink), AP-2 (purple), HNF-1 (blue), NF-Y (olive), and SMAD 3
(cyan) were highly conserved.
doi:10.1371/journal.pone.0029527.g004
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Discussion

In this study we used bioinformatic analyses to predict

regulatory regions based on the hypothesis that non-coding

DNA sequences that are highly conserved between species are

important for gene regulation. Multiple pair-wise BLAST

alignments and sequence alignment from the UCSC genome

browser were used to identify two conserved regions within NAGS,

which were determined to be a promoter and an enhancer. The

efficacy of this method was confirmed by successful identification

of the experimentally identified promoter and 26.3 kb enhancer

[25,31], along with three additional highly conserved regions, in

the non-coding region upstream of CPS1. It should be noted that

the high stringency of our BLAST analysis (80% identity and at

least 100 bp of aligned sequence in four or more species) was

selected to identify conserved regions that could support multiple

binding sites where complexes of transcription factors may form

[25,58]. This may have caused us to overlook species specific or

isolated binding motifs, such as the recently identified FXR

binding site [59].

The reporter assay results confirm that the two highly conserved

regions within 1 kb and 3 kb upstream of the translational start

site function as promoter and enhancer, respectively. The

promoter activates expression of the luciferase reporter gene and

we therefore infer that it will activate transcription of NAGS in vivo.

Similarly, the enhancer in either orientation increases expression

of luciferase by approximately 50% relative to the promoter alone,

suggesting that it stimulates NAGS transcription as well. The

relatively small but significant effect of the enhancer could be due

to spacing differences between the genomic NAGS promoter and

enhancer and their spacing in the reporter constructs. Alterna-

tively, while HepG2 cells express transcription factors that we

identified using bioinformatic tools, the NAGS enhancer may bind

additional factors, absent in HepG2 cells, and have larger effect in

vivo than in cultured cells. Another explanation for the relatively

small effect of the NAGS enhancer is the possible presence of a

proximal enhancer within the region we termed the promoter.

Additional experiments are necessary to distinguish between these

two possibilities.

Our analysis of the NAGS transcriptional start sites identified

multiple TSS that may be species and tissue specific. While the

function of each TSS is unknown, these results are consistent with

transcription initiation by Sp1 [16,60,61], and future experiments

may find that they are involved in transcriptional control for tissue

specific expression, developmental-stage specific expression, quan-

titatively different levels of mRNA expression, or may even

determine the transcript stability [62].

After we confirmed that the promoter and enhancer initiate and

increase transcription, we looked for transcription factors that bind

and regulate NAGS in these regions. By filtering for the highly

over-represented and spatially conserved binding sites, relative to

the translational start codon, we identified Sp1, CREB, and C/

EBP in the promoter and HNF-1 AP-2, NF-Y, and SMAD-3 in

the enhancer as transcription factors that could bind to the NAGS

upstream region. This filtering method was confirmed by analysis

of the 26.3 kb enhancer of CPS1 in which binding sites for the

previously published C/EBP, CREB, GR, and HNF-3 were

identified.

The protein-DNA pull down assays, designed to test which

transcription factors among a pool of nuclear proteins bind to

amplified sequence of conserved upstream DNA, confirmed that

Sp1, CREB, HNF-1 and NF-Y bind to NAGS promoter and

enhancer, while we could not detect binding of C/EBP, AP-2 and

SMAD3 (Figure 5). We initially used 60 bp probes encompassing a

specific binding motif for the protein–DNA pull down assays.

However, probes encompassing the entire region were better able

to bind transcription factors (data not shown), suggesting that

binding is facilitated by interactions with DNA sequences outside

Figure 5. DNA-protein avidin-agarose pull-down assay results confirm transcription factor binding. Two probes for the promoter (A)
and one probe for the enhancer (B) encompass the highly conserved transcription factor binding motifs of NAGS. The motif colors reflect the colors
used in figures 4A and B. Assays followed by immunoblot confirmed binding of Sp1 and CREB, but not C/EBP within the promoter (C) and HNF-1 and
NF-Y, but not SMAD3 or AP-2 within the enhancer regions (D). Lanes 1–4 represent precipitated proteins from mouse liver nuclear extract bound to
biotinylated probes of the regions of interest (Lane 1), non-biotinylated probes of the regions of interest (Lane 2), biotinylated probes of non-specific
regions (Lane 3), and no probe (Lane 4). Lanes 5–8 represent supernatant fluid from overnight incubation of biotinylated probes of the region of
interest (Lane 5), non-biotinylated probes of the region of interest (Lane 6), biotinylated probes of the non-specific regions (Lane 7), or no probe (Lane
8). Immunoblots are representative of at least three replicate experiments.
doi:10.1371/journal.pone.0029527.g005
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predicted binding sites and possibly other transcription factors and

co-activators. ChIP analysis was used to confirm binding of the

predicted transcription factors to the DNA regions of interest

under physiological conditions. ChIP and DNA-pull down assays

confirmed that Sp1 and CREB bind to the promoter and HNF-1

and NF-Y bind to the enhancer of NAGS (Figures 5 and 6), while

reporter assays demonstrated the functional importance of each

binding motif by a decrease in transcription following mutagenesis

of the binding sites (Figure 7).

Furthermore, we have demonstrated that Sp1 and HNF-1 are

important for stimulation of transcription of NAGS and that HNF-

1 determines tissue specificity of NAGS expression. In the liver

derived cell line, co-transfection of either Sp1 or HNF-1

expression plasmids with reporter constructs containing the NAGS

promoter and enhancer led to increased expression of the reporter

gene (Figure 7) suggesting that these two transcription factors

regulate expression of NAGS in the liver. In the lung and intestine

derived cell lines, expression of HNF-1 was sufficient to activate

expression of reporter gene in constructs containing NAGS

enhancer and promoter (Figure 8). This suggests that HNF-1

binding to the NAGS enhancer determines tissue specificity of

NAGS expression. Testing the effect of over-expression of CREB

protein was hindered by its capacity to homo- and heterodimerize

with multiple partners [63,64]. The effect of NF-Y was not tested

because this transcription factor is a heterotrimer [65] and its co-

expression with reporter plasmids would require stable expression

of NF-Y subunit proteins by in vitro cell culture before reporter

plasmids can be transfected and assayed for NF-Y effect on

transcription.

From the data provided herein, we can speculate on the

potential role these factors play in regulating NAGS transcription.

First, in the absence of a canonical TATA-box, transcription

initiated by Sp1 often results in multiple transcriptional start sites

[66,67]. Sp1 is a strong activator of transcription [16,68,69,70,71]

and when multiple Sp1 sites are present, as in NAGS, multiple Sp1

proteins can form complexes with each other and synergistically

activate transcription [16,69]. Because transcription is significantly

increased by co-expression with Sp1 protein and decreased

Figure 6. Chromatin Immunoprecipitation (ChIP) results confirm transcription factor binding. ChIP with transcription factor antibodies
was compared to negative control IgG antibody. Real-Time PCR using promoter or enhancer specific primers was compared to primers for the
negative locus MIP-2. The results confirmed that Sp1 and CREB but not C/EBP bind within the promoter (A) and HNF-1 and NF-Y but not AP-2 or
SMAD2/3 bind within the enhancer region (B) of NAGS. Calculated error was from three replicate experiments and reported as 6 SEM. One asterisk (*)
indicates p,0.05 and two asterisks (**) indicate p,0.005.
doi:10.1371/journal.pone.0029527.g006
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Figure 7. Transcription factors Sp1, CREB, HNF-1, and NF-Y are functionally important for stimulating expression of reporter gene
transcription. Mutagenesis of the putative transcription factor binding sites significantly decreases transcription by the promoter (A) and the
enhancer with TATA promoter (B) in liver derived cells when compared to non-mutated sites. Addition of Sp1 with the promoter (A) and HNF-1 with
the enhancer (B) increases transcription driven by non-mutated constructs. Calculated results are an average of three independent experiments that
were each carried out in triplicate, normalized to Rluc expression, and expressed relative to the promoter for each experiment with error reported as
6SEM. Lowercase letters indicate statistically significant differences.
doi:10.1371/journal.pone.0029527.g007

Figure 8. The NAGS enhancer shows tissue specificity. The enhancer with NAGS promoter (4.10PromEnh) increases transcription relative to the
promoter in liver derived cells but not in intestine or lung derived cells (cyan bars) without the addition of HNF-1 protein (teal bars). Calculated results
are an average of three independent experiments that were carried out in triplicate, normalized to Rluc expression, and expressed relative to the
promoter for each experiment with error reported as 6SEM. Lowercase letters indicate statistically significant differences.
doi:10.1371/journal.pone.0029527.g008
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following mutation of the Sp1 binding sites, Sp1 may prove to be

the activator of NAGS transcription, similar to its role for ASS, ASL

and ARG1 [15,25].

Second, studies have shown that glucagon and second

messenger cAMP trigger a cascade that phosphorylates CREB

and allows for DNA binding and activation of transcription

[72,73]. In CPS1 and ASS, CREB stimulates transcription upon

glucagon signaling [15,31]. Decrease in transcription following

CREB mutation and the close proximity of Sp1 and CREB

binding sites among the TSS suggests that the transcription

initiation machinery may be recruited by these factors, and future

research should examine this postulate.

Our experiments and other studies [74] confirm the role of

HNF-1 in NAGS expression. HNF-1 is essential for stimulation of

NAGS expression by its enhancer. This factor is in part regulated

by HNF-3, HNF-4, and C/EBP, each of which are known to

regulate other urea cycle genes [75,76,77]. Future research will

focus on the mechanism of control between these factors, HNF-1,

and NAGS. Our study has also shown that NF-Y is an activator of

NAGS expression, and future studies will focus on the exact

mechanism of its function in this context.

The human NAGS gene on the forward strand of chromosome

17 partially overlaps with the peptide YY (PYY) gene, which is on

the reverse strand. This overlap was identified with a PYY cDNA

isolated from a brain astrocytoma cDNA library that has an 80

nucleotide long exon located between regions A and B of the

NAGS promoter [78,79] (Figure 1). Other full-length PYY

transcripts initiate about 500 bp upstream of the PYY coding

region, which is located 51 kb upstream of the NAGS translation

initiation codon. Recent analysis of human transcripts revealed

that many protein coding loci are associated with at least one

transcript that initiates from a distal site [80], but the significance

or function of these transcripts remains to be elucidated. Partial

overlap between human NAGS and PYY genes raises the

interesting possibility that these two genes share cis-acting

regulatory elements and might be co-regulated [79,81]. The

mechanism of co-regulation of human NAGS and PYY is likely to

be complex because of their differing tissue expression patterns

[1,82,83,84] including different cell types within the intestine.

PYY is expressed in the intestinal neuroendocrine cells [85,86]

while epithelial cells in the small intestine express NAGS [87,88],

together with OTC and CPS1 [13,89]. Inspection of the

transcription factor binding track of the UCSC genome browser

revealed two binding sites for the CTCF transcription repressor

between NAGS and PYY genes; they are located approximately

9.5 and 21 kb upstream of the NAGS coding region. The CTCF

binding sites could act as chromatin insulators [90,91,92] and

either block regulation of PYY by the NAGS enhancer or enable

cell type specific regulation of each gene by the NAGS enhancer

and promoter. Our results show that the NAGS promoter in the

reverse orientation does not activate transcription of the reporter

gene in liver derived cells (Figure 2), but this does not preclude

transcription activation in other cell types, not tested in this study.

It is possible that the NAGS promoter, enhancer, or other NAGS

regions, regulates expression of PYY [84], and reporter assays in

tissues and cultured cells which express PYY would test this

hypothesis.

While regulation of NAGS by Sp1, CREB, HNF-1, NF-Y,

and factors that regulate them, requires additional study,

identification of regions that regulate human NAGS and OTC

have enabled diagnosis of patients with clinical symptoms of

urea cycle disorders, but lacking disease causing mutations in

the coding regions of the genes [93,94]. Recently, we identified

a patient with a mutation in the enhancer of NAGS and

confirmed the diagnosis of NAGS deficiency by showing that

the mutation significantly decreases transcription of NAGS [93].

This example suggests that identification of regulatory regions

within genes will lead to more and better diagnoses of urea

cycle disorders and other genetic diseases and to accurate

genetic counseling.

In conclusion, this study identified a promoter and a tissue

specific enhancer of NAGS and functionally relevant transcription

factor binding motifs within these regions. The results show that

Sp1 and CREB bind to the NAGS promoter, suggesting that

glucagon and cAMP signaling may regulate the expression of

NAGS. Within the enhancer, HNF-1 may be an important factor

in the coordinated regulation of this urea cycle gene transcription

through its interaction with HNF-3, HNF-4 and C/EBP while the

role of NF-Y is less clear considering that NF-Y may function as an

activator or repressor. While additional studies will be needed to

further define the roles of these factors, these results contain the

first thorough analysis of NAGS and suggest networks of control

between signaling cascades, NAGS and the coordinated regulation

of the other urea cycle genes.

Supporting Information

Figure S1 Regions Upstream of mammalian CPS1 genes
are highly conserved. Three new highly conserved regions

were identified within 15 kb 59 of the CPS1 translational start site.

Conservation algorithms phastCons (green) and phyloP (blue)

from the UCSC genome browser indicate regions that are highly

conserved across all mammals (A). Pair-wise blast analysis of

human, chimpanzee, dog, mouse, and rat 59 non-coding region of

CPS1 were used to identify two known and three previously

unknown regions of high conservation, referred to enhancer/

repressor regions A, B, and C. Highly conserved regions within the

CPS1 59 non-coding sequence include the proximal promoter,

region A, the -enhancer, region B, and region C.

(TIF)

Figure S2 Highly conserved regulatory regions, up-
stream of the mouse Nags gene, function as promoter
and enhancer elements. Mouse promoter (m4.10Prom),

promoter and enhancer (m4.10PromEnh), and enhancer with

TATA promoter (m4.23Enh) stimulated transcription while

enhancer lacking a promoter (m4.10Enh) did not in liver cells.

Calculated results are an average of three independent experi-

ments that were carried out in triplicate, normalized to Rluc

expression, and expressed relative to the promoter for each

experiment with error reported as 6SEM.

(TIF)

Figure S3 Novel transcription factor binding motifs, in
the enhancer region of CPS1, were identified using
CLOVER. Several highly conserved transcription factor binding

sites were present in the enhancer region. An asterisk denotes an

experimentally verified transcription factor binding site. All motifs

were spatially conserved between mammalian species.

(TIF)

Table S1 Sequences of primers that were used to
amplify human or mouse DNA by PCR for insertion of
the promoter and enhancer regions into sequencing and
reporter assay vectors.

(DOCX)

Table S2 Primer sequences used to determine tran-
scription start sites of NAGS with 59 RACE. Primers were

designed according to manufacturer’s instructions and used to
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determine transcription start sites of human and mouse NAGS in

liver and small intestine RNA using 59 RACE.

(DOCX)

Table S3 Primer sequences used to generate DNA
probes of the specified regions of mNags. Primers were

used to generate DNA probes, by PCR, of the promoter,

enhancer, or non-specific specified regions of mNags.

(DOCX)

Table S4 Primer sequences used for quantitative real-
time PCR analysis of chromatin immunoprecipitation
samples.

(DOCX)

Table S5 Results of CLOVER analysis of the enhancer
region with sequence information for human and mouse
CPS1. Results were filtered to exclude motifs for transcription

factors that are not expressed in the liver.

(DOCX)

Table S6 Results of CLOVER analysis of the promoter
region with sequence information for human and mouse

NAGS. Results were filtered to exclude motifs for transcription

factors that are not expressed in liver.
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Table S7 Results of CLOVER analysis of the enhancer
region with sequence information for human and mouse
NAGS. Results were filtered to exclude motifs for transcription

factors that are not expressed in the liver.

(DOCX)

Acknowledgments

We would like to thank Dr. Marshall Summar for providing HepG2 cells

and Dr. Mary Rose for providing A549 cells.

Author Contributions

Analyzed the data: SKH. Contributed reagents/materials/analysis tools:

LM-R. Wrote the paper: SKH. Designed the experiments: SKH. Critically

reviewed the manuscript: MT. Conceived the study and reviewed the

manuscript: LC. Performed reporter assays, 59-RACE, DNA pill-down

assays, ChIP, bioinformatic analysis and wrote the paper: SKH. Carried

out and analyzed bioinformatic analysis of the NAGS upstream regulatory

region: GYL MP SS LM-R.

References

1. Caldovic L, Morizono H, Gracia Panglao M, Gallegos R, Yu X, et al. (2002)

Cloning and expression of the human N-acetylglutamate synthase gene.

Biochem Biophys Res Commun 299: 581–586.

2. Caldovic L, Morizono H, Yu X, Thompson M, Shi D, et al. (2002)

Identification, cloning and expression of the mouse N-acetylglutamate synthase

gene. Biochem J 364: 825–831.

3. Schimke RT (1962) Differential effects of fasting and protein-free diets on levels

of urea cycle enzymes in rat liver. J Biol Chem 237: 1921–1924.

4. Kawamoto S, Ishida H, Mori M, Tatibana M (1982) Regulation of N-

acetylglutamate synthetase in mouse liver. Postprandial changes in sensitivity to

activation by arginine. Eur J Biochem 123: 637–641.

5. Tatibana M, Kawamoto S, Sonoda T, Mori M (1982) Enzyme regulation of n-

acetylglutamate synthesis in mouse and rat liver. Adv Exp Med Biol 153:

207–216.

6. Shigesada K, Tatibana M (1978) N-Acetylglutamate synthetase from rat-liver

mitochondria. Partial purification and catalytic properties. Eur J Biochem 84:

285–291.

7. Goping IS, Shore GC (1994) Interactions between repressor and anti-repressor

elements in the carbamyl phosphate synthetase I promoter. J Biol Chem 269:

3891–3896.

8. Howell BW, Lagace M, Shore GC (1989) Activity of the carbamyl phosphate

synthetase I promoter in liver nuclear extracts is dependent on a cis-acting C/

EBP recognition element. Mol Cell Biol 9: 2928–2933.

9. Lagace M, Goping IS, Mueller CR, Lazzaro M, Shore GC (1992) The carbamyl

phosphate synthetase promoter contains multiple binding sites for C/EBP-

related proteins. Gene 118: 231–238.

10. Schoneveld OJ, Gaemers IC, Hoogenkamp M, Lamers WH (2005) The role of

proximal-enhancer elements in the glucocorticoid regulation of carbamoylpho-

sphate synthetase gene transcription from the upstream response unit. Biochimie

87: 1033–1040.

11. Kimura A, Nishiyori A, Murakami T, Tsukamoto T, Hata S, et al. (1993)

Chicken ovalbumin upstream promoter-transcription factor (COUP-TF)

represses transcription from the promoter of the gene for ornithine transcar-

bamylase in a manner antagonistic to hepatocyte nuclear factor-4 (HNF-4). J Biol

Chem 268: 11125–11133.

12. Kimura T, Chowdhury S, Tanaka T, Shimizu A, Iwase K, et al. (2001)

CCAAT/enhancer-binding protein beta is required for activation of genes for

ornithine cycle enzymes by glucocorticoids and glucagon in primary-cultured

hepatocytes. FEBS Lett 494: 105–111.

13. Murakami T, Nishiyori A, Takiguchi M, Mori M (1990) Promoter and 11-

kilobase upstream enhancer elements responsible for hepatoma cell-specific

expression of the rat ornithine transcarbamylase gene. Mol Cell Biol 10:

1180–1191.

14. Nishiyori A, Tashiro H, Kimura A, Akagi K, Yamamura K, et al. (1994)

Determination of tissue specificity of the enhancer by combinatorial operation of

tissue-enriched transcription factors. Both HNF-4 and C/EBP beta are required

for liver-specific activity of the ornithine transcarbamylase enhancer. J Biol

Chem 269: 1323–1331.

15. Guei TR, Liu MC, Yang CP, Su TS (2008) Identification of a liver-specific

cAMP response element in the human argininosuccinate synthetase gene.

Biochem Biophys Res Commun 377: 257–261.

16. Anderson GM, Freytag SO (1991) Synergistic activation of a human promoter in

vivo by transcription factor Sp1. Mol Cell Biol 11: 1935–1943.

17. Boyce FM, 3rd, Pogulis RJ, Freytag SO (1989) Paradoxical regulation of human
argininosuccinate synthetase cDNA minigene in opposition to endogenous gene:

evidence for intragenic control sequences. Somat Cell Mol Genet 15: 123–129.

18. Matsubasa T, Takiguchi M, Matsuda I, Mori M (1994) Rat argininosuccinate

lyase promoter: the dyad-symmetric CCAAT box sequence CCAATTGG in the
promoter is recognized by NF-Y. J Biochem 116: 1044–1055.

19. Dorn A, Bollekens J, Staub A, Benoist C, Mathis D (1987) A multiplicity of

CCAAT box-binding proteins. Cell 50: 863–872.

20. Hooft van Huijsduijnen R, Li XY, Black D, Matthes H, Benoist C, et al. (1990)

Co-evolution from yeast to mouse: cDNA cloning of the two NF-Y (CP-1/CBF)
subunits. EMBO J 9: 3119–3127.

21. Santoro C, Mermod N, Andrews PC, Tjian R (1988) A family of human

CCAAT-box-binding proteins active in transcription and DNA replication:

cloning and expression of multiple cDNAs. Nature 334: 218–224.

22. Takiguchi M, Mori M (1991) In vitro analysis of the rat liver-type arginase
promoter. J Biol Chem 266: 9186–9193.

23. Morris SM, Jr. (2002) Regulation of enzymes of the urea cycle and arginine
metabolism. Annu Rev Nutr 22: 87–105.

24. Morris SM, Jr., Moncman CL, Rand KD, Dizikes GJ, Cederbaum SD, et al.

(1987) Regulation of mRNA levels for five urea cycle enzymes in rat liver by diet,
cyclic AMP, and glucocorticoids. Arch Biochem Biophys 256: 343–353.

25. Takiguchi M, Mori M (1995) Transcriptional regulation of genes for ornithine
cycle enzymes. Biochem J 312(Pt 3): 649–659.

26. Nebes VL, Morris SM, Jr. (1988) Regulation of messenger ribonucleic acid levels

for five urea cycle enzymes in cultured rat hepatocytes. Requirements for cyclic

adenosine monophosphate, glucocorticoids, and ongoing protein synthesis. Mol
Endocrinol 2: 444–451.

27. Ryall JC, Quantz MA, Shore GC (1986) Rat liver and intestinal mucosa differ in

the developmental pattern and hormonal regulation of carbamoyl-phosphate
synthetase I and ornithine carbamoyl transferase gene expression. Eur J Biochem

156: 453–458.

28. Schimke RT (1963) Studies on factors affecting the levels of urea cycle enzymes

in rat liver. J Biol Chem 238: 1012–1018.

29. Hazra A, DuBois DC, Almon RR, Snyder GH, Jusko WJ (2008) Pharmaco-

dynamic modeling of acute and chronic effects of methylprednisolone on hepatic
urea cycle genes in rats. Gene Regul Syst Bio 2: 1–19.

30. Abdullah Abu Musa DM, Kobayashi K, Yasuda I, Iijima M, Christoffels VM,

et al. (1999) Involvement of a cis-acting element in the suppression of carbamoyl
phosphate synthetase I gene expression in the liver of carnitine-deficient mice.

Mol Genet Metab 68: 346–356.

31. Schoneveld OJ, Hoogenkamp M, Stallen JM, Gaemers IC, Lamers WH (2007)

cyclicAMP and glucocorticoid responsiveness of the rat carbamoylphosphate
synthetase gene requires the interplay of upstream regulatory units. Biochimie

89: 574–580.

32. Murakami T, Takiguchi M, Inomoto T, Yamamura K, Mori M (1989) Tissue-

and developmental stage-specific expression of the rat ornithine carbamoyl-
transferase gene in transgenic mice. Dev Genet 10: 393–401.

33. Sladek FM, Zhong WM, Lai E, Darnell JE, Jr. (1990) Liver-enriched

transcription factor HNF-4 is a novel member of the steroid hormone receptor

superfamily. Genes Dev 4: 2353–2365.

Regulation of NAGS

PLoS ONE | www.plosone.org 13 February 2012 | Volume 7 | Issue 2 | e29527



34. Boyce FM, Anderson GM, Rusk CD, Freytag SO (1986) Human arginino-

succinate synthetase minigenes are subject to arginine-mediated repression but

not to trans induction. Mol Cell Biol 6: 1244–1252.

35. Boyce FM, 3rd, Freytag SO (1989) Regulation of human argininosuccinate

synthetase gene: induction by positive-acting nuclear mechanism in canavanine-

resistant cell variants. Somat Cell Mol Genet 15: 113–121.

36. Jackson MJ, Allen SJ, Beaudet AL, O’Brien WE (1988) Metabolite regulation of

argininosuccinate synthetase in cultured human cells. J Biol Chem 263:

16388–16394.

37. Sunyakumthorn P, Boonsaen T, Boonsaeng V, Wallace JC, Jitrapakdee S (2005)

Involvement of specific proteins (Sp1/Sp3) and nuclear factor Y in basal

transcription of the distal promoter of the rat pyruvate carboxylase gene in beta-

cells. Biochem Biophys Res Commun 329: 188–196.

38. Snodgrass PJ (1991) Dexamethasone and glucagon cause synergistic increases of

urea cycle enzyme activities in livers of normal but not adrenalectomized rats.

Enzyme 45: 30–38.

39. Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, et al. (1997) Gapped

BLAST and PSI-BLAST: a new generation of protein database search

programs. Nucleic Acids Res 25: 3389–3402.

40. Frith MC, Fu Y, Yu L, Chen JF, Hansen U, et al. (2004) Detection of functional

DNA motifs via statistical over-representation. Nucleic Acids Res 32:

1372–1381.

41. Marino-Ramirez L, Spouge JL, Kanga GC, Landsman D (2004) Statistical

analysis of over-represented words in human promoter sequences. Nucleic Acids

Res 32: 949–958.

42. Chenna R, Sugawara H, Koike T, Lopez R, Gibson TJ, et al. (2003) Multiple

sequence alignment with the Clustal series of programs. Nucleic Acids Res 31:

3497–3500.

43. Kim HJ, Ko MS, Kim HK, Cho WJ, Lee SH, et al. Transcription factor Sp1

regulates basal transcription of the human DRG2 gene. Biochim Biophys Acta

1809: 184–190.

44. Zhang W, Tian Z, Sha S, Cheng LY, Philipsen S, et al. Functional and sequence

analysis of human neuroglobin gene promoter region. Biochim Biophys Acta

1809: 236–244.

45. Convertini P, Infantino V, Bisaccia F, Palmieri F, Iacobazzi V. Role of FOXA

and Sp1 in mitochondrial acylcarnitine carrier gene expression in different cell

lines. Biochem Biophys Res Commun 404: 376–381.

46. Michels AJ, Hagen TM (2009) Hepatocyte nuclear factor 1 is essential for

transcription of sodium-dependent vitamin C transporter protein 1. Am J Physiol

Cell Physiol 297: C1220–1227.

47. Wang Z, Burke PA. Hepatocyte nuclear factor-4alpha interacts with other

hepatocyte nuclear factors in regulating transthyretin gene expression. FEBS J

277: 4066–4075.

48. Tue NT, Yoshioka Y, Yamaguchi M. NF-Y transcriptionally regulates the

Drosophila p53 gene. Gene 473: 1–7.

49. Pallai R, Simpkins H, Chen J, Parekh HK. The CCAAT box binding

transcription factor, nuclear factor-Y (NF-Y) regulates transcription of human

aldo-keto reductase 1C1 (AKR1C1) gene. Gene 459: 11–23.

50. Xiang H, Wang J, Boxer LM (2006) Role of the cyclic AMP response element in

the bcl-2 promoter in the regulation of endogenous Bcl-2 expression and

apoptosis in murine B cells. Mol Cell Biol 26: 8599–8606.

51. Callens N, Baert JL, Monte D, Sunesen M, Van Lint C, et al. (2003)

Transcriptional regulation of the murine brca2 gene by CREB/ATF

transcription factors. Biochem Biophys Res Commun 312: 702–707.

52. Deng WG, Zhu Y, Montero A, Wu KK (2003) Quantitative analysis of binding

of transcription factor complex to biotinylated DNA probe by a streptavidin-

agarose pulldown assay. Anal Biochem 323: 12–18.

53. Pollard KS, Hubisz MJ, Rosenbloom KR, Siepel A. Detection of nonneutral

substitution rates on mammalian phylogenies. Genome Res 20: 110–121.

54. Siepel A, Bejerano G, Pedersen JS, Hinrichs AS, Hou M, et al. (2005)

Evolutionarily conserved elements in vertebrate, insect, worm, and yeast

genomes. Genome Res 15: 1034–1050.

55. Christoffels VM, van den Hoff MJ, Lamers MC, van Roon MA, de Boer PA,

et al. (1996) The upstream regulatory region of the carbamoyl-phosphate

synthetase I gene controls its tissue-specific, developmental, and hormonal

regulation in vivo. J Biol Chem 271: 31243–31250.

56. Christoffels VM, Grange T, Kaestner KH, Cole TJ, Darlington GJ, et al. (1998)

Glucocorticoid receptor, C/EBP, HNF3, and protein kinase A coordinately

activate the glucocorticoid response unit of the carbamoylphosphate synthetase I

gene. Mol Cell Biol 18: 6305–6315.

57. Christoffels VM, van den Hoff MJ, Moorman AF, Lamers WH (1995) The far-

upstream enhancer of the carbamoyl-phosphate synthetase I gene is responsible

for the tissue specificity and hormone inducibility of its expression. J Biol Chem

270: 24932–24940.

58. Klein H, Vingron M (2007) Using transcription factor binding site co-occurrence

to predict regulatory regions. Genome Inform 18: 109–118.

59. Renga B, Mencarelli A, Cipriani S, D’Amore C, Zampella A, et al. The nuclear

receptor FXR regulates hepatic transport and metabolism of glutamine and

glutamate. Biochim Biophys Acta 1812: 1522–1531.

60. Emami KH, Burke TW, Smale ST (1998) Sp1 activation of a TATA-less

promoter requires a species-specific interaction involving transcription factor

IID. Nucleic Acids Res 26: 839–846.

61. Muckenfuss H, Kaiser JK, Krebil E, Battenberg M, Schwer C, et al. (2007) Sp1
and Sp3 regulate basal transcription of the human APOBEC3G gene. Nucleic

Acids Res 35: 3784–3796.

62. Schibler U, Sierra F (1987) Alternative promoters in developmental gene

expression. Annu Rev Genet 21: 237–257.

63. Hai T, Hartman MG (2001) The molecular biology and nomenclature of the

activating transcription factor/cAMP responsive element binding family of

transcription factors: activating transcription factor proteins and homeostasis.
Gene 273: 1–11.

64. De Cesare D, Sassone-Corsi P (2000) Transcriptional regulation by cyclic AMP-
responsive factors. Prog Nucleic Acid Res Mol Biol 64: 343–369.

65. Matuoka K, Yu Chen K (1999) Nuclear factor Y (NF-Y) and cellular senescence.
Exp Cell Res 253: 365–371.

66. Juang HH, Costello LC, Franklin RB (1995) Androgen modulation of multiple
transcription start sites of the mitochondrial aspartate aminotransferase gene in

rat prostate. J Biol Chem 270: 12629–12634.

67. Pave-Preux M, Aggerbeck M, Veyssier C, Bousquet-Lemercier B, Hanoune J,

et al. (1990) Hormonal discrimination among transcription start sites of aspartate
aminotransferase. J Biol Chem 265: 4444–4448.

68. Kadonaga JT, Courey AJ, Ladika J, Tjian R (1988) Distinct regions of Sp1
modulate DNA binding and transcriptional activation. Science 242: 1566–1570.

69. Li L, He S, Sun JM, Davie JR (2004) Gene regulation by Sp1 and Sp3. Biochem

Cell Biol 82: 460–471.

70. Solomon SS, Majumdar G, Martinez-Hernandez A, Raghow R (2008) A critical

role of Sp1 transcription factor in regulating gene expression in response to
insulin and other hormones. Life Sci 83: 305–312.

71. Wierstra I (2008) Sp1: emerging roles–beyond constitutive activation of TATA-
less housekeeping genes. Biochem Biophys Res Commun 372: 1–13.

72. Montminy M, Koo SH, Zhang X (2004) The CREB family: key regulators of
hepatic metabolism. Ann Endocrinol (Paris) 65: 73–75.

73. Mayr B, Montminy M (2001) Transcriptional regulation by the phosphoryla-
tion-dependent factor CREB. Nat Rev Mol Cell Biol 2: 599–609.

74. Heibel SK, Ah Mew N, Caldovic L, Daikhin Y, Yudkoff M, et al. N-
carbamylglutamate enhancement of ureagenesis leads to discovery of a novel

deleterious mutation in a newly defined enhancer of the NAGS gene and to
effective therapy. Hum Mutat 32: 1153–1160.

75. Kuo CJ, Conley PB, Chen L, Sladek FM, Darnell JE, Jr., et al. (1992) A

transcriptional hierarchy involved in mammalian cell-type specification. Nature
355: 457–461.

76. Sladek FM (1993) Orphan receptor HNF-4 and liver-specific gene expression.
Receptor 3: 223–232.

77. Ktistaki E, Talianidis I (1997) Modulation of hepatic gene expression by
hepatocyte nuclear factor 1. Science 277: 109–112.

78. Strausberg RL, Feingold EA, Grouse LH, Derge JG, Klausner RD, et al. (2002)
Generation and initial analysis of more than 15,000 full-length human and

mouse cDNA sequences. Proc Natl Acad Sci U S A 99: 16899–16903.

79. Lomenick JP, Melguizo MS, Mitchell SL, Summar ML, Anderson JW (2009)

Effects of meals high in carbohydrate, protein, and fat on ghrelin and peptide
YY secretion in prepubertal children. J Clin Endocrinol Metab 94: 4463–4471.

80. Birney E, Stamatoyannopoulos JA, Dutta A, Guigo R, Gingeras TR, et al.
(2007) Identification and analysis of functional elements in 1% of the human

genome by the ENCODE pilot project. Nature 447: 799–816.

81. Mitchell S, Murdock D, Summar M (2008) Plasma peptide tyrosine tyrosine
(PYY) levels are increased in urea cycle disorder patients. Mol Gen Metab 93:

258 (abstract).

82. Neill MA, Aschner J, Barr F, Summar ML (2009) Quantitative RT-PCR

comparison of the urea and nitric oxide cycle gene transcripts in adult human
tissues. Mol Genet Metab 97: 121–127.

83. Myrsen-Axcrona U, Ekblad E, Sundler F (1997) Developmental expression of
NPY, PYY and PP in the rat pancreas and their coexistence with islet hormones.

Regul Pept 68: 165–175.

84. Ekblad E, Sundler F (2002) Distribution of pancreatic polypeptide and peptide

YY. Peptides 23: 251–261.

85. Lundberg JM, Tatemoto K, Terenius L, Hellstrom PM, Mutt V, et al. (1982)

Localization of peptide YY (PYY) in gastrointestinal endocrine cells and effects

on intestinal blood flow and motility. Proc Natl Acad Sci U S A 79: 4471–4475.

86. Lukinius AI, Ericsson JL, Lundqvist MK, Wilander EM (1986) Ultrastructural

localization of serotonin and polypeptide YY (PYY) in endocrine cells of the
human rectum. J Histochem Cytochem 34: 719–726.

87. Geng M, Li T, Kong X, Song X, Chu W, et al. Reduced expression of intestinal
N-acetylglutamate synthase in suckling piglets: a novel molecular mechanism for

arginine as a nutritionally essential amino acid for neonates. Amino Acids 40:
1513–1522.

88. Uchiyama C, Mori M, Tatibana M (1981) Subcellular localization and
properties of N-acetylglutamate synthase in rat small intestinal mucosa.

J Biochem 89: 1777–1786.

89. Dubois N, Cavard C, Chasse JF, Kamoun P, Briand P (1988) Compared
expression levels of ornithine transcarbamylase and carbamylphosphate

synthetase in liver and small intestine of normal and mutant mice. Biochim
Biophys Acta 950: 321–328.

90. Ishihara K, Oshimura M, Nakao M (2006) CTCF-dependent chromatin
insulator is linked to epigenetic remodeling. Mol Cell 23: 733–742.

91. Renda M, Baglivo I, Burgess-Beusse B, Esposito S, Fattorusso R, et al. (2007)
Critical DNA binding interactions of the insulator protein CTCF: a small

Regulation of NAGS

PLoS ONE | www.plosone.org 14 February 2012 | Volume 7 | Issue 2 | e29527



number of zinc fingers mediate strong binding, and a single finger-DNA

interaction controls binding at imprinted loci. J Biol Chem 282: 33336–33345.
92. Majumder P, Gomez JA, Chadwick BP, Boss JM (2008) The insulator factor

CTCF controls MHC class II gene expression and is required for the formation

of long-distance chromatin interactions. J Exp Med 205: 785–798.
93. Heibel SK, Ah Mew N, Caldovic L, Daikhin Y, Yudkoff M, et al. (2011) N-

carbamylglutamate enhancement of ureagenesis leads to discovery of a novel

deleterious mutation in a newly defined enhancer of the NAGS gene and to

effective therapy. Hum Mutat 32: 1153–1160.

94. Luksan O, Jirsa M, Eberova J, Minks J, Treslova H, et al. (2010) Disruption of

OTC promoter-enhancer interaction in a patient with symptoms of ornithine

carbamoyltransferase deficiency. Hum Mutat 31: E1294–1303.

Regulation of NAGS

PLoS ONE | www.plosone.org 15 February 2012 | Volume 7 | Issue 2 | e29527



Novoa-Aponte et al. BMC Structural Biology 2012, 12:25
http://www.biomedcentral.com/1472-6807/12/25
RESEARCH ARTICLE Open Access
In silico identification and characterization of the
ion transport specificity for P-type ATPases in the
Mycobacterium tuberculosis complex
Lorena Novoa-Aponte1, Andrés León-Torres1, Miyer Patiño-Ruiz1, Jenifer Cuesta-Bernal1, Luz-Mary Salazar1,
David Landsman2, Leonardo Mariño-Ramírez2,3* and Carlos-Yesid Soto1
Abstract

Background: P-type ATPases hydrolyze ATP and release energy that is used in the transport of ions against
electrochemical gradients across plasma membranes, making these proteins essential for cell viability. Currently, the
distribution and function of these ion transporters in mycobacteria are poorly understood.

Results: In this study, probabilistic profiles were constructed based on hidden Markov models to identify and
classify P-type ATPases in the Mycobacterium tuberculosis complex (MTBC) according to the type of ion transported
across the plasma membrane. Topology, hydrophobicity profiles and conserved motifs were analyzed to correlate
amino acid sequences of P-type ATPases and ion transport specificity. Twelve candidate P-type ATPases annotated
in the M. tuberculosis H37Rv proteome were identified in all members of the MTBC, and probabilistic profiles
classified them into one of the following three groups: heavy metal cation transporters, alkaline and alkaline earth
metal cation transporters, and the beta subunit of a prokaryotic potassium pump. Interestingly, counterparts of the
non-catalytic beta subunits of Hydrogen/Potassium and Sodium/Potassium P-type ATPases were not found.

Conclusions: The high content of heavy metal transporters found in the MTBC suggests that they could play an
important role in the ability of M. tuberculosis to survive inside macrophages, where tubercle bacilli face high levels
of toxic metals. Finally, the results obtained in this work provide a starting point for experimental studies that may
elucidate the ion specificity of the MTBC P-type ATPases and their role in mycobacterial infections.

Keywords: Tuberculosis, Mycobacterium tuberculosis complex, P-type ATPases, Ion transport, Conserved motifs
Background
Tuberculosis (TB) is one of the most important chal-
lenges in public health maintenance throughout the
world. According to the World Health Organization
(WHO), 8.5-9.2 million new TB cases were estimated to
have occurred in 2010 [1], and 1.2–1.5 million deaths
were caused by species of the Mycobacterium tubercu-
losis complex (MTBC) that includes M. tuberculosis,
M. bovis, M. bovis BCG (vaccine strain), M. africanum,
M. microti, M. canettii, and M. pinnipedii, which pro-
duces TB in humans and some animal hosts [2,3]. Part
of the infected population will develop active TB,
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whereas the majority of cases (approximately 90%)
progress to a non-infectious disease or latent TB,
where mycobacteria survive in a dormant state inside
immune cells [4]. Individuals with latent TB may be
asymptomatic during prolonged periods of time; however,
TB can reactivate when the host immune response
diminishes due to malnutrition, steroid use, and HIV
co-infection [5].
The emergence of multidrug and extensively drug-

resistant tuberculosis strains (MDR-TB and XDR-TB)
and the lack of drugs against latent TB have become
serious problems for TB control. Therefore, the identi-
fication of new therapeutic targets useful in the devel-
opment of novel drugs and vaccines against latent TB
is essential. New anti-TB drugs, such as diarylquino-
lines (TMC207) and benzothiazines (BTZ043) target
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essential membrane proteins that affect mycobacterial
viability [6]. Thus, antimicrobials designed against pro-
teins of plasma membrane are ideal because they avoid
problems related to membrane permeability.
Ion transport in bacteria is carried out by enzymatic

systems that belong to either the P-type ATPase, ATP
binding cassettes (ABC transporters) and metallic
ion/H+-antiporter systems [7]. In general, ATPases help
maintain the ion gradients responsible for cell volume
control and transport of nutrients across the cell mem-
brane [8-11]. ATPases hydrolyze ATP, releasing energy
that is used in the transport of ions against electrochem-
ical gradients in plasma membranes. The enzymatic
mechanisms of P-type ATPases were initially described in
eukaryotic cells [12-14]. These enzymes have five different
functional and structural domains: three of these domains
are cytoplasmic (A, actuator; N, nucleotide binding and P,
phosphorylation), and the other two are embedded in the
membrane (T, transport and S, class specific support
domain) [15]. P-type ATPases have the following two
conformational states: E1, which binds ion substrates
on one side of the cell membrane, inducing their auto-
phosphorylation and generating a new conformational
state; and E2, which has a lower affinity for substrates and
therefore releases them to the other side of the cell mem-
brane, promoting ion transport and finally recovery of the
E1 state [15,16].
Despite P-type ATPases share the same catalytic

mechanism based on conformational changes in their
five structural domains, their regulation and substrate
affinities are different [15,16]. P-type ATPases are phylo-
genetically classified into five subfamilies (PI-PV), and
within these subfamilies are 10 different subtypes that
are categorized based on the transported substrate [17].
In this study, probabilistic profiles were constructed to

compare and classify all P-type ATPases of the MTBC
based on their structural features and ion transport.
Twelve possible P-type ATPases were detected in the
proteome of M. tuberculosis H37Rv and from other
members of the MTBC. The high number of heavy
metal transporters discovered in the MTBC suggests an
important role for P-type ATPases in M. tuberculosis
survival within macrophages.

Methods
Construction of hidden Markov models (HMM)
To obtain a representative group of each phylogenetic
subfamily, a set of 128 well-characterized P-type
ATPases with evidence of existence at the protein level
were retrieved from Uniprot (Swiss-Prot section) [18].
Each group of sequences was aligned using the Praline
tool (http://www.ibi.vu.nl/programs/pralinewww/) with
the BLOSUM62 matrix and Phobius transmembrane
structure predictor, which was developed to improve the
multiple alignments of membrane protein sequences
[19]. The HMM package of programs [20], available in
the Mobyle Pasteur portal (http://mobyle.pasteur.fr/cgi-
bin/portal.py#welcome), was used to find these types of
pumps in the MTBC proteomes. The Hmmbuild tool
with default settings and the multiple sequence align-
ments was used for HMM building. The default para-
meters of the Hmmer tools use an ad hoc position-based
sequence weighting algorithm that makes the models
appropriate for the identification of distant members
of the P-type ATPases family. Consensus sequences
were generated with the Hmmemit tool.

Search and classification of MTBC P-type ATPases
To date, the following 10 MTBC genomes have been
completely sequenced and assembled (NCBI): M. africanum
GM041182 (NC_015758), M. bovis AF2122/97 (NC_002945),
M. bovis BCG str. Pasteur 1173P2 (NC_008769), M. bovis
BCG str. Tokyo 172 (NC_012207), M. canettii CIPT
140010059 (NC_015848) and five M. tuberculosis strains,
H37Rv (NC_000962), H37Ra (NC_009525), F11 (NC_009565),
CDC1551 (NC_002755) and KZN1435 (NC_012943); these
proteomes were obtained from Uniprot (http://www.uniprot.
org/). Because strains of M. microti and M. pinnipedii had
not been sequenced, they were not included in this study.
HMM and Hmmsearch tool were used to find P-type
ATPases in the MTBC proteomes.

Topology prediction
The topology derived from predictions of transmembrane
segments (TMS) was made with the following six pro-
grams: TopPred (http://mobyle.pasteur.fr/cgi-bin/portal.
py#forms::toppred), DAS (www.sbc.su.se/~miklos/DAS/),
TMpred (www.ch.embnet.org/software/TMPRED_form.
html), TMHMM 2.0 (www.cbs.dtu.dk/services/TMHMM),
HMMTOP (www.enzim.hu/hmmtop/) and Phobius
(phobius.sbc.su.se/). All programs were used with default
settings, except TopPred, which allows the user to provide
information about the type of organism. TMDET and
PPM servers were used in cases where the predictions
based on amino acid sequences did not yield reliable
results. These tools must be fed with PDB files to identify
TMS based on tertiary protein structure and to generate
3D models with TMS located into hypothetical lipid
bilayer planes. Tertiary structure models of CtpH and CtpI
were made with the I-TASSER tool [21] based on the
threading strategy and were validated with the Whatif
package of programs (http://swift.cmbi.ru.nl/servers/html/
index.html).

Hydrophobicity profile construction
The amino acid sequence of the M. tuberculosis H37Rv
P-type ATPases and consensus sequences generated by
Hmmemit tool were analyzed by TMHMM 2.0.

http://www.ibi.vu.nl/programs/pralinewww/
http://mobyle.pasteur.fr/cgi-bin/portal.py#welcome
http://mobyle.pasteur.fr/cgi-bin/portal.py#welcome
http://www.uniprot.org/
http://www.uniprot.org/
http://mobyle.pasteur.fr/cgi-bin/portal.py#forms::toppred
http://mobyle.pasteur.fr/cgi-bin/portal.py#forms::toppred
http://www.sbc.su.se/~miklos/DAS/
http://www.ch.embnet.org/software/TMPRED_form.html
http://www.ch.embnet.org/software/TMPRED_form.html
http://www.cbs.dtu.dk/
http://www.enzim.hu/hmmtop/
http://phobius.sbc.su.se/
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Hydrophobicity profiles of consensus sequences for pre-
viously characterized P-type ATPases were used as com-
parison patterns.

Conserved motif analysis
Amino acids sequences of the identified proteins were
manually analyzed to determine the nine conserved
motifs typical of the P-type ATPase family, as previously
described by Thever et al. [22] and others [16,23].

Results and discussion
An unusually high number of cation transporter P-type
ATPases are present in the Mycobacterium tuberculosis
complex
Multiple alignments of 128 reported P-type ATPase pro-
tein sequences from a representative group of eukaryotic
and prokaryotic cells (obtained from a curated database
and confirmed at the protein level) allowed the identifi-
cation of highly conserved regions within the family and
the classification of these members according to ion
transport. These alignments were used as the starting
point for the construction of HMM profiles that repre-
sented groups of ion transporters, which were also used
to generate a consensus sequence for each group. The
designed HMM were then used to identify P-type
ATPases in proteomes of the different MTBC species,
whose genome sequences have been reported. The pro-
posed classification for the studied sequences was based
on the obtained scores using the HMM and the
Hmmsearch tool.
Because the P-type ATPases are transmembrane pro-

teins, typical alignments using BLOSUM and PAM
matrices were not adequate. In this study, the Praline
tool was used because it considers the differences in
evolutionary tendencies of transmembranal and non-
transmembranal regions. Praline applies an adequate
matrix for each protein region based on the previous
prediction of TMS (made with the Phobius algorithm in
this case). As P-type ATPases contain ion-binding motifs
within a transmembrane domain, the strategy that we
employed produced more reliable alignments. Twelve
hypothetical proteins with a high probability of being
P-type ATPase transporters of metallic cations were
identified in each of the MTBC proteomes. All proteins
identified in the MTBC share at least 98% identity with
their orthologs in the scanned proteomes; however,
M. canettii and M. africanum displayed slight differ-
ences in non-conserved regions. The pumps identified
in the M. tuberculosis H37Rv proteome, CtpA, CtpB,
CtpC, CtpD, CtpE, CtpF, CtpG, CtpH, CtpI, CtpJ, CtpV
and KdpB, were in agreement with the automatic annota-
tion of probable cation transporter P-type ATPases in the
M. tuberculosis H37Rv genome [24] and were taken as
references to facilitate further analysis of results.
A broad diversity of cations are potentially transported
by Mycobacterium tuberculosis P-type ATPases
Figure 1 shows the Hmmsearch scores obtained when
the 16 HMM were used to find P-type ATPases in the
M. tuberculosis H37Rv proteome. Those scores show the
similarity between the identified sequences in the H37Rv
proteome and the grouped sequences used for each
HMM construction. The patterns thus obtained allowed
classification of the 12 P-type ATPases into the following
three groups: transporters of heavy metal (HM) cations,
transporters of alkaline and alkaline earth metal (AEM)
cations, and a group composed only of the β subunit of
the prokaryotic K+ transporter, KdpB. The highest simi-
larity with the conventional P-type ATPases used in this
study corresponded to KdpB, CtpF and CtpV, whereas
CtpE, CtpH and CtpI had the lowest scores.
The HM group is composed of CtpA, CtpB, CtpC,

CtpD, CtpG, CtpJ and CtpV, which may transport Cu2+,
Cu+, Co2+, Ag+, Hg2+, Cd2+, Pb2+ and Zn2+. Most of the
proteins analyzed in this work correspond to the HM
group (60%) suggesting that the active transport of heavy
metal cations is relevant for the tubercle bacilli persist-
ence, as it has been hypothesized for other prokaryotes
and some unicellular eukaryotes [23]. Interestingly, evi-
dence of toxic concentrations of intracellular heavy
metals has been recently described in macrophages
infected with M. tuberculosis [25].
Alternatively, CtpE, CtpF, CtpH and CtpI belong to

the AEM group and may be involved in Na+, K+, Ca2+,
H+ and Mg2+ transport. It is possible that some of these
proteins correspond to Na+/K+ or H+/K+ ATPase
pumps, but they only appeared to contain the α subunits
in their tridimensional structure. Their non-catalytic-β-
subunit counterpart, which has been correlated with
regulatory processes and assembly of P-type ATPases
into the cell membrane of eukaryotic cells [10], was not
found in any of the MTBC proteomes.
KdpB is very different protein from the other MTBC

ATPases. It shares 63% identity with the KdpB of E. coli
(P03960), which corresponds to the β subunit of a K+

transporting multimeric ATPase [22,26]. Despite the
observation that KdpB has the characteristic DKTGTLT
phosphorylation motif of this type of pump, it does not
have a typical ion binding motif [26]. In conclusion, the
proposed classification for P-type ATPases of the MTBC
provides an initial approximation of their functional
characterization. It is noteworthy that the constructed
HMM in this work became a useful tool for the identifi-
cation of P-type ATPases in other biological systems.

Three different topologies can be adopted by P-type
ATPases in Mycobacterium tuberculosis
The six different algorithms used in the hydrophobicity
analysis showed that all of the M. tuberculosis H37Rv



Figure 1 (See legend on next page.)
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Figure 1 Classification of P-type ATPases of M. tuberculosis H37Rv according to ion specificity. Amino acid sequences of M. tuberculosis
H37Rv P-type ATPases were compared with the HMM profiles built from characterized P-type ATPases reported by Uniprot. Grouping is based on
the scores obtained from Hmmsearch. HM group (blue bars) includes the P-type ATPase transporters of heavy metals (CtpA, CtpB, CtpC, CtpD,
CtpG, CtpJ, CtpV). The EAM group (red bars) includes transporters of alkaline and alkaline earth metals (CtpE, CtpF, CtpH, CtpI). The KdpB group
(purple bars) includes the β subunit of K+ P-type ATPase. The scores obtained from the Hmmsearch tool are shown in the bottom of each plot.
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P-type ATPases have an α-helix type TMS containing
at least 17 amino acid residues, and the agreement of
the topology results obtained using these prediction
tools increases the confidence in the predicted TMS.
Consensus transmembrane regions for each P-type
ATPase were obtained if at least four of the algorithms
gave similar results. Because three of the tools (TMHMM
2.0, HMMTOP and Phobius) incorporate size and com-
position restrictions in TMS, the results obtained using
these algorithms are significant.
The strategy used for topology analysis showed the

following three different types of topology within the
M. tuberculosis H37Rv P-type ATPases: type I, which
corresponds to HM pumps with eight TMS (A, B and
from 1 to 6), type II, which corresponds to AEM pumps
with 10 TMS (from 1 to 10), and type III, which cor-
responds to KdpB with 7 TMS (Figure 2). It was observed
that all P-type ATPases have two cytoplasmic loops (small
and large) that include the phosphorylation and ATP
binding sites. The small cytoplasmic loop is located
between TMS2 and TMS3, whereas the largest cytoplas-
mic loop is situated between TMS4 and TMS5 (Figure 2)
[22]. Additionally, as was expected, the N- and C-termini
of these proteins are located in the cytosolic side, except
in the case of KdpB, in which the N- terminus is located
intracellularly and the C- terminus is outside the
cytoplasm.
Disagreement in the results was observed in CtpH and

CtpI analysis using the different prediction tools. CtpI
showed some hydrophobic amino acid sequences that
could be considered part of TMS, but they do not fulfill all
of the characteristics associated with TMS; meanwhile,
CtpH did not show the expected hydrophobicity pattern
for P-type ATPases (Figure 3). Therefore, at first it was diffi-
cult to determine whether CtpH and CtpI were in fact
typical of P-type ATPases. Recent studies have classified
CtpH and CtpI proteins of M. bovis as FUPA 24 (TC No.
3.A.3.24), i.e., “Functionally uncharacterized P-type ATPase
family 24”, and classify them as transporter proteins in the
TCDB-Transporter Classification Database (http://www.
tcdb.org). FUPA 24 proteins are homologous to P-type
ATPases but have an unusually large N-terminal segment
that makes them twofold longer than typical P-type
ATPases [23] with two TMS. In addition, functional motifs
of P-type ATPases are located within the C-terminal region
of FUPA 24 [23].
By contrast, topology analysis in this study showed
that M. tuberculosis H37Rv CtpH and CtpI contain more
than the expected TMS (from 3 to 12) for FUPA 24 pro-
teins. To overcome the discrepancy between TCDB and
the six topology tools used in this work, the TMDET and
PPM servers were used. These tools allow for the identi-
fication of TMS based on the tertiary structure of the
protein; thus, not only can the correct size and compos-
ition of α-helixes be guaranteed, but also their adequate
disposition and organization in the plasma membrane
can be determined. Ten TMS were found in CtpH and
CtpI using both the TMDET and PPM servers. These
segments are located with high probability in a hypo-
thetical lipid bilayer as shown in Figure 4. This result
strongly suggests that CtpH and CtpI have a type II top-
ology, as has been determined for other members of the
AEM group.
Hydrophobicity profiles suggest insights into ion
transport specificity
The “topological clustering” based on the hydrophobicity
profiles obtained with the TMHMM 2.0 algorithm can
be used as a predictive tool to determine substrate speci-
ficity for HM pumps [27]. Here, this strategy was applied
to analyze HM, AEM and KdpB groups of M. tubercu-
losis H37Rv P-type ATPases. The hydrophobicity pro-
files from each M. tuberculosis P-type ATPase was
compared with the obtained profiles from previously
characterized P-type ATPases. As shown in Figure 3, the
hydrophobicity profiles of CtpA, CtpB and CtpV were
similar to the consensus Cu+ P-type ATPases; the
CtpC profile was similar to the different Zn2+ trans-
porters Zn2+, Cd2+/Zn2+ and Pb2+/Cd2+/Zn2+/Hg2+. In
addition, CtpD, CtpG and CtpJ had regions similar to
the Cd2+/Zn2+/Co2+ transporter. In the case of the
AEM group, CtpF possesses TMS that were similar to
the hydrophobic profiles obtained for consensus of Na+,
Mg2+ and Na+/K+ ATPases. Additionally, CtpE was simi-
lar to Na+ or H+ transporters; however, its hydrophobi-
city profile is closer to that of Na+ P-type ATPase.
Considering the C-terminus region of CtpH (819 amino
acid residues), this pump had a hydrophobicity profile
very similar to the Ca2+ PMCA consensus. Finally, KdpB
had the exact same hydrophobic profile as that which
was determined for E. coli KdpB.

http://www.tcdb.org
http://www.tcdb.org


Figure 2 Predicted topology for P-type ATPases of MTBC. Type I topology (HM group ATPases) (a), type II topology (EAM group ATPases)
(b), type III topology (KdpB group ATPases) (c), Ion binding motifs (number 4) are indicated in the corresponding transmembrane domain.
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In general, there are the following two types of hydropho-
bicity profiles: the first comprises the AEM and the second
that corresponds to HM. Interestingly, the relative position
of TMS along amino acid sequences is highly conserved be-
tween both types of hydrophobicity profiles. The profile for
AEM is characterized by a single TMS in the C-terminal
region and two in the N-terminal region, whereas profiles
for HM P-type ATPases have three highly hydrophobic
regions, one of them in the N-terminus, one in the middle
of the amino acid sequence, and the third in the C-terminal
end. Although the hydrophobicity profile of consensus
sequences is similar among enzymes in each group, there
are significant differences between profiles that allow their
differentiation according to the transported ion.

P-type ATPases of the Mycobacterium tuberculosis
complex possess the characteristic motifs involved in
cation transport
The common catalytic mechanism of P-type ATPases is
partially supported by conserved core sequences that are



Figure 3 Hydrophobicity profiles of M. tuberculosis H37Rv
P-type ATPases. Hydrophobicity profiles allow grouping of P-type
ATPases with seven different ion specificities.
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useful in the recognition of these pumps in proteomes
[15]. To find the conserved motifs for P-type ATPases
along the protein sequences, manual analysis was carried
out because the servers commonly used for analysis
of conserved motifs do not identify subtle variations
within particular motifs of P-type ATPases. Nine
conserved motifs typical for P-type ATPases were
found in the MTBC pumps (Figure 5). We observed
that each motif sequence was identical within ortho-
logs of the MTBC. From N-terminus to the C-
terminus, the motifs were as follows: motifs 1
[(PVA)G(DE)] and 2 [P(AS)D], related to conform-
ational changes, together with motif 3 [TGE(SA)],
associated with phosphatase activity, were located
between TMS 2 and 3 in the actuator domain; the
sequence of motif 4, which determines ion specifi-
city, can be [PEG(LM)] or [(CSA)PCA(LV)], which
was located at the end of the fourth TMS; the phos-
phorylation site [DKTGTLT] was found in the P do-
main; the remaining motifs, motif 6 [(KI)GA(PVA)
(EDA)], an ATP binding facilitator, motifs 7 [(DV)
(ASPI)(VP)(KAR)] and 8 [(MLV)I(TS)GD], involved
in phosphorylation catalysts, and motif 9 [(VTC)AM
(TV)GDG(VSAT)ND(AV)(PAL)A(LI)(RKA)(QMAD)A
(DNT)(VI)G(VI)(AG)(MV)], the hinge motif, which
provides the flexibility necessary to achieve conform-
ational changes during the pumping process, could
be found between the fourth and fifth TMS [22].
Motifs 8 and 9 contain amino acid residues [TGDN
and GDGXND] responsible for the coordination of
Mg2+ as a cofactor of the enzymes [15,16,22,23].
It was observed that characteristic motifs of P-type

ATPases exhibit slight variations compared with previ-
ously reported sequences for eukaryotic organisms
[22]. The most conserved motif (motif 5) was almost
the same within the 12 P-type ATPases, except CtpH
and KdpB, which contained the conservative substitu-
tions [DKTGTL(TS)] and [DKTGT(LI)T], respectively.
The sequence of motif 4 [PEGL] has been previously
associated with binding of AEM cations [22], and it
has been found in CtpE, CtpF, and CtpI. Variation in
the fourth position of this motif [PEGM] in CtpH has
not been reported previously. CtpA, CtpB, CtpC,
CtpD, CtpJ, CtpG and CtpV have the motif 4 sequence
[(CSA)PCA(LV)] characteristic of HM transporters. Al-
ternatively, KdpB, which corresponds to a β subunit of
a multimeric P-type ATPase, did not have motif 4.
This finding can be explained by the observation that this
subunit mediates phosphorylation/dephosphorylation and



Figure 4 The CtpH and CtpI mycobacterial P-type ATPases (type II topology) exhibit ten TMS in their C-terminal half (different color
helixes). These tertiary structure models were generated with the I-TASSER tool and were modified with the PPM server [89] to include the
possible location of the lipid bilayer. Dummies (green color) correspond to the location of the carbonyl groups in the bilayer. (a) CtpH model
generated with the PPM server, (b) CtpI model built based on the TMDET results.
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energy transduction during K+ transport. In E. coli, the co-
ordination function lies mainly in the KdpA subunit [26].

Cu+, Zn2+ and Co2+ pumping is mediated by P-type
ATPases in the M. tuberculosis complex
The PIB phylogenetic group of P-type ATPases is com-
posed of HM pumps, and according to ion specificity,
the PIB group is subdivided into five subgroups (1 to 5).
Alignments of consensus sequences from characterized
PIB ATPases with the HM P-type ATPases of MTBC
were used for locating additional transmembrane motifs
of this type of transporter [28-30], as shown in Figure 6.
CtpA, CtpB and CtpV have the characteristic motifs of
PIB-1 group members (Table 1), corroborating their ion
transport specificity as predicted by hydrophobicity pro-
files, and suggesting that Cu+ is transported preferen-
tially to Cu2+ by these pumps.
This result is expected, because the special reducing

conditions inside mycobacteria [27] are similar to the
intra-phagosomal environment in macrophages where
the bacilli reside. Recently, it was reported that the
M. tuberculosis H37Rv CtpV is a Cu+ exporter P-type
ATPase, reinforcing our predictions [31]. CtpD and CtpJ
exhibit the [SCP] and [HEGT] motifs of the PIB-4 group
in the TMS6 and TMS8, respectively. Some reports have
indicated that amino acids involved in Co2+ transport
are still not well understood; for this reason, the absence
of residue N in TMS7 cannot rule out the possibility
that CtpD and CtpJ are Co2+ transporters. CtpC only
exhibits the [CPC(X)4S] motif in TMS6, which allows its
classification as PIB-2. In fact, it was recently reported as a
Zn2+ P-type ATPase in M. tuberculosis H37Rv [25]; defi-
ciency in this pump produced zinc accumulation within the
mycobacterial cytoplasm, resulting in impaired intracellular
growth of tubercle bacilli [25]. Finally, CtpG does not have
any of the additional motifs present in TMS6, TMS7 and
TMS8; however, it possesses the [WI(YE)(RG)] sequence
just before TMS6, between positions 406 and 409, and the
[LS] motif located on TMS7, which is associated with Zn2+

P-type ATPases [32,33].
All of the results from this work provide predictive

evidence for experimental studies to establish the ion
specificity of MTBC P-type ATPases and their role in
mycobacterial infection. It has been observed that some
P-type ATPases of tubercle bacilli are over-expressed
under conditions that mycobacteria face during infection
[25,34,35]. For example, the expression level of CtpF and
CtpC increase when M. tuberculosis is exposed to isoxyl,
tetrahydrolipstatine and SRI#9190 antimicrobial com-
pounds, indicating that these pumps might contribute to
intrinsic resistance of mycobacteria to antimicrobial
drugs [36]. Two additional studies indicate that hypoxia
induces upregulation of the AEM transporter CtpF
[37,38]; this observation is in agreement with those of
another study that reported that CtpF is part of the reg-
ulon of the DosRS system, a relevant regulator of latency
in M. tuberculosis [39]. In addition, upregulation of CtpF
is observed in vitro when M. tuberculosis is incubated in
the presence of S-nitrogluthatione GSNO, ethanol, H2O2

and nitric oxide [40]. Moreover, CtpA, CtpC, CtpG,
CtpV and CtpF are also induced when M. tuberculosis is
phagocytized by macrophages [25,34,35].

Conclusion
Mycobacteria are unicellular organisms that respond to
environmental stimuli, and the transport of substances
across the plasma membrane could play a fundamental
role in their adaptability. Computational analysis shows



Figure 5 Conserved motifs for the P-type ATPases identified in M. tuberculosis H37Rv. The conserved motifs were compared with the
motifs characteristic of the P-type ATPase superfamily. Identical residues, conserved substitutions, semi-conserved substitutions and unrelated
residues are indicated in red, blue, green and black, respectively.
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Figure 6 Alignments of consensus sequences from characterized PIB ATPases, with the HM P-type ATPases from M. tuberculosis H37Rv.
(a) PIB-1 motifs, (b) PIB-2 motifs and (c) PIB-4 motifs.
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Table 1 Additional conserved motifs observed in heavy metal transporter P-type ATPases

Phylogenetic
subgroup

Cation
specificity

TMS6 TMS7 TMS8 MTBC pump

PIB-1 Cu+ CPC YN MXXSS CtpA

CtpB

CtpV

PIB-2 Zn2+ CPC(X)4S K DG CtpC *

PIB-3 Cu2+ CPH YN MXXS -

PIB-4 Co2+ SCP N HEGT CtpD *

CtpJ *

PIB-5 Undetermined TPCP QX4GX3SX3M PX5QEX2DX5N -

The additional motifs are located on TMS6, TMS7 and TMS8. *, pumps without a complete set of motifs (see discussion).
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that each MTBC species has a consistent aggrupation of
the 12 P-type ATPases involved in ion transport. In this
context, M. tuberculosis strains H37Ra and H37Rv share
identical sequences for P-type ATPases, facilitating sub-
sequent genetic studies using the attenuated strain
H37Ra. The large number of HM P-type ATPases
expressed by the MTBC strongly suggests that they
could be essential for the bacteria to counteract the
increased level of HM accumulated by macrophages
after infection with tubercle bacilli. Thus, compensatory
ion transport strategies could be used by mycobacteria
to survive in host cells.
The different bioinformatics approaches used in this

work to analyze the P-type ATPases identified in the
MTBC are in agreement with the initial classification
from the HMM search. The results obtained show that
M. tuberculosis has the following three groups of P-type
ATPases: HM transporters (CtpA, CtpB, CtpC, CtpD,
CtpG, CtpJ and CtpV), AEM transporters (CtpE, CtpF,
CtpH, and CtpI) and the KdpB protein, which corre-
sponds to the β subunit of a multimeric K+ ATPase
transporter exclusive to prokaryotes. Hydrophobicity
analysis identified α-helix type TMS grouped into the
following three topological types: type I (HM group),
type II (AEM group) and type III (KdpB group). Interest-
ingly, we report a possible mis-annotation for CtpH and
CtpI in the TCDB Database, where they are classified as
FUPA 24 type with two TMS, unlike the ten TMS iden-
tified for these unusually large transporters in this work.
Finally, a counterpart of non-catalytic β subunits of
Na+/K+ or H+/K+ ATPases does not exist within the
MTBC proteomes.
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Genome Sequences for Six Rhodanobacter Strains, Isolated from Soils
and the Terrestrial Subsurface, with Variable Denitrification
Capabilities
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We report the first genome sequences for six strains of Rhodanobacter species isolated from a variety of soil and subsurface envi-
ronments. Three of these strains are capable of complete denitrification and three others are not. However, all six strains contain
most of the genes required for the respiration of nitrate to gaseous nitrogen. The nondenitrifying members of the genus lack
only the gene for nitrate reduction, the first step in the full denitrification pathway. The data suggest that the environmental role
of bacteria from the genus Rhodanobacter should be reevaluated.

The genus Rhodanobacter contains 11 described species of
Gram-negative, non-spore-forming, rod-shaped bacteria be-

longing to the family Xanthomonadaceae and the class Gamma-
proteobacteria of the phylum Proteobacteria. Described species
have been isolated mainly under aerobic conditions from surficial
soils (1, 4, 5, 9, 12, 15, 16). Denitrification has not been considered
a property of this genus. Recently, two strains of a new species,
Rhodanobacter denitrificans, were isolated from a contaminated
terrestrial subsurface environment and shown to denitrify (7, 13).
Furthermore, nitrate-reducing isolates were recently recovered
from sewage sludge (17), and we and others determined that Rho-
danobacter thiooxydans is capable of denitrification (13, 14). In
some acidic and nitrate-rich environments, Rhodanobacter species
dominate bacterial communities (8, 14).

To explore the genetic basis of phenotypes leading to bacterial
community dominance in such environments, genome sequences
were acquired for three denitrifying strains (R. denitrificans 2APBS1
and 116-2 and R. thiooxydans) and three strains incapable of denitri-
fication (Rhodanobacter fulvus, Rhodanobacter spathiphylli, and Rho-
danobacter sp. 115). A complete R. denitrificans 2APBS1T genome
sequence was generated using paired-end Illumina and Roche 454
mate-pair sequencing and manual finishing steps, essentially as de-
scribed previously (3, 6). Four draft genomes (R. denitrificans 116-2,
R. thiooxydans, R. fulvus, and R. spathiphylli) were generated by de
novo assembly of paired-end Illumina sequence data (�5.7 to 9.5
million paired-end reads/genome, yielding �1.1 to 1.9 Gb of total
output/genome) (CLC Genomics Workbench 5.0; CLC bio A/S,
Denmark). DNA from each strain was prepared for sequencing using
the Nextera library preparation kit (Epicentre, Madison, WI). DNA
from Rhodanobacter sp. 115 was prepared for sequencing using the
Ion Xpress fragment library kit (Life Technologies, Grand Island,
NY) and sequenced using a Personal Genome Machine (Ion Torrent,
San Francisco, CA), yielding approximately 1.4 Mb of reads (�138
Mb of total output). For Rhodanobacter sp. 115, genome assembly
was performed as described previously (10) using CG-Pipeline mod-
ules (11), yielding 453 contigs and 4.2 Mb of genomic sequence data.

The complete genome of R. denitrificans 2APBS1 is 4.23 Mb. Anno-
tation was performed in RAST (2) and in the CG-Pipeline before
being submitted to NCBI.

Denitrification is a strain-specific trait, and the high sequence di-
vergence observed in genetic markers for denitrification challenges
our ability to understand the fundamental ecological principles and
environmental parameters controlling nitrate attenuation in terres-
trial environments (7). Thus, whole-genome sequencing of closely
related denitrifying and nondenitrifying taxa is essential to improve
detection of denitrifying bacteria in the environment and to develop
hypotheses regarding the distribution and acquisition of denitrifica-
tion genes. Comparative analysis of the six genomes revealed that all
strains contained genes coding for complete or nearly complete deni-
trification pathways. The three nondenitrifying lineages lacked only
genes for nitrate reduction. These organisms may still be capable of
denitrification, however. Nitrate to nitrite reduction is a widespread
physiological capability in the bacterial domain, and in complex en-
vironments, such as soil, nitrite will be available for organisms capa-
ble of nitrite reduction to gaseous nitrogen end products. These data
indicate that the environmental role of bacteria from the genus Rho-
danobacter should be reevaluated.

Nucleotide sequence accession numbers. The Rhodanobacter
genome assemblies and their annotations were deposited in GenBank
under the accession numbers AGIL00000000 (DSM 23569),
AJXS00000000 (Rhodanobacter strain 115), AJXT00000000
(DSM 17631), AJXU00000000 (DSM 18449), AJXV00000000
(DSM 24678), and AJXW00000000 (DSM 18863).
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Understanding gene regulation is a major objective in molecular biology research. Frequently, transcription is
driven by transcription factors (TFs) that bind to specific DNA sequences. These motifs are usually short and
degenerate, rendering the likelihood of multiple copies occurring throughout the genome due to random
chance as high. Despite this, TFs only bind to a small subset of sites, thus prompting our investigation into
the differences between motifs that are bound by TFs and those that remain unbound. Here we constructed
vectors representing various chromatin- and sequence-based features for a published set of bound and un-
bound motifs representing nine TFs in the budding yeast Saccharomyces cerevisiae. Using a machine learning
approach, we identified a set of features that can be used to discriminate between bound and unbound mo-
tifs. We also discovered that some TFs bind most or all of their strong motifs in intergenic regions. Our data
demonstrate that local sequence context can be strikingly different around motifs that are bound compared
to motifs that are unbound. We concluded that there are multiple combinations of genomic features that
characterize bound or unbound motifs.

Published by Elsevier B.V.
1. Introduction

Control of gene expression is fundamental to all forms of life. Tran-
scription initiation is controlled primarily by transcription factor (TF)
binding to key DNA sequence motifs. In many cases, the sequence mo-
tifs recognized by DNA binding proteins are short and degenerate,
thus rendering it highly likely that they may appear multiple times in
the genome due to random chance. This is especially true for large eu-
karyotic genomes. Using sequence motifs alone to predict TF binding
leads to an unacceptable level of false positives (D'Haeseleer, 2006;
Fickett, 1996). Given this, many transcription factor binding site
prediction methods incorporate other sources of information in addi-
tion to sequence similarity. For example, previous studies have incorpo-
rated information about the sequence conservation between species
(Blanchette and Tompa, 2003; Xie et al., 2005) or the fact that different
TFs frequently bind DNA in clusters (Frith et al., 2003; Tharakaraman et
al., 2008). Combining sequence conservation or clustering of TFBS into a
single tool can improve predictive performance; however how a TF se-
lects the appropriate motif out of all its occurrences in vivo across the
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genome remains unknown. While conservation between species is a
useful computational tool for identifying potential regulatory regions,
this information is not available in vivo to guide a TF to the correct bind-
ing location. Recent advances in high-throughput techniques [e.g., chro-
matin immunoprecipitation with microarray technology (ChIP-chip)
and chromatin immunoprecipitation sequencing (ChIP-seq)] have pro-
duced high-quality maps of genome-wide TF binding. In addition,
machine-learning techniques have been used successfully to predict
TF binding (Bauer et al., 2010; Holloway et al., 2005, 2007). In this
study, we used both these techniques to compare the local genomic en-
vironment near established TF binding sites with unbound motifs to
identify biological features associatedwith boundmotifs in vivo. Our ap-
proach is to use machine-learning techniques not primarily in an at-
tempt to predict TF binding sites but rather to gain insight into local
genomic features of bound and unbound motifs.

2. Materials and methods

2.1. Data sets

Histone modification data was obtained from a previous study
(Pokholok et al., 2005). We obtained the raw data from the
ArrayExpress Archive (http://www.ebi.ac.uk/arrayexpress/) and per-
formedMA2Cnormalization (Peng et al., 2007). Nucleosomeoccupancy
data was previously published (Kaplan et al., 2009), and the nucleo-
some occupancy scores as calculated by the authors were used
unchanged. PWMs used in this study were obtained from three differ-
ent sources. The matrices used to produce the set of bound and
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unbound motifs were taken from MacIsaac et al. (2006). This was per-
formed in an attempt to be consistent with the matrices that were
used by MacIsaac et al. to produce a map of TF binding across the
yeast genome. We used 143 matrices from Badis et al. (2008) and Zhu
et al. (2009) to identify motifs near bound or unbound motifs. Many
of the DNA specificity matrices supplied by the authors were position
frequency matrices, which we converted to PWMs as described previ-
ously (Wasserman and Sandelin, 2004). Gene coordinates were
obtained from the UCSC genome browser (http://genome.ucsc.edu/).

2.2. Construction of bound and unbound motif datasets

We obtained the binding locations within Saccharomyces cerevisiae
intergenic regions of 118 TFs that were mapped using ChIP-chip
(MacIsaac et al., 2006). MacIsaac et al. analyzed a previously published
ChIP-chip dataset (Harbison et al., 2004). Selected for further study
were those TFs with at least 100 experimentally mapped binding sites
(n=12). We used the mapped binding sites generated under the
strictest criteria as defined by MacIsaac et al. Briefly, sites defined as
bound required a PWM match of 60% of the maximum possible log-
likelihood PWM score, conservation in at least three of four sensu stricto
yeast species, and a p-value of less than 0.001 for the probe containing
the motif. A recent study using ChIP-exo argues the false positive rate
for ChIP-chip may be as high as 50% (Rhee and Pugh, 2011). By using
both motif information and conservation between species MacIsaac et
al. were able to identify bound motifs with high confidence.

The bound sites as obtained by MacIsaac et al. are presumably cen-
tered at motif occurrences. But the bound sites as listed do not have in-
formation we would like to study such as the average strength of the
bound motifs. Hence it was necessary to remap motif locations and
link motifs with bound sites as identified by MacIsaac et al. To do so
we scanned yeast intergenic regions with the PWMs corresponding to
the 12 selected TFs and all occurrences of motifs with a score of 60% or
greater maximum log-likelihood score were collected. Motifs that over-
lapped the experimentally mapped binding sites as defined byMacIsaac
et al. were labeled as “bound” motifs with the restriction of only one
bound motif allowed per experimentally mapped site. Given that
bound sites as defined by MacIsaac et al. must include a motif instance,
it seems that all experimentally determined bound sites taken from the
MacIsaac study should overlap amotif as identified by us. In practice this
was largely the case (Supplemental Table 1) with one exception, DIG1.
Other experimentally mapped TF binding sites as defined by MacIsaac
et al. also do not exhibit complete overlap with a motif as defined by
us (Supplemental Table 1 second column). This is likely due toMacIsaac
using an older yeast genome build. The 11 TFs retained for further anal-
ysis were: REB1, GCN4, MBP1, PHD1, SKN7, STE12, SUT1, SWI4, SWI6,
ABF1, and CBF1. Only binding sites as determined by MacIsaac et al. for
which we could link a motif were defined as “bound”motifs.

To produce the set of unboundmotifs, we obtained ChIP-chip binding
data for the 11 TFs used in this study (Harbison et al., 2004). A p-value of
binding was assigned to each intergenic region in yeast according to
Harbison et al. A set of unbound motifs was produced by scanning
yeast intergenic regions with PWMs corresponding to the 11 TFs; all oc-
currences of motifs with a 60% or greater maximum log-likelihood score
were identified. Motifs found in intergenic regions whose p-value of
binding was 0.5 or greater in all experimental conditions studied by
Harbison et al. were labeled as unbound.

To check the robustness of our approach we repeated the analysis
shown in Figs. 2, 3 and 4 using p-value cutoffs of 0.4 and 0.6 in calling
unbound motifs, our results did not change.

2.3. Generation of feature vectors

2.3.1. Generation of nucleosome-based features
Pokholok et al. (2005) used tiling arrays to map histone modifica-

tions in S. cerevisiae. We used this data to calculate the level of histone
modification around bound and unbound motifs. For each 200-bp
window centered on a motif, we obtained the degree of enrichment
by averaging the normalized log ratio values of the probes within
that region. For example, the feature “H3K14ac” represents the aver-
age degree of acetylation of lysine 14 in histone H3 for the given win-
dow. A similar approach was used for each histone modification
mark.

To calculate the degree of nucleosome occupancy, we used a dataset
produced by Kaplan et al. (2009). For most positions in the genome,
Kaplan and co-authors calculated a nucleosome occupancy score. The
average nucleosome occupancywas normalized to zero. A value greater
than zero represented nucleosome enrichment relative to the genome-
wide average, while a value less than zero signified nucleosome deple-
tion. For each window centered at a motif, nucleosome occupancy was
calculated by averaging the nucleosome occupancy scores for that
window. Eight features were chromatin-based: “Nucleosome occupan-
cy,” “H3K14ac,” “H3K36me3,” “H3K4me1,” “H3K4me2,” “H3K4me3,”
“H3K79me3,” and “H3K9ac.”

2.3.2. Generation of motif-based features
We scripted our own program in Perl to scan yeast intergenic re-

gions with a library of 143 PWMs obtained as described above. Motif
matches of 70% or better of the maximum possible log-likelihood
score for the given PWM were retained. For each bound and unbound
motif for the set of nine TFs analyzed by feature selection, the number
of motif matches within 100 bp of every motif represented in our
PWM library was calculated. We did not consider any motif match
that was within 10 bp of the bound or unbound motifs. 143 out of the
171 features were generated in this fashion. An additional motif-based
feature was motif strength, which was simply the log-likelihood PWM
score at bound or unbound motifs. Also included in the set of motif-
based features was the distance in base pairs to the closest TSS. Finally,
a motif-based feature was constructed by calculating the average num-
ber of nearby motifs in a 200-bp window centered at every bound or
unbound motifs; this analysis resulted in a total of 146 motif-based
features.

2.3.3. Generation of sequence-based features
Of the 17 sequence-based features, 16 represented the normalized

frequency of dinucleotides within a 200-bp window centered at
bound or unbound motifs. For example, the feature measuring TA
content would be calculated as the number of times the “TA” 2-mer
was found within the 200-bp window divided by the number of k-
mers of size 2 found in the window. Hence, this feature represents
the enrichment of TA relative to all 2-mers. Also included was a
sequence-based feature reflecting the overall content. Removing the
reverse complement of a given dinucleotide (e.g., CG is the same as
GC in the complementary strand) could further reduce the sequence
features. Whether the reverse complement is redundant is based on
whether strand-specific processes act at bound or unbound motifs.
Since TF binding can be strand-specific, reverse complements were
retained in the final set of features.

2.3.4. Feature selection
Feature selection can be described as finding the subset of features

from the set of all possible combinations of features that can best dis-
tinguish classes of interest. In our case, the two classes of interest are
bound and unbound motifs. Because the search space of all possible
combinations of features grows exponentially with the number of
features, it is rarely feasible to perform an exhaustive search. Instead,
various heuristic search methods can be used to identify meaningful
feature subsets. Here, we used three different feature selection algo-
rithms to identify those features that are consistently selected by
the different methods. We used two algorithms implemented in the
open source software package ‘weka’ (Hall et al., 2009) and ‘galgo’,
an R package (Trevino and Falciani, 2006).

http://genome.ucsc.edu/
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Feature selection consists of two parts: the first are methods to
score how well a feature subset predicts the correct class; the second
are methods to search the space of all possible feature subsets and
achieve convergence to an optimal feature subset.

The first ‘weka’-based feature selection algorithm used was a cor-
relation subset scoring approach paired with a best first search algo-
rithm. Correlation subset scoring is based on the idea that a good
subset of features contains those that are highly correlated with the
class and yet do not correlate with each other (Hall, 1999). Feature
subsets that have this characteristic are scored highly. This scoring
function was paired with a best first search method, which searches
the space of feature subsets using a greedy hill climbing approach
augmented with backtracking.

The second ‘weka’-based feature selection algorithm used was a
consistency subset scoring approach paired with a linear forward selec-
tion search algorithm. Consistency subset scoring is based on the con-
cept that the best features are those that are most consistent with a
class. Thus, good features are consistently similar within a class but
very different between classes (Liu and Setiono, 2000). This scoring
function was paired with a linear forward search algorithm. Briefly,
the search algorithm initially ranks all features individually using the
consistency subset scoring method. Then the algorithm starts with an
empty set of features and adds them one at a time based on ranking
until performance can no longer be improved. The ‘weka’ version does
allow for somebacktracking and restarting of the search to help prevent
quick convergence to small local optima. For more information, see
Gutlein et al. (2009).

‘Galgo’ is a genetic algorithm-based feature selection approach. To
score a feature subset, a nearest shrunken centroid classifier is built
using only the feature subset. The score assigned to a feature subset
represents how well the nearest shrunken centroid classifier per-
forms in classifying held out test datasets of bound or unboundmotifs
(Trevino and Falciani, 2006).

All of the feature selection approaches used require a training
dataset. Unfortunately, training datasets were frequently imbalanced,
with far more examples of unbound motifs than bound motifs or vice
versa. Many traditional machine learning-based approaches have
lower accuracy when trained on imbalanced datasets (Japkowicz and
Stephen, 2002). We performed repetitive random under-sampling to
dealwith the imbalanced dataset problem due to its simplicity and abil-
ity to improve performance (Van Hulse et al., 2007, 2009). Randomly
removing examples from the majority class until balanced datasets
are achieved is a common solution to the data imbalance problem.
One drawback to this method is the possibility of discarding potentially
useful information. Repetitive random under-sampling attempts to ad-
dress this issue by combining the results from several rounds of random
sampling. Studies have demonstrated that this method can potentially
improve performance over simple under-sampling or not performing
any sampling (Van Hulse et al., 2009; Xu-Ying et al., 2009).

We will describe our overall approach using the PHD1 dataset as
an example. The PHD1 dataset is a highly imbalanced dataset con-
sisting of 172 bound motifs and 1133 unbound motifs giving a total
of 1305 motifs. For each motif, a vector of length 171 was constructed
to produce a matrix with 1305 rows and 171 columns. Two-thirds of
the rows representing bound and unbound motifs were randomly se-
lected and set aside as a training dataset. This resulted in a training
dataset with 114 rows representing bound motifs and 755 rows rep-
resenting unbound motifs for a total dataset matrix of 869 rows with
171 columns. The remaining data was used as the test set. The train-
ing dataset then underwent random sampling without replacement
selecting rows representing unbound motifs until a balanced dataset
was achieved with 114 examples of bound motifs and 114 examples
of randomly selected unbound motifs. This matrix was used as an
input into the three feature selection methods, and the resulting fea-
ture subsets were stored. The process of randomly sampling from the
training dataset to create a balanced dataset was repeated 10,000
times. The resulting 10,000 feature subsets were combined by cou-
nting the number of times each feature was observed. Features
were then ranked based on the number of times each feature was se-
lected. For example, if the “PWM_score” feature was included in 9000
out of the 10,000 feature subsets, it would rank higher than a feature
selected in 1000 out of the 10,000 feature subsets. Each feature selec-
tion method produced a ranked list of features in this manner.
Selecting features that were ranked in the top 10% by at least two of
the three feature selection methods produced the final subset of fea-
tures presented in Supplemental Table 1 and Supplemental Table 2.
The above approach was used for each of the nine TFs that were ana-
lyzed by feature selection.

The features were globally ranked by pooling how often each fea-
ture was selected by each of the feature selection algorithms. Those
features selected most often across all feature selection algorithms
were presumed to be more important than features selected less
often. Features listed in order of rank are provided in Supplemental
Table 2.

Accuracy, sensitivity, and specificity were calculated by first pro-
ducing a dataset using only those features selected using the feature
selection approach. For example, the training dataset for PHD1
would consist of 869 rows and 16 columns with each column rep-
resenting one of the 16 features listed in Supplemental Table 1. A bal-
anced dataset was produced by random sampling and the resulting
matrix was given as an input training dataset to build a random forest
classifier (Breiman, 2001). The resulting classifier then works to cor-
rectly predict the class of motifs (bound or unbound) in the testing
dataset. This procedure was repeated 10 times. The mean, accuracy,
sensitivity, and specificity are presented in Supplemental Table 1.
Hence, how well the features selected can discriminate between
bound and unbound motifs was assessed on a testing dataset that
was not used in feature selection.

3. Results

We obtained experimentally mapped binding sites in intergenic
regions for 118 TFs (MacIsaac et al., 2006) in the yeast S. cerevisiae
genome. We selected twelve TFs for further study since they have at
least 100 experimentally mapped binding sites. A cutoff of 100 was
used to ensure enough bound sites existed so useful statistics could
be performed. For each of these, a set of motifs bound by the TF and
a set of motifs likely unbound by the TF were obtained (see
Materials and methods). DIG1's motif as described by MacIsaac et al.
was present in only a minority of the experimentally-proven DIG1
binding sites (n=41), suggesting the possibility of an error in the po-
sition weight matrix (PWM) used. As a result, DIG1 was not further
analyzed in this study. For each of the motifs in the datasets, a 200-
bp window centered on the motif and a vector containing 171 ele-
ments were calculated. Each element of the vector represented a
measurement of a biological feature for that window. For example,
vector element one is a score indicating the degree of nucleosome
occupancy averaged over the 200-bp window. Feature selection was
then applied to identify the subset of vector elements (hereby re-
ferred to as features) that were most informative in correctly
predicting whether a motif is actually bound by the respective TF
[for a review of the use of feature selection in bioinformatics, see
Saeys et al., 2007]. We applied three different feature selection tech-
niques (see Materials andmethods), two of which were implemented
in ‘weka’ (Hall et al., 2009) while the third is ‘galgo’ (Trevino and
Falciani, 2006). Features selected by at least two of the three methods
were examined in more detail (Supplemental Table 1). While feature
selection can identify a set of promising candidates that differ be-
tween bound and unbound motifs, further analyses of the selected
features are necessary to verify biologically significant differences.
In general, there was good agreement between features selected by
all three methods (Supplemental Fig. 1).
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3.1. Correlation between motif strength and binding

In order to determine which biological features are associated
with motifs bound by their TFs, it is necessary to compare the local
environment of motifs bound by protein with motifs unbound by pro-
tein. Therefore our analysis required obtaining a dataset of motifs that
are unlikely to be bound by a TF. We created this set for the 11 TFs ex-
amined from a published ChIP-chip dataset (Harbison et al., 2004), in
which a p-value was calculated representing the degree of evidence
regarding binding to each intergenic region in the yeast genome (in
general the lower the p-value the stronger the ChIP-chip evidence
the given TF binds somewhere in the intergenic region). Our unbound
motif dataset consisted of motifs that occurred in intergenic regions
with a p-value greater than 0.5 in all experimental conditions studied
by Harbison et al. Using these criteria, we discovered that two out of
the 11 TFs, CBF1 and ABF1, exhibited too few non-bound motif
matches (8 and 38, respectively); therefore, these TFs were eliminat-
ed from further feature selection analysis.

To further explore the relationship between the presence of a
motif match and the p-value for binding as measured by Harbison
et al., we plotted the average p-values for intergenic regions that con-
tain strong motif matches (i.e., matches>80% of the maximum possi-
ble PWM log likelihood score; Fig. 1, panel a). Although there was low
information content for the majority of the motifs, the presence of a
strong motif was a surprisingly good predictor of binding for many
of the TFs (Fig. 1, panel a). ABF1 and CBF1 had the two lowest average
p-values for binding 0.022 and 0.044, respectively.
Fig. 1. Correlation between motif strength and p-value of binding. (a) Plotted is the mean p
maximum possible log-likelihood score. The p-value of binding was obtained from Harbison
in bits. The smaller the information content, the more likely that motif is to occur by random
regions containing high scoring motifs was calculated as described above (y-axis). The x-axis
versus motif strength for (c) ABF1 and (d) SUT1. The x-axis denotes the motif strength of a
motif strength correlates with closer proximity to the consensus sequence. The average p-
threshold was calculated (y-axis). ABF1 and SUT1 were plotted because they represent the
It is reasonable to expect a connection betweenmotifs with high in-
formation content and a higher probability of binding to a strongmotif.
Indeed, a positive correlation between information content and p-value
for binding to strong motifs (r=−0.67, p-value=0.02) was observed
(Fig. 1, panel b). Next, we plotted the average p-value for binding at dif-
ferent motif strengths for ABF1 and SUT1 the two extreme cases (Fig. 1,
panels c and d). ABF1 showed an almost perfect correlation between
motif strength and p-value (r=−0.98, p-value=0.00009). In contrast,
a positive correlation was found for SUT1 (r=0.66, p-value=0.1055);
however, this correlationwas not statistically significant (alpha=0.05).
3.2. Comparison of sequence-based features surrounding bound and
unbound motifs

Some of the features assessed by the feature selection algorithms
were sequence-based (e.g., dinucleotide content, see Supplemental
Table 1). To explore this further, we plotted the percentage of dinu-
cleotides surrounding bound and unbound motifs (Fig. 2 and Supple-
mental Fig. 3). In this analysis, we masked the actual motif and 15 bp
flanking both sides. The percentage of the dinucleotide TA present
near bound and unbound motifs was calculated as the ratio of TAs
present in a given sequence (Fig. 2). Out of the 16 dinucleotides ex-
amined, TA was selected by our feature selection approach for all
nine TFs as an important feature that discriminates between bound
and unbound motifs (Supplemental Table 1, Supplemental Table 2).
The peak observed in the control dataset is due to the fact that
-value of binding for intergenic regions whose average motif strength was >80% of the
et al. (2004). The number above each bar is the information content for the given motif
chance in a sequence. (b) For every motif, the average p-value of binding in intergenic
is the information content of the motifs in bits. (c and d) Plots of the p-value of binding
given TF as a percentage of the maximum possible PWM log-likelihood score. Higher

value of binding for the collected intergenic regions that met the given motif strength
two extremes.
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intergenic regions are TA-rich compared to coding regions (Fig. 2,
green line).

In general, the sequence surrounding bound motifs was depleted
of TA dinucleotides compared to unbound motifs (Fig. 2) with six
(SWI4, PHD1, SKN7, SUT1, STE12, and SWI6) out of the nine TFs clear-
ly showing this pattern. Two TFs, MBP1 and GCN4, did not exhibit
strong differences in the percentage of TA between bound and un-
bound motifs. REB1 showed slightly higher levels of the TA dinucleo-
tide around bound sites compared to unbound sites. SWI6 may not
bind DNA directly but instead be recruited to the genes it regulates
by other TFs. It is known that SWI4 and MBP1 can bind to DNA as a
complex with SWI6 (Andrews and Moore, 1992; Leem et al., 1998).
Given the indirect binding of SWI6 to DNA, it is likely the motif iden-
tified for SWI6 is a combination of the motifs recognized by the pro-
teins that recruit SWI6 to DNA. Indeed, the core SWI6 motif CGCG is
found in both the SWI4 motif and the MBP1 motif (Supplemental
Table 3). Furthermore, the local TA dinucleotide content surrounding
the bound SWI6 motif closely resembles that of bound SWI4 motifs
(Fig. 2). Many genes have a tendency to be regulated by multiple
TFs. Hence it is possible that the differences in sequence composition
when comparing bound to unbound motifs are due to bound motifs
having multiple other motifs nearby which may affect local sequence
composition. To control for this we obtained all motifs with some ev-
idence of being bound by protein (MacIsaac et al., 2006) and masked
these motifs.

Additionally, a number of TFs show the same general trend with
regard to differences in sequence composition when comparing
bound to unbound motifs. The example given above is the six TFs
that all show the same pattern of depleted TA dinucleotides around
bound motifs compared to unbound. Since it is unlikely these six
TFs all share the same regulatory partners, it is unlikely that the
Fig. 2. TA dinucleotide content around bound or unbound motifs. Motifs classified as bound
moving upstream and downstream from the motif. Zero on the x-axis represents the center
tion of dinucleotides that are TA within each 50 bp window. Green: The background TA con
procedure as described.
same pattern of depleted TA dinucleotides is due to the potential con-
founding effect of having multiple other bound TF motifs nearby. The
same motifs will likely not be present around all six TFs since they do
not share the same regulatory partners (see Fig. 3).

Several studies have shown TFs in yeast exhibiting distinct position-
al preferences relative to the transcription start site (TSS) (Hansen et al.,
2010; Harbison et al., 2004; Lin et al., 2010). Thus, it is possible that the
differences in dinucleotide content are due to bound motifs predomi-
nantly occurring −100 to −500 bp upstream of the TSS (Harbison et
al., 2004). To investigate this, we extracted the noncoding sequence
−100 to −500 bp upstream of all yeast TSSs and calculated the TA di-
nucleotide content for these regions. The percentage of TA was slightly
lower in sequences −100 to −500 bp upstream of the TSS than in
intergenic regions as a whole (0.091 compared to 0.099). However,
this phenomenon was insufficient to explain the pronounced depletion
of TA around boundmotifs found formany of the TFs (Fig. 2). For exam-
ple, the average percentage of TA within a 200-bp window centered at
bound SUT1motifs was 0.054. Hence, reduced TA content is not univer-
sal throughout promoter regions, but is instead generally found in se-
quences surrounding motifs bound by TFs. Additionally TFs, in general
share, similar location binding preferences, but do not always share
the same pattern of dinucleotide frequency around bound motifs. For
example PHD1 prefers to bind on average ~340 bp upstream of the
TSS while SWI4 prefers to bind on average ~380 bps upstream of a
TSS. PHD1's bound motifs in general are not embedded in GG rich se-
quence, while SWI4s motifs are (Supplemental Fig. 2).

While for TA the trend is for bound motifs to be embedded in TA
depleted sequence compared to unbound motifs, this is not the case
for other dinucleotides. For example, the GG dinucleotide shows a
tendency to be enriched around bound motifs relative to unbound
motifs (Supplemental Fig. 2). In general, the dinucleotide content of
or unbound were aligned. The TA dinucleotide content was bound in 50-bp windows
of the aligned motif. Black: The average percentage of TA, which is defined as the frac-
tent calculated by randomly selecting locations in intergenic regions and repeating the

image of Fig.�2
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unboundmotifs was similar to the overall background intergenic con-
tent, while the dinucleotide content around bound motifs was either
enriched or depleted relative to background (with the exception of
REB1). Given the apparent strong dependence of ABF1 on its motif,
we examined the dinucleotide content surrounding its bound motifs
relative to background (Supplemental Fig. 2). Contrary to the trend
observed for many of the other nine TFs, the dinucleotide content sur-
rounding bound ABF1-specific motifs does not show strong devia-
tions from the background dinucleotide content.

3.3. Comparison of motif-based features surrounding bound and
unbound motifs

For all nine TFs, the feature selection algorithms selected the dis-
tance from the motif to the nearest TSS as a significant discriminator
between bound and unbound motifs. Many of the TFs exhibited a
striking difference between bound and unbound motifs. For instance,
the median distance to the nearest TSS for PHD1 was −430 and −
155 for bound and unbound motifs, respectively. This result was
expected given the strong positional preference relative to the TSS
seen for many yeast TFs (Hansen et al., 2010; Harbison et al., 2004;
Kim et al., 2008; Lin et al., 2010; Tharakaraman et al., 2005).

Included in the set of motif-based features were a number of char-
acteristics designed to take advantage of the fact that TFs have a ten-
dency to bind in clusters (Frith et al., 2003; Ptashne, 1988). To
construct these features, we obtained a library of PWMs representing
143 TFs (Badis et al., 2008; Zhu et al., 2009). For each bound and un-
bound motif, we counted the number of motif matches within 100 bp
for each of the TFs in our PWM library. By comparing the number of
motif matches near bound and unbound sites, we identified motifs
that are commonly found near bound and unboundmotifs (Fig. 3). In-
terestingly, three TFs (MBP1, STE12, and SWI4) bound motifs had a
Fig. 3. Motifs enriched near bound or unbound motifs. The fraction of bound (red) or unbou
for the nine TFs shown. p-Values were calculated using the z-test for two proportions, and c
jamini and Yekutieli, 2001). Comparisons with a q-valueb0.05 are marked with an asterisk
tendency to have repeated copies of their motifs surrounding their
binding sites. Such homotypic clusters of the same motif have been
observed in other organisms including vertebrates and invertebrates
(Gotea et al., 2010; Lifanov et al., 2003). As our results and others
(Harbison et al., 2004) have shown, homotypic clustering is also pre-
sent in yeast, suggesting an evolutionarily conserved regulatory
mechanism.

Regulation of transcription initiation is facilitated by the binding
of multiple TFs to the promoter region of a gene. Indeed many of
the TFs whose motifs are enriched at bound sites relative to unbound
sites showed signs of cooperative binding. For example, in budding
yeast numerous genes are induced early in the cell cycle with SWI4
and MBP1 as the predominant regulators of these genes (Koch et al.,
1993; Sidorova and Breeden, 1993). In some cases these genes coop-
erate in regulating the same gene (Bean et al., 2005). Unsurprisingly
we observed enrichment of MBP1 motifs surrounding SW4-bound
motifs compared to unbound motifs. SWI4 motifs were also enriched
around MBP1-bound motifs compared to unbound motifs; however,
this enrichment (q-value=0.07) did not meet our q-value cutoff of
0.05 (Fig. 3). In addition, enrichment of the TEC1 motif near bound
STE12 motifs exhibited a similar pattern. STE12 is necessary for the
proper regulation of mating, haploid invasion, and pseudohyphal de-
velopment (Herskowitz, 1995). STE12 binds with TEC1 cooperatively
to achieve developmental specificity (Madhani and Fink, 1997),
which is consistent with our observation that the TEC1 motif is
enriched around STE12-bound motifs compared to unbound ones.

Since TFs have a tendency to bind cooperatively, a greater number
of motifs can be found enriched around bound motifs compared to
unbound ones. Therefore, the feature measuring the average number
of nearby motifs was selected for five out of the nine TFs (MBP1,
SKN7, STE12, SWI4, and SWI6), further indicating the tendency for
the enrichment of multiple motifs surrounding TF binding sites.
nd (blue) motifs that exhibit at least one of the labeled motifs within 100 bp is plotted
orrected for multiple testing using Benjamini, Hochberg, and Yekutieli correction (Ben-
.
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However, there were also instances of enrichment of motifs around
unbound motifs compared to bound motifs. For example, four of the
nine TFs (GCN4, PHD1, SKN7, and SWI4) exhibited statistically signif-
icant enrichment of the PHO2 motif around unbound motifs com-
pared to bound ones. This unique enrichment may occur because
unbound motifs are generally located within TA‐rich regions of the
genome (Fig. 2). Because the PHO2 motif is TA/AT-rich and informa-
tion poor, it is not surprising that this motif is widespread across
yeast intergenic regions (~32,000 PHO2 motifs in intergenic regions
N=32,562). This widespread occurrence may explain why the
PHO2 motif, as well as those of SIG1 and GLN3, is enriched near un-
bound motifs. To control for the tendency of information poor motifs
to be strongly influenced by local sequence context we filtered motifs
on the basis of information content. And only counted motifs near
bound and not bound motifs with at least 8 bits of information. This
filtering removed the PHO2, SIG1 and GLN3 motifs from consider-
ation (Fig. 3).

However, the above explanation does not account for all cases of
motif enrichment around unbound motifs. For instance, despite lac-
king in AT/TA dinucleotides, the ASG1 motif is enriched around un-
bound REB1 and STE12 motifs. Given the enrichment of the ASG1
motif around unbound motifs it is possible that ASG1 may be acting
as a repressor.

The average motif strength for bound and unbound motifs (i.e., fea-
ture “PWM_score,” Supplemental Table 1 and Supplemental Table 2)
was selected for all TFs but SKN7 and SUT1. On average, bound motifs
were stronger than unbound motifs.

3.4. Comparison of nucleosome-based features surrounding bound and
unbound motifs

REB1 possesses nucleosome-modifying properties and functions
to create regions of open chromatin (Chasman et al., 1990). Hence,
nucleosome occupancy was selected as an important feature to dis-
criminate between REB1-bound and unbound motifs, with bound
motifs located in nucleosome-depleted regions (data not shown). In-
terestingly, although nucleosome occupancy was selected as an im-
portant feature for SKN7, bound sites had a higher nucleosome
occupancy score than unbound sites (data not shown). This result is
contrary to the overall trend of bound sites occurring predominantly
in nucleosome-depleted regions (Kaplan et al., 2009). Nevertheless, a
recent study mapping nucleosome occupancy suggested that the
presence of SKN7 leads to higher nucleosome occupancy at its bind-
ing site (Kaplan et al., 2009).

Several histone post-translational modifications have been associ-
ated with either bound or unbound motifs. Often, the level of histone
modification is associated closely with gene activity (Pokholok et al.,
2005). Hence a correlation between active binding sites and histone
modification levels is expected. Surprisingly, we also observed an en-
richment of active histone marks reported to be associated with ac-
tive genes, namely H3K4me3, H3K9ac, and H3K14ac (Pokholok et
al., 2005), around unbound motifs. Our data demonstrate that these
marks are enriched around unbound motifs for a number of TFs
(PHD1, SKN7, SUT1, and SWI4) (Fig. 4).

These histone marks are present at the highest levels near the TSS
(Pokholok et al., 2005). Consistent with this, higher levels of histone
modification can be found around motifs that are closest to the TSS.
TFs have a tendency to avoid binding 0 to approximately 100 bp up-
stream of the TSS (Harbison et al., 2004; Lin et al., 2010). Thus, enrich-
ment of active histone marks around unbound motifs may occur
because a larger fraction of these motifs is located within 0 to
100 bp of the TSS. Indeed, our data supports this hypothesis. The per-
centage of bound sites within 100 bp of the TSS for PHD1, SKN7, SUT1,
and SWI4 was 5.24%, 4.58%, 1.14%, and 1.72%, respectively. Mean-
while, the percentage of unbound motifs within 100 bps upstream
of the TSS for PHD1, SKN7, SUT1, and SWI4 was 21.27%, 13.51%,
12.78%, and 19.06%, respectively. Because the region 0 to approxi-
mately 140 bp upstream of the TSS is free of nucleosomes (Kaplan
et al., 2009; Lee et al., 2007; Shivaswamy et al., 2008), motifs located
within this region are most likely in an open chromatin configuration
and accessible for TF binding, which raises the question what mecha-
nism is repressing binding at these motifs.

4. Discussion

Given the prominent role TFs play in gene regulation throughout
the genome, mapping TF binding is very important to gaining a thor-
ough understanding of transcription. In recent years, ChIP-chip and
ChIP-seq have become widely used experimental tools in identifying
binding locations for TFs. Unfortunately, even with these techniques,
mapping the binding sites for large numbers of TFs is still a substan-
tial undertaking. Computational prediction of TF binding sites has
the potential to provide high-quality predictions of TF binding with
precision and low cost. Indeed this has been an active area of research
for computational biologists (Elemento and Tavazoie, 2005; Ernst et
al., 2010; Pique-Regi et al., 2011; Xie et al., 2009). Our primary goal
in this analysis is not prediction of TF binding site but identifying dif-
ferences in local genomic context comparing bound motifs to un-
bound motifs.

We examined a subset of yeast TFs so our results cannot be general-
ized across all TFs. While it is true the total number of TFs studied was
low in comparison to the total number of TFs in yeast. There was high
diversity in the DNA binding domains; the nine different TFs represent
six different DNA binding domain families (Supplemental Table 3).
Therewere several broad trends thatwere universal ormostly universal
across all TFs studied. For example, every TF examined in this study
showed differences in local sequence composition around boundmotifs
compared to unbound motifs. With the sequence composition sur-
rounding unbound motifs in general corresponding to the background
sequence composition.

Experimental data suggests local sequence content may be impor-
tant in transcription factor binding site functioning (Meierhans et al.,
1997; Ponomarenko et al., 1999; Starr et al., 1995). Our results are
consistent with these findings. However it is not apparent what role
sequence context plays in transcription factor binding. In some
cases it is clear that sequence context plays a direct role in stabilizing
binding (Meierhans et al., 1997; Starr et al., 1995). It is also possible
that sequence context is important indirectly through mediating nu-
cleosome binding. Indeed nucleosome occupancy around TF binding
sites is depleted of nucleosomes in vitro strongly suggesting sequence
context plays a role in excluding nucleosomes (Kaplan et al., 2009).
Interestingly, sequences containing 9–11 bp periodic TA dinucleo-
tides have recently been shown in vitro to have strong nucleosome
forming potential (Takasuka and Stein, 2010).

The TA dinucleotide was identified by our approach as being im-
portant for all 9 TFs in distinguishing between bound and unbound
motifs. In general sequences around bound motifs were depleted of
the TA dinucleotide compared to unbound motifs (Fig. 2); this effect
is stronger for some TFs than others. An exception to this general
trend is the REB1 motif which showed increased TA frequency around
bound motifs compared to unbound motifs. The REB1 protein has
chromatin modifying properties with the ability to form nucleosome
free regions (Chasman et al., 1990). Indeed if TA dinucleotides in cer-
tain sequence contexts increase nucleosome formation, the depletion
of TA dinucleotides around bound motifs we observe would presum-
ably discourage nucleosome formation.

It is however unlikely that the differences in sequence context
comparing bound to unbound motifs are entirely explained by nucle-
osome sequence preferences. The TFs examined do not always exhibit
consistent sequence preferences. For example SWI4, SUT1 and SKN7
all have enriched GG dinucleotide content around bound motifs
while STE12 and PHD1 do not (Supplemental Fig. 3). Nucleosome



Fig. 4. Histone modification-based features. Histone modification-based features are plotted for the eight TFs for which a histone modification feature was selected as important.
Red bars represent the average log ratio of the given histone modification within a 200-bp window centered at bound sites. Blue bars represent the average value of the given
nucleosome-based feature within a 200‐bp window centered at unbound sites. p-Values were calculated using the Wilcox rank sum test, and corrected for multiple testing
using the Benjamini, Hochberg, and Yekutieli correction (q-values) (Benjamini and Yekutieli, 2001). Comparisons with a q-valueb0.05 are marked with an asterisk.

132 L. Hansen et al. / Gene 506 (2012) 125–134
sequence preferences should theoretically be consistent within a cell,
hence if the differences in sequence composition observed are entire-
ly due to nucleosome sequence preference this preference would be
expected to be consistent for all TFs.

Another possible explanation for the differences in sequence
composition comparing bound to unbound motifs is direct stabiliza-
tion of binding. The recognition of binding locations by DNA binding
proteins is dependent on two different approaches: first nucleotide
sequence specific formation of hydrogen bonds and second nonbase
pair specific interactions between the protein body and DNA (Rohs
et al., 2009). It has recently been shown that the binding of arginine
residues to narrow minor groves is a common mechanism assisting
in protein–DNA recognition (Rohs et al., 2009). Differences in se-
quence composition around an embedded motif could either en-
hance or inhibit such interactions by affecting the DNA shape or
width of the major/minor grove. It would be of interest to measure
the binding affinity of the same motif embedded in different se-
quence contexts.

It is also possible that differences in sequence context between
bound and unbound motifs are reflective of differences in sequence
composition between regions of regulatory sequence and non-
regulatory sequence. While this is a possibility we observed there is lit-
tle difference in TA dinucleotide composition in promoter sequence
compared to background yeast intergenic regions. This is not surprising
since in, yeast, intergenic regions are compact with promoter sequence
being a large fraction of intergenic sequence. This suggests that the dif-
ferences in dinucleotide frequency comparing bound to unboundmotifs
are not due to a general trend observed in regulatory sequence.
Understanding gene regulation is a fundamental question in mo-
lecular biology. Many genes are regulated by TFs recognizing and
binding to short DNA sequence motifs. In most cases, only subsets
of the genomic regions that match TF binding sites are actually
bound by the TF in vivo. Thus, it is critical to understand the difference
between motifs that are bound and unbound by a given TF. Here, we
begin to investigate this question by performing a systematic
genome-wide comparison of motifs that are bound in vivo compared
to motifs that are unbound. To our knowledge, this is the first such
study. Further work could extend the set of biological features being
examined. Our analysis cannot answer whether any of the differences
we identify are a causal component of TF binding specificity.

For ABF1 and CBF1, our results suggest that the presence of a
strong motif is a good predictor of binding in intergenic regions.
Both proteins have chromatin-modifying properties (Yarragudi et
al., 2004; Kent et al., 2004). In agreement with our results, genome lo-
calization studies indicate that the majority of CBF1 motifs in inter-
genic regions are most likely bound by the TF (Kent et al., 2004; Lee
et al., 2002).

Our results suggest a range of strategies is employed in determining
DNA binding specificity. For some TFs (e.g. ABF1 and CBF1 (Fig. 1)) the
information contained in their motif is apparently sufficient to mostly
determine specificity. Little additional information from genomic con-
text is needed. Every place a strong copy of their motif is found it may
be likely the protein will bind. We reported previously that the ABF1
motif is strongly biased to occur predominantly in potential regulatory
regions. We also showed that the ABF1motif exhibits a strong position-
al preference relative to the TSS (Hansen et al., 2010).
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For other TFs whose motifs are information poor and found in high
abundance throughout the genome the information contained in the
motif is not sufficient to determine specificity and input from the
local genomic environment may play a dominant role in determining
specificity. The majority of TFs may fall somewhere between these
two scenarios depending to a greater or lesser extent on genomic
context to determine specificity.

It is also likely there is interplay between these two approaches.
ABF1 is an abundant general regulatory factor essential to cell growth
(Halfter et al., 1989). This factor acts in part by creating a bubble of
open chromatin (Yarragudi et al., 2004). In many cases, ABF1 alone
is insufficient to activate robust transcription and requires the
cooperation of other regulatory factors (Goncalves et al., 1995). A re-
cent study indicates that ABF1 may play an important role in deter-
mining chromatin structure throughout the genome, with weaker
motifs showing evidence of ABF1 binding and chromatin remodeling
(Ganapathi et al., 2011). Genome-wide interaction studies have iden-
tified ABF1 to be a network “hub,” suggesting that it plays a central
role in gene regulation (Zhang et al., 2006).

Given these results, ABF1 may act in part as an important pioneer
TF that binds chromatin and acts to create regions of open chromatin
that allows other factors to bind similar to pioneer factors in higher
organisms (Zaret et al., 2008). ABF1 could be acting to create a local
genomic environment conducive for other TFs to bind, while ABF1's
binding specificity is dependent mostly on the presence of its motif.
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    Chapter 17   

 The Practical Evaluation of DNA Barcode Effi cacy *       

         John   L.   Spouge       and    Leonardo   Mariño-Ramírez      

  Abstract 

 This chapter describes a workfl ow for measuring the effi cacy of a barcode in identifying species. First, 
assemble individual sequence databases corresponding to each barcode marker. A controlled collection of 
taxonomic data is preferable to GenBank data, because GenBank data can be problematic, particularly 
when comparing barcodes based on more than one marker. To ensure proper controls when evaluating 
species identifi cation, specimens not having a sequence in every marker database should be discarded. 
Second, select a computer algorithm for assigning species to barcode sequences. No algorithm has yet 
improved notably on assigning a specimen to the species of its nearest neighbor within a barcode database. 
Because global sequence alignments (e.g., with the Needleman–Wunsch algorithm, or some related algo-
rithm) examine entire barcode sequences, they generally produce better species assignments than local 
sequence alignments (e.g., with BLAST). No neighboring method (e.g., global sequence similarity, global 
sequence distance, or evolutionary distance based on a global alignment) has yet shown a notable superiority 
in identifying species. Finally, “the probability of correct identifi cation” (PCI) provides an appropriate 
measurement of barcode effi cacy. The overall PCI for a data set is the average of the species PCIs, taken 
over all species in the data set. This chapter states explicitly how to calculate PCI, how to estimate its statistical 
sampling error, and how to use data on PCR failure to set limits on how much improvements in PCR 
technology can improve species identifi cation.  

  Key words:   Barcode effi cacy in species identifi cation ,  Probability of correct identifi cation ,  DNA 
barcode  

    

 Species are becoming extinct, making conservation of biodiversity 
a major challenge. The fi rst step to preserving biodiversity is assess-
ment, but there are not enough taxonomists to catalog species 

  1.  Introduction

 *For software relevant to this chapter, see     http://www.ncbi.nlm.nih.gov/CBBresearch/Spouge/html.
ncbi/barcode/     

http://www.ncbi.nlm.nih.gov/CBBresearch/Spouge/html.ncbi/barcode/
http://www.ncbi.nlm.nih.gov/CBBresearch/Spouge/html.ncbi/barcode/
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throughout the world. DNA barcodes therefore provide the basis of 
a promising alternative strategy because they require only collection 
of DNA and not the immediate taxonomic identifi cation of 
specimens. Although barcodes have many other uses, e.g., identi-
fi cation of novel species, taxonomic classifi cation, and phylogeny, 
their application to cataloguing biodiversity justifi es restricting this 
chapter to the measurement of a barcode’s effi cacy in identifying 
known species. 

 In its essence, a barcode is any standardized subset of DNA 
from a taxonomic specimen  (  1,   2  ) . The subset may vary, depending 
on readily recognizable features of a specimen (e.g., is the specimen 
a vertebrate? a plant? an insect? etc.). If computers could identify 
the species of a specimen from its barcode, then the barcode 
would provide a database key for retrieving taxonomic information 
pertinent to the specimen. A computer catalog of species on Earth 
then becomes a technical possibility. Early studies indicated that 
the sequence of cytochrome c oxidase 1 (CO1) gene could correctly 
identify many species  (  3  ) , so selection of CO1 as a primary barcode 
followed naturally  (  4–  10  ) . 

 Although the selection of a DNA barcode has been natural for 
some species, it has been problematic for others, particularly plants 
 (  11–  14  )  and insects  (  15,   16  ) . The lack of a clear consensus for a 
barcode in those species has stimulated interest in the objective, 
quantitative measurement of the effi cacy of a barcode in identify-
ing species. Consensus on an actual barcode for some species 
remains tentative, but nonetheless, a consensus on measuring 
barcode effi cacy has emerged  (  14,   15,   17  ) . This chapter summarizes 
the consensus and indicates how to construct studies to evaluate 
the relative merits of competing barcodes. For practical methods, 
the reader is invited to view     http://www.ncbi.nlm.nih.gov/
CBBresearch/Spouge/html.ncbi/barcode/    ,   a Web site providing 
information on computer programs pertinent to barcodes. Web pages 
are supposed to be self-explanatory, so to avoid undue brevity, the 
second section in this chapter provides some rationale for the 
computer programs for evaluating barcodes. The third section 
provides a practical summary of the entire chapter.  

 

 To fi x our terminology, the term “marker” connotes any contiguous 
region of DNA (coding or non-coding), whereas the term “barcode” 
connotes the aggregate of the one or more markers in the 
“standardized subset of DNA” referred to in the Introduction. 
Presently, all barcode markers are marker genes like CO1, matK, etc. 

  2.  The 
Measurement 
of the Effi cacy 
of Species 
Identifi cation

http://www.ncbi.nlm.nih.gov/CBBresearch/Spouge/html.ncbi/barcode/
http://www.ncbi.nlm.nih.gov/CBBresearch/Spouge/html.ncbi/barcode/
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In slowly evolving organisms like plants, however, intergenic 
spacers (DNA regions fl anked by two genes) are still worthy of con-
sideration as potential markers, because they usually diverge faster 
than genes, while their ends are still conserved, providing primers 
for PCR  (  17,   18  ) . As described below, however, multiple sequence 
alignments (MSAs) of intergenic markers might complicate the 
workfl ow in a barcode database. 

 To have practical meaning, any measurement of the effi cacy of 
species identifi cation must mirror the performance of a database 
based on the prospective barcode. In practice, users query the 
database with a barcode retrieved from a specimen; the database 
returns the species identifi cation as output, with the assignment 
“unknown” for any species apparently not yet in the database. 
Because this chapter restricts itself to discussing the identifi cation 
of known species, it assumes that each query to the barcode database 
represents a specimen belonging to a species already in the database. 

  The fi rst step in estimating the effi cacy of several prospective 
barcodes is to assemble the corresponding databases. To ensure 
the proper controls, specimens not having sequences in every 
marker database should be eliminated from consideration  (  14  ) , 
because if the databases do not contain exactly the same specimens, 
there might be unappreciated but infl uential biases. Consider, e.g., 
a hypothetical experiment that extracts from GenBank all sequences 
corresponding to two prospective markers, Marker A and Marker B. 
If Marker A has been the default marker of choice, whereas Marker 
B has been considered as the last hope for resolving species after 
Marker A has failed, the GenBank entries for Marker B might be 
biased toward a subset of particularly diffi cult specimens. Thus, on 
GenBank data, Marker B might have fewer correct species assign-
ments than Marker A, even though Marker B is in fact better at 
resolving species than Marker A. Moreover, relative to a barcode 
database, GenBank taxonomy is undependable, and undependable 
taxonomy improperly infl uences conclusions by occasionally penal-
izing correct species identifi cation. In addition, GenBank entries 
do not usually identify individual taxonomic specimens. GenBank 
data are therefore particularly unsuited to studying barcodes based 
on more than one marker, because the sequences from different 
markers cannot be associated with a single specimen. Although 
studies based on GenBank data have obvious scientifi c interest, 
they do not have the same status as a controlled taxonomic study. 
In summary, the choice of database affects conclusions, so care must 
be taken that the database refl ects the scientifi c aims of a study. 

 Figure  1  shows some pertinent results for trnH-psbA, a poten-
tial barcode marker in plants. By using pairwise alignment and 
various evolutionary distances in the procedures described below, 
the best overall probability of correct identifi cation (PCI) in Fig.  1  is 
about 0.50, which is noticeably lower than the overall PCI of 

  2.1.  The Database
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  Fig. 1.    Overall PCIs for trnH-psbA. Figure  1  graphs the overall PCI (on the  X -axis) from 
assigning plant species with  trnH-psbA  sequences collected from GenBank. (The corre-
sponding FASTA fi le can be obtained at   http://www.ncbi.nlm.nih.gov/CBBresearch/
Spouge/html_ncbi/html/bib/116.html    ). Assignment used a nearest neighbor algorithm 
and one of six separations (on the  Y -axis). The six separations were: (1) Global Distance; 
(2) Global Similarity; and four evolutionary distances: (3) Jukes-Cantor  (  38  ) ; (4) Kimura 
(2-Parameter)  (  39  ) ; (5) Jin (using a gamma distribution with parameter 1)  (  40  ) ; and 
(6) Tamura  (  41  ) . The pairwise sequence alignment used either the HOX70 scoring matrix
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with a gap of length k  receiving a penalty D(k ) = 400+30k,  or the NCBI DNA scoring 
system (1 for a match, −3 for a mismatch, with a gap of length k  receiving a penalty 
D(k ) = 5+2k  ). Perhaps surprisingly, the overall PCIs for the two scoring systems were 
visually indistinguishable. Global Distance is the global alignment score; Global Similarity 
is the actual global alignment score divided by the maximum possible global alignment 
score for sequences of the same length  (  42  ) . The  green part of the horizontal bars  gives 
the unambiguously correct fraction of species assignments, where every specimen had 
as nearest neighbors only specimens from the same species; the  yellow part , the ambigu-
ously correct fraction where every specimen had as nearest neighbors specimens a mix 
from both the same and other species (with the  red border  indicating the average fraction 
of the ambiguously correct fraction matching specimens from different species); and the 
 red part , the unambiguously incorrect fraction where every specimen had only nearest 
neighbor specimens from other species.       

 

http://www.ncbi.nlm.nih.gov/CBBresearch/Spouge/html.ncbi/bib/116.html.
http://www.ncbi.nlm.nih.gov/CBBresearch/Spouge/html.ncbi/bib/116.html.
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0.69 from a controlled taxonomic study  (  14  ) , suggesting that the 
GenBank entries for  trnH-psbA  might contain biases, relative to a 
controlled taxonomic study. The corresponding FASTA sequence 
fi le (see the Supplementary Materials) in fact contained genetic 
crosses (denoted by “x”) and tentative species assignments (denoted 
by “sp.”, “cf.”, “aff.”), which were obscure, until    the Web tools 
mentioned above found them.   

  Once an appropriate database has been selected, the computer 
must assign a species to each barcode query (or declare its failure 
to assign). The next step, therefore, is to select a computer algo-
rithm for assigning each specimen and its barcode sequence to a 
species. No algorithm seems to improve noticeably on assigning to 
a specimen the species of its nearest neighbor within a barcode 
database  (  19,   20  ) . Thus, many algorithms begin by estimating a 
“separation” between the barcode sequences in two specimens. 
(The term “separation” is preferable to “distance”, which connotes 
some specifi c mathematical properties not necessary to barcodes.) 

 Separation can be based on: (1) sequence alignment similari-
ties, (2) sequence alignment distances, (3) evolutionary distances 
(which usually require prior alignment of the barcode sequences), 
or (4) alignment-free distances. Studies have compared different 
measures of separation, but they are too limited to draw defi nitive 
conclusions about which separation provides the best species 
assignments. There are, however, some distinctly bad measures of 
separation. 

 Like any assignment method, species assignment should use all 
available information. BLAST is a popular sequence comparison 
tool  (  21,   22  ) , but as a measure of separation it can mislead, because 
it compares two sequences with local alignment, which matches 
and scores only the two most similar subsequences within two 
sequences (see Fig.  2 , which diagrams some of the differences 
between local and global alignments). Global alignment, which 
matches the entire length of sequences, is better for measuring the 
separation of barcode marker sequences. In intergenic markers par-
ticularly, BLAST has the possible weakness of matching only small 
subsequences, because alignments within intergenic spacers often 
contain large gaps. Short subsequences can exhibit convergent 
evolution (homoplasy)  (  23  ) , so on the one hand a BLAST local 
alignment might make distant species appear spuriously close. 
On the other hand, a global alignment might resolve the species by 
highlighting dissimilarities across the whole marker. In the context 
of barcodes, therefore, a global alignment (e.g., with some close 
relative of the Needleman–Wunsch Algorithm  (  24  ) ) is generally 
preferable to a local alignment (e.g., with the Smith–Waterman 
Algorithm  (  25  )  or BLAST). Other types of alignments exist, but 
there is little reason to expect them to assign species notably better 
than global alignment.  

  2.2.  Species 
Assignment Algorithm
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 MSAs might be more problematic for intergenic markers than 
for marker genes like CO1, because intergenic MSAs usually con-
tain many gaps, disrupting the alignment columns representing 
evolutionary relationships. In practice, the Barcode of Life Database 
(  http://www.boldsystems.org    ) stores sequences in a global MSA, 
by using the program HMMer  (  26  )  to align sequences before 
comparing the corresponding barcode marker genes. In fact, many 
publicly available tools (e.g., MUSCLE  (  27  )  or MAFFT  (  28  ) ) could 
create barcode MSAs interchangeably with HMMer. The point of 
using MSAs in a large barcode database, however, is that MSA can 
be much faster than pairwise sequence alignment. (If there are     N    
barcodes in a database, pairwise alignment requires time propor-
tional to     2N   .) Although bioinformatics should adapt to the needs 
of biology and not vice versa, the selection of an intergenic marker 
as a barcode might exclude MSAs in the workfl ow of large barcode 
databases, causing awkward (but probably not insuperable) 
diffi culties. 

 As separations, the relative merits of global alignment similar-
ity, global alignment distances, or evolutionary distances based on 
a global alignment have not yet been clearly established, although 
the differences in species assignment are probably small. Alignment 
distances and similarities model insertions and deletions in 
sequences, which are not as well understood as nucleotide substi-
tutions used in evolutionary distances. As a separation, p-distance 
(the proportion     p   of alignment pairs containing differing nucleotides) 
is particularly simple and well-known to taxonomists  (  20  ) , but in 
fact no separation based on global alignment has shown any clear 
superiority in species assignment over the others. 

 Other species assignment algorithms should be mentioned  (  29, 
  30  ) . Many probabilistic algorithms, in particular those producing 
phylogenetic trees  (  31,   32  ) , are now a commonplace in taxonomy. 

  Fig. 2.    Two types of alignment, global and local. ( a ) shows a global alignment of two 
sequences ( black lines ). Global alignment is an alignment along the complete length of the 
sequences, so it bridges a gap in the second sequence ( white space ), to include all pairs of 
similar subsequences ( red rectangles ). ( b ) shows a local alignment of the same two sequences. 
Local alignment aligns only the pair of most similar subsequences in the sequences, so it 
does not bridge the gap in the second sequence and does not include the smaller subse-
quence alignment ( now shown in gray ). Local alignment can be misleading when identify-
ing species with barcodes because it does not incorporate all available sequence 
information.       

 

http://www.boldsystems.org
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Unfortunately, most probabilistic computations are much slower 
than the nearest neighbor algorithms above. Because they do not 
noticeably improve identifi cation, they have not found a place in 
automatic species identifi cation. Alignment-free algorithms are 
simple and provide faster computation than alignment-based meth-
ods  (  20,   33  ) , but presently, they have not been widely adopted in 
species identifi cation.  

  With an appropriate database and species assignment algorithm in 
hand, a scientist interested in barcode effi cacy must measure the 
algorithm’s success in identifying species. Any reasonable measure 
of barcode effi cacy should refl ect the probability that a database 
based on the prospective barcode identifi es a specimen’s species 
correctly. Consensus has therefore emerged on “the probability of 
correct identifi cation” (PCI) as the appropriate measurement of 
barcode effi cacy  (  14,   15,   17  ) . The ambiguities in the defi nition 
of PCI accommodate legitimate scientifi c disagreement about suc-
cess in species identifi cation, so the concept of PCI actually 
embraces a broad class of measures. 

 Consider a particular data set, and assume that PCI can be 
defi ned for each species within the data set. The overall PCI for the 
data set is the average of the species PCIs, taken over all species in 
the data set. If a few data subsets are particularly important (e.g., 
angiosperm, basal, and gymnosperm subsets within a plant data 
set), the PCI for the subsets can be reported separately. In principle, 
the PCI for each species could be weighted to refl ect the species’ 
importance or the number of specimens representing it in the data 
set. In practice, however, scientists have not weighted averages 
when calculating overall PCI. Thus, to calculate the overall PCI of 
a data set, we now require only a species PCI, a probability to 
quantify success in identifying each fi xed species. 

 To calculate a species PCI, one can perform a leave-one-out 
procedure, sometimes called “the jackknife” in statistics  (  34  ) . Remove 
each specimen in a species in turn from the database, and consider the 
separation of the removed specimen from the specimens of the same 
species remaining in the database. (The leave-one-out procedure can-
not sensibly be applied if a species has only a single specimen in the 
database. Because a singleton species must therefore be omitted from 
the average in the overall PCI, it usually represents wasted experi-
mental effort. It does, however, provide a “decoy,” which provides a 
realistic impediment to correct species assignment.) 

 Scientists legitimately disagree over the defi nition of “success” in 
species identifi cation. Some scientists might consider “success” 
theoretically, as a monophyly, where every specimen in the species 
is closer to all specimens in the species than to any other specimen 
 (  14  ) . On success, the species PCI is 1; on failure, it is 0. Other 
scientists might consider success more pragmatically, as a correct 
assignment of the species, where each specimen in the species 

  2.3.  Probability of 
Correct Identifi cation
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has as its nearest neighbor(s) only specimens in the species  (  15  ) . 
Again, if so, the species PCI is 1; if not, it is 0. The following addi-
tional conditions can contribute to success or failure, as desired: 
ties outside the species for a nearest neighbor, assignment of speci-
mens from other species to the species in question, etc. 

 Some authors have advanced less stringent criteria for success 
(e.g., for     1k >   , the specimen’s nearest neighbors must contain at 
least one other specimen from the same species)  (  33  ) . The species 
PCI has also been calculated as the fraction of specimens within a 
species whose nearest neighbor gives the correct assignment  (  17  ) . 
Any specifi c choice might be appropriate in different circumstances, 
depending on the scientifi c aim. 

 Some authors experimented with placing additional conditions 
on “success” as defi ned above, e.g., sequence difference (p-distance) 
thresholds, such as 2% or 3%  (  15  ) . Detection of unknown species 
with sequence identity thresholds seems artifi cial, however  (  35  ) . 
The notion of “species” could be redefi ned by DNA thresholds 
 (  1,   2,   36,   37  ) , but such redefi nitions generate many confl icts with 
traditional taxonomy  (  15  ) .  

  PCI should estimate the success in correctly identifying a known 
species. Under present technology, species identifi cation with a 
DNA barcode requires the following criteria:

    1.    At least part of the barcode sequence must be present in the 
specimen.  

    2.    Laboratory procedures must physically extract it from the 
specimen.  

    3.    PCR primers must amplify it.  
    4.    It must be sequenced.  
    5.    It must diverge suffi ciently, to distinguish species.  
    6.    It must not diverge excessively, so specimens from a single 

species remain similar and identifi able.     

 Thus, PCI must account for PCR failure, if it is to estimate 
identifi cation success under present technology. Recall that the 
overall PCI is the average of the PCI for each individual species. 
The  Appendix  discusses PCR failure for a barcode based on several 
markers. For simplicity, this subsection considers here only a bar-
code based on a single marker. We revise the species PCI to account 
for PCR failure, as follows. According to the procedures in the 
preceding subsection (which ignore PCR failure), let the species 
have PCI     p   ; and let     s    be the fraction of specimens from the 
species with a successful PCR. (Note that     s    is estimated from 
all specimens, whereas     p    is estimated solely from specimens with 
a successful PCR.) A reasonable procedure might average the 
“PCR-adjusted species PCI”     p ps=′    over all species to produce a 

  2.4.  PCR Failure
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“PCR-adjusted overall PCI.” The PCR-adjusted overall PCI 
faithfully refl ects the effi cacy of species identifi cation with present 
technology, whereas the overall PCI (which ignores specimens 
where PCR failed) refl ects the effi cacy of species identifi cation with 
a perfect PCR technology. 

 Technology reduces PCR failure rates, so arguments have been 
advanced that PCR failure should be ignored  (  14  ) . The PCI after 
any technological advance, however, is bounded below by the 
PCR-adjusted overall PCI (which refl ects present PCR technology); 
similarly, it is bounded above by the overall PCI (which ignores 
specimens with failed PCR). The bounds demonstrate that techno-
logical advance by itself does not preclude a sober assessment of 
future prospects. Like any numerical result from a defi nite procedure 
with a sensible meaning, the PCR-adjusted overall PCI is useful, 
and its deliberate omission merely undermines rational discussion 
about the relative merits of potential barcodes.  

  The overall PCI is the (unweighted) average of the species PCIs. 
Let us make a reasonable approximation that species PCIs are 
mutually independent across all species. Any database is a sample of 
all possible species, so the overall PCI from the database is an esti-
mate of the “true” overall PCI     p  . As such, it has a sampling error, 
calculable with the binomial distribution. Let     n    be the number of 
species contributing to the overall PCI. Under mild assumptions 
(given below), a binomial estimate     p̂    is normally distributed with 

mean     p    and standard deviation     ( )1 /p p n−   . Thus, the confi dence 

interval     ( ) ( )ˆ ˆ ˆ ˆ ˆ ˆ1 / , 1 /p z p p n p z p p n⎡ ⎤− − + −⎢ ⎥⎣ ⎦
   contains the true 

overall PCI     p    with a confi dence determined by     z   in conjunction 
with the normal distribution. The larger     z   is, the broader the inter-
val becomes, and the greater the probability that the interval con-
tains the true value of     p   . As approximate examples,     2z =   yields an 
95% confi dence interval;     2.6z =   , 99%, etc. (As a useful rule of 
thumb, the normal approximation holds, if     20n ≥    and the confi -
dence interval does not include 0.0 or 1.0.) Confi dence intervals 
are worth calculating, because they are often surprisingly broad. 

 As an aside, the confi dence intervals for the overall PCI are 
crucial to evaluating the relative merits of tentative barcodes, but 
they have little direct bearing on one’s confi dence in the species 
assignment of a specifi c specimen, for the following reason. Most 
taxonomists probably prefer a barcode for which assignment errors are 
confi ned to a few species, rather than to have the same errors spread 
across many species. (If nothing else, alternative strategies might 
be available for assigning a small number of problematic species.) 
Overall PCI faithfully refl ects taxonomists’ barcode preferences, 
but the evaluation of a specifi c species assignment poses a different 
problem, requiring a different solution.   

  2.5.  Statistical 
Sampling Error
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 Selection of a DNA barcode has been problematic for some species, 
but there is now a general consensus on the measurement of bar-
code effi cacy. The procedure for measuring barcode effi cacy can be 
broken into several steps. 

 First, assemble databases corresponding to the prospective 
barcodes. The choice of database must be given careful consider-
ation because it can noticeably infl uence a study’s conclusions. To 
ensure proper controls, specimens not having a sequence in every 
marker database should be eliminated from consideration. Because 
GenBank taxonomy might be undependable, and because most 
GenBank sequences do not specify a corresponding taxonomic 
specimen, studies based on GenBank data do not have the same 
status as a controlled taxonomic study, particularly for barcodes 
based on more than one marker. 

 Second, select a computer algorithm for assigning species to 
barcode sequences. No algorithm seems to improve noticeably on 
assigning to a specimen the species of its nearest neighbor within a 
barcode database. A global alignment (e.g., with Needleman–
Wunsch algorithm, or some similar algorithm) is recommended, to 
take advantage of all the information in a barcode sequence. By 
contrast, BLAST is a local alignment program, which might match 
only small subsequences within two sequences. Thus, the use of 
BLAST runs an unnecessary risk when evaluating any prospective 
barcode, particularly one with an intergenic marker. As long as 
alignments are in essence global, alignment similarities, alignment 
distances, and evolutionary distances like p-distance, Kimura 
2-Parameter Distance, etc., seem to have approximately equal effi -
cacies in identifying species. 

 Consensus has emerged on “the probability of correct identifi ca-
tion” (PCI) as the appropriate measurement of barcode effi cacy. 
The overall PCI for a data set is the average of the species PCIs, taken 
over all species in the data set. If a few data subsets are particularly 
important (e.g., angiosperm, basal, and gymnosperm subsets within 
a plant data set), the PCI for the subsets can be reported separately. 

 To calculate a species PCI, remove in turn each specimen in 
the species from the database, and consider its separation from the 
remaining specimens (under, e.g., p-distance). Various defi nitions 
of identifi cation success within a species are possible: (1) every 
specimen in the species is closer to all other specimens in the species 
than to any other specimen; (2) each specimen in the species has 
another specimen in the species as its nearest neighbor; (3) more 
stringent versions of the two foregoing defi nitions, where ties 
outside the species for a nearest neighbor, or assignment of other 
species to the species in question, also connote failure; (4) less 
stringent criteria for success (e.g., for     1k >   , the specimen’s nearest 

  3.  The Summary 
of the Workfl ow
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    k    neighbors must contain at least one other specimen from the 
same species; or (5) probabilistic measures of success, like the frac-
tion of specimens within a species displaying one of the foregoing 
defi nitions of success. Scientifi c purpose makes different defi nitions 
of “successful assignment” appropriate to different circumstances. 

 To estimate success under present technology, PCI must account 
for PCR failure. Although the case of a barcode with several mark-
ers has been relegated to the  Appendix , the case of a barcode with 
only one marker poses no diffi culties. Simply estimate the rate of 
PCR failure within each species by using all specimens, not just the 
ones with completely successful PCRs. Multiplication of a species 
PCI by the PCR success rate within the species yields a “PCR-
adjusted” species PCI, which can then be averaged over species to 
yield a PCR-adjusted overall PCI. The overall PCI after techno-
logical advance is bounded below by the PCR-adjusted overall 
PCI; similarly, it is bounded above the overall PCI (which derives 
from PCR successes only). Thus, present technology bounds pros-
pects for an overall PCI. 

 A database provides a statistical sample of all possible data. 
The overall PCI calculated from a database is therefore a statistical 
estimate of the true overall PCI, and as such, it yields an estimate with 
a statistical error. The errors are sometimes surprisingly large, and the 
differences in barcode effi caciousness correspondingly small. 

 For software relevant to this chapter, see     http://www.ncbi.
nlm.nih.gov/CBBresearch/Spouge/html.ncbi/barcode/    .      
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 For a barcode with several markers, each of which can have a failed 
PCR, specimen identifi cation ultimately relies on the markers with 
a successful PCR. To quantify the identifi cation process, number 
the markers     { }1,2,...,m   , and consider any subset     M    of     { }1,2,...,m   . 
For a particular specimen, let the probability that     M    is the subset 
of markers with PCR success be denoted by     Ms   , and let the PCI 
for the barcode based on the marker subset     M    be     Mp   . A species 
PCI     p    can then be calculated from the values of     Ms    and     Mp    
(although the calculation depends on the defi nition of species PCI: 
see Section 2.3 for various defi nitions.) 

   Appendix

http://www.ncbi.nlm.nih.gov/CBBresearch/Spouge/html.ncbi/barcode/
http://www.ncbi.nlm.nih.gov/CBBresearch/Spouge/html.ncbi/barcode/
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 One very reasonable defi nition of the PCR-adjusted species PCI 
is the average     ( ) M MM

p p s= ∑   . For the case of a barcode based on 

a single marker, e.g.,     M   is a subset of     { }1   , i.e., the empty set     { }
  or     { }1   . Because the empty set    { }  corresponds to a complete absence 
of information about a specimen, the corresponding PCI is 
    { } 0p =   , so     { } { } { } { } { } { }1 1 1 1p p s p s p s= + =   , which agrees with the 
formula for the PCR-adjusted PCI in the main text, for a barcode 
based on a single marker.   
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Abstract

Background: Physalis peruviana commonly known as Cape gooseberry is a member of the Solanaceae family that has
an increasing popularity due to its nutritional and medicinal values. A broad range of genomic tools is available for other
Solanaceae, including tomato and potato. However, limited genomic resources are currently available for Cape gooseberry.

Results: We report the generation of a total of 652,614 P. peruviana Expressed Sequence Tags (ESTs), using 454 GS FLX
Titanium technology. ESTs, with an average length of 371 bp, were obtained from a normalized leaf cDNA library
prepared using a Colombian commercial variety. De novo assembling was performed to generate a collection of
24,014 isotigs and 110,921 singletons, with an average length of 1,638 bp and 354 bp, respectively. Functional
annotation was performed using NCBI’s BLAST tools and Blast2GO, which identified putative functions for 21,191
assembled sequences, including gene families involved in all the major biological processes and molecular functions
as well as defense response and amino acid metabolism pathways. Gene model predictions in P. peruviana were
obtained by using the genomes of Solanum lycopersicum (tomato) and Solanum tuberosum (potato). We predict 9,436
P. peruviana sequences with multiple-exon models and conserved intron positions with respect to the potato and
tomato genomes. Additionally, to study species diversity we developed 5,971 SSR markers from assembled ESTs.

Conclusions: We present the first comprehensive analysis of the Physalis peruviana leaf transcriptome, which will
provide valuable resources for development of genetic tools in the species. Assembled transcripts with gene models
could serve as potential candidates for marker discovery with a variety of applications including: functional diversity,
conservation and improvement to increase productivity and fruit quality. P. peruviana was estimated to be
phylogenetically branched out before the divergence of five other Solanaceae family members, S. lycopersicum,
S. tuberosum, Capsicum spp, S. melongena and Petunia spp.

Keywords: P. peruviana, Solanaceae, ESTs, Functional annotation, Gene model, Phylogenetics
Background
Physalis peruviana, also known as Cape gooseberry is a
tropical fruit from the Solanaceae family, which includes
many agriculturally important crops including potato,
tomato, pepper, eggplant and tobacco [1]. The Cape
gooseberry fruit contains high levels of vitamin A, C and
B-complex, as well as compounds of anti-inflammatory
and antioxidant properties [2]. Supercritical carbon
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dioxide extracts of P. peruviana leaves were shown to in-
duce cell cycle arrest and apoptosis in human lung can-
cer H661 cells [3]. Recently, 4β-Hydroxywithanolide
(4βHWE) isolated from P. peruviana aerial parts (stems
and leaves) was demonstrated to be a potential DNA-
damaging and chemotherapeutic agent against lung can-
cer [4]. In Colombia, this fruit has become promissory
with high demand in European markets, mainly due to
its unique taste, attractive color and shape as well as its
potential health value. P. peruviana is a source of health
related compounds found in the fruit and other parts of
the plant including leaves and steams. Despite its nutri-
tional and medical importance, current absence of
P. peruviana genetic and genomic resources makes in-
depth molecular studies on the plant difficult. Until this
study, there were only a few partial P. peruviana gene
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Figure 1 Schematic representation of the overall sequencing
and annotation workflow for the Cape gooseberry
transcriptome.
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sequences in public databases, mainly as a result of
phylogenetic studies in the Solanaceae family [5,6].
Therefore, there is a pressing need for efforts to obtain
global genetic and genomic information from the Cape
gooseberry, P. peruviana.
Advances in next generation sequencing (NGS) tech-

nology over the past few years have made it possible to
rapidly perform de novo transcriptome and even genome
assembly for non-model organisms with no or little prior
genomic data available [7] . However, polyploidy and the
large size of many plant genomes, which is predomin-
antly due to amplification of repetitive elements or
sometimes partial genome duplication [8], pose chal-
lenges to de novo whole genome assembly of plants. As
such, EST sequencing, which avoids non-coding and re-
petitive DNA components, is a cost-effective and com-
monly used strategy to analyze the transcribed portion of
a genome. Availability of ESTs represent a valuable re-
source for research as they provide comprehensive infor-
mation regarding the transcriptome facilitating gene
discovery and genome annotation and aiding in the de-
termination of phylogenetic relationships [9]. An increas-
ing number of successful studies have been published
describing EST sequencing and de novo transcriptome
assembly for large-scale gene discovery [9-18].
Here we describe the sequencing and assembly of the

first P. peruviana leaf transcriptome from its cDNA-
derived ESTs using the 454 GS-FLX Titanium technol-
ogy, as well as in silico functional annotation and gene
model prediction of the assembled transcriptome. The
overall workflow of the project is represented in Figure 1.
This first transcriptome draft will provide valuable
resources for the development of molecular genetic tools
that can be used in agronomic trait related marker
discoveries, in addition to studies that aim to solve
phytosanitary, fruit quality and production problems.

Results and discussion
EST sequencing and assembly
We performed three fourths 454 GS FLX Titanium run
on one normalized cDNA library constructed from
P. peruviana leaf tissue, generating approximately 336
Mbp of sequence data from 652,614 reads with an aver-
age length of 375 bp (Figure 2). After a trimming process
by SeqClean [19], which removes adaptors, primer
sequences, poly-A tails, as well as short, longer and low
quality sequences, a total of 641,512 high quality reads
were obtained with an average length of 371 bp. De novo
transcriptome assembly was performed using Newbler
2.5.3 [20], which has been shown to perform better than
a number of other commonly used assemblers [21].
Table 1 shows the transcriptome sequencing and assem-
bly statistics, 79.66% of the reads were assembled into
29,911 contigs, and then further into 24,014 isotigs, with
an average assembled length of 1,638 bp. The isotig N50
length was 2,504 bp. All isotigs that share common con-
tigs belong to the same isogroup, presumably equivalent
to one gene locus containing multiple alternatively
spliced transcripts. The 24,014 assembled isotigs are part
of 14,049 isogroups (equivalent to an average 1.7 tran-
scripts per gene), among which 9,655 isogroups have
only one isotig each. Isotigs whose length exceeded
200 bp (23,964 in total) were kept for further analysis.
The remaining 20.34% reads are singletons, which can-
not be connected with any other reads. The 110,921 sin-
gletons were kept for further analysis. The average
coverage of assembled isotigs is estimated to be 9.1X.
The number goes down to 3.9X if we include all the sin-
gletons as the effective transcribed portion. Isotigs and
singletons together will be referred as cDNAs in the rest
the manuscript. The raw data files are available at the
National Center for Biotechnology Information (NCBI)
Sequence Read Archive (SRA) accession number
SRP005904. The assembled reads were deposited in
the Transcriptome Shotgun Assembly (TSA) Database
[GenBank:JO124085-JO157957].
Functional annotation
As the first step for assigning putative functions to the
P. peruviana transcriptome, BLASTX searches [22,23]
were used to align the cDNAs to the UniProtKB/Swiss-
Prot and NCBI RefSeq databases. A total of 19,162
isotigs and 35,428 singletons had a BLAST hit (with an



Figure 2 Length distributions of P. peruviana EST reads (left), assembled contigs (center) and isotigs (right). Data obtained after
sequencing with three fourths run of 454 GS FLX Titanium of the normalized leaf cDNA library.
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expectation value< 1e-5) to known proteins and
matched 8,721 and 15,192 unique protein accessions, re-
spectively. More than 99% of the BLASTX hits from
both isotigs and singletons were from plant proteins.
Compared to isotigs, a much greater percentage of sin-
gletons do not have any significant hits (68%), which
could be mainly due to their short lengths. Using Blas-
t2GO [24], we retrieved gene ontology (GO) terms and
enzyme commission numbers (EC) for the P. peruviana
cDNAs (Table 2) from the BLASTX output described
above. A total of 33,105 GO terms were assigned to
12,672 cDNAs (including isotigs and singletons). Among
all the GO terms extracted, 13,935 (42%) belong to the
Molecular Function class, 10,375 (31%) to Biological
Process class and 8,795 (27%) to Cellular Component
class. There are 7,519 cDNAs assigned to multiple GO
terms.
The biological process (BP) GO category comprise dif-

ferent types of metabolic processes which are the most
represented categories: there are 4,620 sequences asso-
ciated with metabolic processes (GO level 2), which is
expected, since the metabolic network in plants is by far
more extensive compared to other organisms [25]. We
found GO terms associated with primary metabolites,
which include the universal building blocks of sugars,
amino acids, nucleotides, lipids, and energy sources that
are essential for plant survival. Additionally, we found
GO terms associated with secondary metabolites that
play key roles in maintaining plant fitness including ones
that function in the protection of plants against micro-
bial, viral infections and UV radiation. Shown in Figure 3
are a number of GO terms (BP category, level 4) that are
Table 1 P. peruviana transcriptome assembly overview

Filtered
EST reads

Contigs Isotigs Isogroups Singletons

641,512 29,911 24,014 14,049 110,921

Average
length (bp)

371 743 1,638 354

N50 size (bp) 1,438 2,504
abundant and relevant to plant physiology, like the meta-
bolic processes of nitrogen compound, nucleotide, carbo-
hydrate, amine and phosphorus. Another category
worthy to mention is “response to stimulus” (BP cat-
egory, level 2). We found 1,120 sequences associated
with this category, which include candidate genes for re-
sistance to pathogen attacks. Shown in Figure 3 are a
number of level 4 GO categories including: response to
organic substance, defense response and response to hor-
mone stimulus. In the molecular function (MF) category,
30% of the P. peruviana cDNAs have high similarity to
proteins with transferase or hydrolase activity (GO level
3) that includes genes associated with secondary meta-
bolic synthesis pathways [9,10]. Other abundant level 3
MF categories include: nucleotide binding, ion binding
and oxidoreductase binding (Figure 3).
We were able to assign 129 unique enzyme commis-

sion (EC) numbers to 1,671 P. peruviana cDNAs, where
25 unique EC numbers were in turn assigned to 52
metabolic pathways linked to 1,255 cDNAs (Table 3).
We found 187 cDNAs involved in thiamine metabolism
in addition to 84 sequences associated with secondary
metabolite biosynthesis and 53 assigned to the phenyl-
propanoid biosynthesis pathway. These pathways are of
particular interest in Physalis as thiamine has been
known to induce defense response in plants through the
salicylic acid and Ca2+-related signaling pathways [26,27]
and may play roles in biotic or abiotic stress [28].
Furthermore, secondary metabolites such as phenylpro-
panoids play important roles in resistance mechanisms
to pathogens and recently have also been used in medi-
cinal applications including antioxidants, anticancer and
anti-inflammatories [2,28].

Protein domains encoded by the P. Peruviana leaf
transcriptome
A total of 12,974 P. peruviana cDNAs were found to
have significant similarities to 3,117 protein domains
present in the NCBI CDD (Conserved Domain Database)
[30]. The most abundant domain present in proteins
encoded by the P. peruviana transcriptome is the



Table 2 P. peruviana transcriptome functional annotation
overview

Isotigs Singletons Total

Sequences with BLAST hits 19,162 35,428 54,590

Sequences annotated with GO terms 4,915 7,757 12,672

GO Terms associated with the sequences 12,675 20,430 33,105

Sequences associated with EC numbers 601 1,070 1,671

Table 3 Main metabolic pathways associated to
P. peruviana transcripts

KEGG* metabolic pathways Number of
transcripts

General metabolic pathways 301

Purine metabolism 193

Thiamine metabolism 187

Biosynthesis of secondary metabolites 84

Biosynthesis of phenylpropanoids 53

Drug metabolism - other enzymes 48

Oxidative phosphorylation 44

Tropane, piperidine and pyridine alkaloid biosynthesis 42

Phenylalanine metabolism 25

Biosynthesis of plant hormones 14

Biosynthesis of alkaloids derived from terpenoid/polyketide 14

Biosynthesis of terpenoids and steroids 14

Other pathways 236
* KEGG: Kyoto Encyclopedia of Genes and Genomes [29].
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pentatricopeptide repeat domain (PPR), found in 350
cDNAs. The PPR containing proteins are commonly
found in the plant kingdom and although its function is
still unclear, the PPR domain has been found in proteins
involved in RNA editing in a number of recent studies
[31-34]. Following the PPR domain, the next three most
commonly found domains in the P. peruviana transcrip-
tome are: protein kinase domain (294 cDNAs), NB-ARC
domain (190 cDNAs) and WD40 domain (123 cDNAs).
Protein kinases are one of the largest protein families in
plants, involved in a wide variety of physiological pro-
cesses [35], like calcium-dependent protein kinases and
MAP kinases which are involved in the recognition of
elicitors or pathogens and the subsequent activation of
defense response in plants [36]. The NB-ARC domain is
a nucleotide-binding motif shared by plant resistant gene
products involved in regulated cell death [37,38]. The
WD40 domain, whose common function is coordinating
multi-protein complex assemblies, is found in a large
number of eukaryotic proteins that cover a wide variety
of functions including adaptor and regulatory modules in
Figure 3 Gene Ontology (GO) distributions for the Cape gooseberry t
level four) and molecular function (MF, level three) found in the transcripto
signal transduction, pre-mRNA processing and cytoskel-
eton assembly [39,40]. Additionally, the WD40 domain is
critically involved in the ubiquitin proteasome pathway
which regulates photomorphogenesis, flowering and abi-
otic stress response in plants [41].
Other frequently found domains include: RNA recogni-

tion motif (115 cDNAs), RING-finger domain (96 cDNAs),
Leucine rich repeat N-terminal domain (89 cDNAs),
tyrosine kinase catalytic domain (84 cDNAs), all of
ranscriptome. Main functional categories in the biological process (BP,
me relevant to plant physiology. Results are from Blast2GO analysis.



Table 5 SSRs identified in P. peruviana cDNAs

Motif PERFECT IMPERFECT

Dinucleotide 69 275

Trinucleotide 150 918

Tetranucleotide 28 465

Pentanucleotide 22 1,008

Hexanucleotide 134 2,902

TOTAL 403 5,568
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which are commonly found in eukaryotic cells and
involved in a broad range of biological processes. The
data is summarized in Table 4.
Out of the 110,921 singletons, there are 9,909 of them

(length >200 bp) where GO term(s) were assigned to the
sequence through Blast2GO (see Materials) or where a
significant similarity to a well-characterized protein do-
main from NCBI CDD was found. We deposited the
9,909 singletons described above, in addition to the
24,024 assembled isotigs in the NCBI’s TSA (Transcrip-
tome Shotgun Assembly) sequence database, which is
available at GenBank (accessions JO124085-JO157957).
Those sequences with their functional annotations, in-
cluding GO terms and domain similarity related descrip-
tion, are also provided as Additional file 1: ‘Cape
gooseberry cDNAs’.

In silico SSR marker identification
The presence of Simple Sequence Repeats (SSRs) in the
P. peruviana transcriptome was identified in silico using
Phobos [42]. A total of 5,971 SSR loci were found in the
Cape gooseberry cDNAs, where imperfect motifs were
the most abundant (5,568), in contrast to 403 loci repre-
senting perfect motifs (Table 5). Microsatellites were
searched in cDNAs avoiding redundant results in isotigs,
considering that searching in the alternative transcripts
could lead us to predict the same SSRs in different iso-
tigs corresponding to the same isogroup. Trinucleotide
(1,068) and hexanucleotide (3,036) motifs were the most
commonly found repetitions in the P. peruviana leaf
transcriptome, accounting for 68% of the SSRs identified,
in contrast to other plant studies where tri- and dinu-
cleotides were the most commonly found repeat units
[18,43,44].
We recently reported the first set of microsatellite

markers developed for P. peruviana and related species
[45] where the large majority of SSR loci was found in
Table 4 Protein domains identified in P. peruviana
transcriptome

CDD* Identifier Domain name Number of cDNAs

193328, 188079 Pentatricopeptide repeat
domain (PPR motif)

350

173623, 189373 Protein kinase domain 294

144508 NB-ARC domain 190

29257 WD40 domain 123

128654 RNA recognition motif 115

29102 RING-finger domain 96

191981 Leucine rich repeat
N-terminal domain

89

128515 Tyrosine kinase catalytic domain 84

Others 11633
*CDD: Conserved Domain Database.
untranslated regions (UTRs) of transcripts with similarity
to known proteins in public databases, leading to the
identification of two novel polymorphic SSRs related to
proteins involved in pathogen defense response. SSRs
prioritization for plant breeding programs can be done
via functional annotation of cDNAs associated with pre-
dicted SSRs and Gene Ontology annotations like ones
involved in plant defense. Here we used and updated
functional annotation of the transcriptome and the entire
collection of assembled transcripts to report ten novel
predictions for cDNA-derived SSRs in Cape gooseberry.
These SSRs are associated with proteins with gene ontol-
ogy annotations involved in plant defense to biotic stress
such as defense response to fungus, programmed cell
death, callose deposition in cell wall during defense re-
sponse, plant hypersensitive response, and jasmonic acid,
ethylene and salicylic acid hormones (Additional file 2:
‘Functional annotation of ten Physalis peruviana SSRs
markers related to plant defense’). The SRRs obtained in
this study are the raw materials for future studies in gen-
etic variation among Physalis populations, which can be
used for: construction of genetic maps, quantitative trait
loci (QTL) identification in this species and plant breed-
ing programs focused on phytosanitary Cape gooseberry
problems.

Gene model prediction in P. Peruviana
The genome of P. peruviana has not been sequenced yet,
nevertheless it is possible to generate gene model predic-
tions using the P. peruviana transcriptome and the gen-
omes of Solanum lycopersicum (tomato) or Solanum
tuberosum (potato), which are the two closest related
species that have genome sequence available [46,47]. The
cDNA to genomic DNA alignments were generated
using the Splign software package [48] as described in
Methods. All the assembled transcripts through the pre-
vious steps including 23,964 isotigs and 9,909 singletons,
were mapped to the S. lycopersicum genome, resulting in
12,436 (36.7%) aligned cDNAs, representing 8,801 gene
loci and 9,454 transcript models. On the other hand,
14,515 (42.9%) P. peruviana cDNAs were mapped to the
S. tuberosum genome, representing 10,166 gene loci and
10,992 transcript models, as summarized in Table 6.
Splign requires the consensus intron sequences (GT/AG



Table 6 Cape gooseberry gene model prediction overview
from alignments to the tomato and potato genomes

Aligned cDNAs Gene loci Transcript models

S. lycopersicum genome 12,436 8,801 9,454

S. tuberosum genome 14,515 10,166 10,992
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or GC/AG) at the splice sites; therefore strand orienta-
tion for the multiple-exon alignments from the Splign
output can be decided by the 4-nucleotide sequences at
the two intron(s) ends. At the moment, no strand orien-
tation is assigned to single exon transcripts, as the query
sequence gets aligned to a continuous region in the gen-
ome, unless there is strong polyadenylation signal.
The majority of aligned exons have an identity with the

genomic sequence ranging from 70% to 95%, with an
average identity of 87.6%. Figure 4 shows a number of fea-
tures of the gene models from alignments of P. peruviana
to S. tuberosum genome. Most of gene models contain
less than 20 exons. The longest one has 51 exons. The
average length of the aligned exons is 228 base pairs and
that of the intron is 1,287 base pairs. The intron-exon
boundaries as predicted by cDNA to genome alignments
are highly conserved when both the S. tuberosum and S.
lycopersicum genomes are used to align the P. peruviana
transcriptome. We have generated General Feature Format
(GFF) files for the gene models (Additional file 3: ‘Cape
gooseberry gene model predictions using the tomato gen-
ome’ and Additional file 4: ‘Cape gooseberry gene model
predictions using the potato genome’).
Figure 4 Predicted gene models features for alignments of P. peruvia
Distribution of number of exons per transcript. C) Distribution of exon leng
Further examination of the gene models revealed that
there are 11,949 P. peruviana cDNAs mapped to both
S. lycopersicum and S. tuberosum genome as shown in
Figure 5 (panel A-a), among which 9,795 cDNAs have
multiple-exon gene models on both genomes (panel A-b).
9,436 (96%) multiple-exon cDNAs have at least one intron
occuring at exactly the same position on the cDNA when
aligned to the S. lycopersicum and S. tuberosum genomes
(panel A-c). Furthermore, there are 6,358 cDNAs having
exactly the same set of intron positions on the cDNA
when mapped to the two genomes (Figure 5 panel A-d).
However, for those intron positions that have the same
coordinates in the cDNA when mapped to the two gen-
omes, the length and thus the sequence of corresponding
introns in the gene models from the two genomes have
large variances, as revealed in Figure 5 B.
Intron length variation is exemplified in Figure 5C,

where a P. peruviana cDNA (ID Php00a06743.16696)
was mapped to both the S. lycopersicum and S. tuberosum
genomes, resulting in two identical sets of exons, but dif-
ferent sets of intron lengths (a, b). There is also a number
of S. lycopersicum and S. tuberosum cDNAs that have the
same predicted gene model in their own genome, respect-
ively (all the cDNAs are aligned by Splign). Figure 5C (c)
shows the nucleotide sequences around the first intron
site of the 3 cDNAs from P. peruviana, S. tuberosum and
S. lycopersicum. Primers targeting conserved flanking
exonic regions as indicated can be used to amplify in-
tronic fragments from all three species, P. peruviana,
S. lycopersicum and S. tuberosum.
na to the S. tuberosum genome. A) Distribution of exon identities. B)
ths. D) Distribution of intron lengths.



Figure 5 Gene model prediction in P. peruviana. A) The number of P. peruviana cDNAs that (a) can be mapped to both S. lycopersicum and
S. tuberosum genomes; (b) have multiple-exon models on both genomes; (c) have at least one common intron position (on the cDNA); (d) all
introns positions are the same in gene models from the two genomes. B) For those “common” intron points, the intron lengths in the predicted
gene models on the two genomes have big variation. C) A typical example: (a) P. peruviana cDNA Php00a06743.16696 and S. lycopersicum cDNA
Solyc01g095570.2.1 have identical gene models on S. lycopersicum chromosome SL2.40ch01. (b) The same P. peruviana cDNA and S. tuberosum
cDNA PGSC0003DMT400000597 have identical gene models on S. tuberosum superscaffold PGSC0003DMB000000010. The exon sets of the
P. peruviana cDNA in panel A and panel B are identical but the two intron sets have remarkable differences. (c) Nucleotide sequences at the first
intron junction. Primers can be designed at the indicated positions to amplify intron regions from the Solanaceae.
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The conserved orthologous set (COS) markers are sets
of genes conserved throughout evolution in both sequence
and copy number [49,50] that have been used extensively
in comparative genomic and phylogenetic studies in
Solanaceae. The COS marker strategy involves design of
universal exonic primers among closely related species
based on ortholog identification and multiple sequence
alignment to amplify intronic/exonic regions. In the
present study, we present another convenient approach to
find universal exon regions - gene model prediction by
Splign using two or more related genomes to define
common models. Given the fact that the P. peruviana
genome is not available yet, and genomes of both
S. lycopersicum and S. tuberosum are only in their initial
versions, gene model predictions would be particularly
valuable in obtaining specific intronic regions for marker
and SNP discovery in non-model species, as well as for
comparative genomic and phylogenetic studies.
We also aligned the S. lycopersicum transcriptome to

its own genome (data from http://solgenomics.net/
organism/solanum_lycopersicum/genome) and also to
the S. tuberosum genome [48] using Splign. We mapped

http://solgenomics.net/organism/solanum_lycopersicum/genome
http://solgenomics.net/organism/solanum_lycopersicum/genome
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34,704 from a total of 34,727 S. lycopersicum cDNAs to
its own genome with 100% identity (data not shown).
However, only 28,366 (81.7%) S. lycopersicum cDNAs
can be mapped to S. tuberosum genome with an average
identity of 90%. In the Cape gooseberry case only 42.9%
P. peruviana cDNAs get mapped to the S. tuberosum
genome, suggesting that P. peruviana is evolutionarily
more distant from S. lycopersicum and S. tuberosum than
the two species from each other. We then conducted fur-
ther analysis to estimate the phylogenetic location of
P. peruviana in the Solanaceae family.

Experimental validation of intron positions
The experimental validation of predicted exon/intron
boundaries in the assembled cDNAs was carried out in a
small sample of cDNAs, which are putative homologous
of plant disease resistance genes and can be mapped to
both the potato and tomato genomes. For each of these
cDNAs, a pair of COSII primers was designed to span
one putative intron (based on the computational pre-
dicted gene model) for PCR amplification of the genomic
DNA. The information of the primers used is summar-
ized in Table 7. All the amplified PCR products had the
expected length and then were sequenced using conven-
tional Sanger sequencing. Comparison of the amplified
genomic fragments to their corresponding cDNAs
revealed that all the eight samples we sequenced indeed
showed the exon/intron boundaries consistent with the
gene models predicted by Splign. Three of them had the
experimentally identified intron positions exactly the
same as the predicted. In the other five samples, the pre-
dicted intron positions are a few base pairs (1–6 bp)
away from the experimentally identified sites. The results
are shown in Table 8.
Table 7 Primers used for experimental validation of intron po

COSII Marker Primer sequences (5′ – 3′)

C2_At3g07100 ACGAACGATGTGCTGCTGGATATAC

AGACCCTGGGGATCTAAGCTCTCTG

C2_At 2 g35920 TGCTTGCAACCAACATAGCTGAG

AAGCTCTTGTAGTGGTGTTCGAAG

C2_At 3 g06580 TGCTCAACTCACATGTGAGTGTGAAAG

AGCAAACCCAGATTTTGCCATAAC

C2_At 5 g41480 TATTCGTGCTGGTCTGGAGAGTGC

ATGATCCTTGTCATTCGCCATAGC

C2_At 5 g27620 ATCTACAATGGTCCGTGATGGAAC

TTCCTCTGCCTTGCAAGCTGC

C2_At 3 g04870 ACGCGTGCTAGTATCCAGAGG

TGACATGGCAAAGCCCACTAACATAC

C2_At 5 g60160 ACACAATGCTAATCAACGTTATGC

TCATCCACCGCGCACATTTC
Phylogenetic relationship of P. Peruviana with other
solanaceae species
We found five putative orthologs among P. peruviana,
S. lycopersicum, S. tuberosum, Capsicum spp (pepper),
S. melongena (eggplant) and Petunia spp. The proteins
are: xyloglucanase inhibitor containing pepsin_retropepsin
superfamily domain, mitochondrial catalytic protein con-
taining PP2Cc superfamily domain, mitochondrial small
ribosomal subunit protein containing RPS2 superfamily
domain, phosphate transporter and a functionally un-
known protein.
To obtain the best accuracy of the phylogenetic tree

to be built, we compared the five putative orthologous
proteins to the NCBI’s plant RefSeq protein database.
There are seven other species that have BLAST hits
with an expect value< 1e-5 to all the five orthologs from
the previous steps. These seven species are: Arabidopsis
thaliana, Populus trichocarpa (black cottonwood),
Ricinus communis (castor bean), Vitis vinifera (grape),
Oryza sativa (rice), Zea mays (corn) and Sorghum bicolor,
none of which belongs to the Solanaceae family. The
phylogenetic tree was constructed between thirteen plants
using the software Phyml [51] and MEGA [52]. The tree
generated has good bootstrapping support at all of the
branch points except for the position of V. vinifera. We
removed the V. vinifera sequence and constructed the tree
presented in Figure 6.
The phylogenetic relationship among S. lycopersicum, S.

tuberosum, Capsicum spp, S. melongena and Petunia spp is
consistent with a previous study by Wang Y et al. [53], in
which the tree was constructed based on an unduplicated
conserved syntenic segment in the genomes of the five
plants. Our results showed that P. peruviana branched out
before the divergence of the other five Solanaceae family
sitions

P. peruviana unique identifier Primer position
in the cDNA

Php00a01046.06900 F-1156/1178

R-997/1022

Php00a05845.15798 F-424/446

R-172/195

Php00a06435.16388 F-715/740

R-784/806

Php00a02812.11168 F-836/859

R-646/669

Php00a03329.12202 F-776/799

R-720/740

Php00a02563.10671 F-1226/1246

R-954/977

Php00a01985.09526 F-278/297

R-482/505



Table 8 Comparison of validated exon/intron boundaries
between PCR results and the predicted gene models

P. peruviana
unique identifier

Position of boundary of the 2
adjacent exons at the mRNA

Match predicted
gene model?

PCR results Predicted model

Php00a01046.06900 1077/1078 1077/1078 Precisely

Php00a05845.15798 297/298 294/295 3 bp shift

Php00a02208.09960 653/654 647/648 6 bp shift

Php00a06435.16388 774/775 774/775 Precisely

Php00a02812.11168 751/752 749/750 2 bp shift

Php00a03329.12202 756/757 756/757 Precisely

Php00a02563.10671 1040/1041 1037/1038 3 bp shift

Php00a01985.09526 416/417 417/418 1 bp shift
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members. Details of the phylogenetic analysis are summar-
ized in Additional file 5: ‘Phylogenetic analysis workflow’.
Conclusions
This report constitutes the first genomic resource for the
Physalis genus providing a large collection of assembled
and functionally annotated cDNAs. The Physalis genus
is part of the Solanaceae family, whose members are im-
portant sources of food, spice and medicine. However,
genomic data for other members of the Physalis genus is
limited. Therefore, this resource will enhance compara-
tive studies within the family and the transcriptome will
serve as a starting point for gene discovery in Physalis
and for future annotations of the Physalis peruviana gen-
ome sequence. A number of the genes identified in this
study provide candidates for resistance genes against
viruses, fungal or bacterial pathogens. Additionally, this
study is a potentially invaluable resource for mapping
and marker-assisted breeding in Physalis peruviana and
closely related species like Physalis philadelphica,
Figure 6 Phylogenetic relationship among Solanaceae species. The Ca
the divergence of the other five Solanaceae family members: S. lycopersicum
numbers are bootstrapping values. The tree was constructed using the ami
commonly known as tomatillo, which are food staples in
Central American countries.
Methods
cDNA synthesis and cDNA library normalization
Fresh leaf tissue from the Cape gooseberry Physalis
peruviana Colombian ecotype plants from the Colombian
in vitro germplasm bank (accession number 09U216-6) at
the Corporacion Colombiana de Investigacion Agrope-
cuaria (CORPOICA) were processed and flash frozen in li-
quid nitrogen. Tissues were immediately sent to Bio S&T
Inc. (Montreal, QC, Canada) where RNA extraction,
cDNA synthesis and normalization were performed.
Briefly, RNA was extracted using a modified TRIzol
method (Invitrogen, USA). cDNA synthesis was carried
out using 16 μg total RNA by a modified SMART™ cDNA
synthesis method and then were normalized by a modified
normalization method [54,55] where full-length cDNA
was synthesized with two set of primers for driver and
tester cDNA. Single-stranded cDNA was used for
hybridization instead of double-stranded cDNA. Excess
amounts of sense-stranded cDNA hybridized with anti-
sense-stranded cDNA. After hybridization, duplex DNA
was removed by hydroxyapatite chromatography. Normal-
ized tester cDNA was re-amplified and purified with tester
specific primer L4N by failsafeTm PCR (Epicentre Biotech-
nologies, USA), while driver cDNA was unable to amplify
using L4N primer. Size fractionation of re-amplified cDNA
was done in a 1% agarose gel. Greater than 0.5 kb cDNA
fragments were purified by electroelution and after deter-
mining the concentrations, purified cDNAs were precipi-
tated and stored in 80% EtOH at −80°C.
cDNA sequencing and assembly
The normalized cDNA library was prepared for sequen-
cing at Emory Genomics Center (Atlanta, GA, USA).
pe gooseberry, P. peruviana is phylogenetically branched out before
, S. tuberosum, Capsicum spp, S. melongena and Petunia spp. The
no acid substitution model with PhyML package.
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Approximately 5 μg of purified cDNA was sheared into
small fragments via Covaris E210 Acoustic Focusing In-
strument and sequenced in three-fourths 454 plate run
on a 454 GS-FLX Titanium platform (Roche). The SFF
files containing raw sequences and quality scores were
submitted to the NCBI Sequence Read Archive (acces-
sion number SRP005904).
SeqClean [19,56] was used before and after the assembly,

for automated trimming and validation of the raw read files
and the assembled file. SeqClean was launched with a mini-
mum and maximum length cut-off of 50pb and 600pb. We
used the Newbler software, GS de novo Assembler (Roche,
version 2.5.3) with default parameters, to assemble reads into
contigs, then further into isotigs. Isotigs within an isogroup
represent putative alternatively spliced transcripts of a gene.
Reads that cannot be connected with any others were
defined as singletons.

Functional annotation
After assembly, a local BLASTX [22,23] was used to com-
pare the assembled isotigs and singletons against the Uni-
ProtKB/Swiss-Prot database (released on April-2011) using
an expect value threshold of 1e-5. The remaining cDNAs
that did not get hits from UniProtKB/Swiss-Prot were
compared against the NCBI RefSeq database (Release 47).
The BLASTX output (XML format) was subjected to Blas-
t2GO [24] for Gene Ontology (GO) analysis. Blast2GO
retrieves the most significant GO terms associated with the
obtained hits to the query sequence. When possible, Blas-
t2GO also provides Enzyme commission (EC) numbers
and the metabolic pathways they participate. We also com-
pared all the P. peruviana cDNAs against the NCBI CDD
database [30] using an expect value threshold of 1e-5 and
selected all the hits where the aligned length is more than
2/3 of the targeted CDD length for domain identification.

SSR identification
Phobos (version 3.3.11) (http://www.rub.de/spezzoo/cm/
cm_phobos.htm) was used to identify microsatellites (SSRs)
in the publicly available collection of assembled transcripts
and singletons [GenBank: JO124085-JO157957]. Perfect
and imperfect searches were performed using default
parameters.

Gene model prediction
Gene model prediction was carried out using the software
package Splign [48], which has been proven to be able to
accurately compute cDNA-to-Genome alignment with
high efficiency. At the heart of the program is a compart-
mentization algorithm which identifies possible gene
duplications, and a refined alignment algorithm recogniz-
ing introns and splice signals. The complete genome of
P. peruviana is not available yet. The two closest relatives
of P. peruviana that have genomic sequences available are
S. lycopersicum (tomato) (data from http://solgenomics.
net/organism/solanum_lycopersicum/genome; ITAG Re-
lease 2.3) and S. tuberosum (potato; PGSC_DM_v3.4) [47].
Therefore we used the draft genomes of potato and to-
mato as the reference genome to map the assembled
P. peruviana leaf transcriptome.

Phylogenetic analysis
We selected orthologous proteins using the all-to-all align-
ment and mutual best hits selection strategy [57]. Pairwise
alignments were performed using BLASTP (expect value
< 1e-5) using the RefSeq proteins from S. lycopersicum,
S. tuberosum, Capsicum spp, S. melongena and Petunia spp.
At the time of analysis, the numbers of RefSeq proteins
from the five species were: 4,788 for S. tuberosum; 6,008 for
S. lycopersicum; 263 for S. melongena; 1,701 for Capsicum
spp and 1,226 for Petunia spp. Fifteen putative orthologous
proteins were found, which are present in all five species.
Next, we aligned the assembled P. peruviana isotigs using
BLASTX (expect value< 1e-5) against the database made
of the fifteen orthologous groups obtained from the previ-
ous step (altogether 75 proteins). We identified eleven
orthologous groups of proteins from all the five plants with
hit(s) from the P. peruviana transcriptome. The best hit
was chosen when multiple P. peruviana proteins hit a given
group. We manually examined the alignments in eleven
clusters and removed those with large length variation (the
longest one is >20% of the shortest one) and susceptible
similarities (< 65%). Thereafter we ended up with five
orthologous groups among the six species.
To obtain higher accuracy phylogenetic tree, we further

compared the five orthologous groups against the entire
plant RefSeq protein database using BLASTP. There are
altogether seven more plants that have significant hit(s) (ex-
pect value< 1e-5) for all the five orthologous groups. To
this step we have thirteen plants for the five orthologous
groups. We concatenated the five proteins in each species
(in the same order) and aligned them using the program
MUSCLE [58]. The alignment results were manually refined
and subjected to Phyml [51] and MEGA version 5 [52] for
phylogenetic tree construction. Bootstrapping was repeated
1,000 times. Both programs produced the same results.

Additional files

Additional file 1: Cape gooseberry cDNAs. The annotated FASTA
sequences of the assembled transcriptome, including singletons.

Additional file 2: Functional annotation of ten Physalis peruviana
SSRs markers related to plant defense.

Additional file 3: Cape gooseberry gene model predictions using
the tomato genome. Gene model predictions using Splign from cDNA
to genome alignments to the tomato genome.

Additional file 4: Cape gooseberry gene model predictions using
the potato genome. Gene model predictions using Splign from cDNA
to genome alignments to the potato genome.

Additional file 5: Phylogenetic analysis workflow.
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Gathering knowledge about the proteins involved in erythrocyte invasion by Plasmodium merozoites is the
starting point for developing new strategies to control malarial disease. Many of these proteins have been
studied in Toxoplasma gondii, where some belonging to the Moving Junction complex have been identified.
This complex allows a strong interaction between host cell and parasite membranes, required for parasite
invasion. In this genus, four rhoptry proteins (RON2, RON4, RON5 and RON8) and one micronemal protein
(TgAMA-1) have been found as part of the complex. In Plasmodium falciparum, RON2 and RON4 have been
characterized. In the present study, we identify PfRON5, a ~110 kDa protein which is expressed in merozoite
and schizont stages of the FCB-2 strain.
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1. Introduction

Among the five parasites causing malaria in humans, Plasmodium
falciparum is the species responsible for the highest morbidity; ~250
million cases of malaria are reported per year and a 93% of them are
attributed to this parasitic species (WHO, 2009). Different strategies
to eradicate this disease have been designed, such as pesticides,
mosquito nets, antimalarial drugs, and different types of vaccines.
However, several factors such as the global expansion of the disease
(due in part to the increase of strains resistant to antimalarial drugs),
the parasite's high genetic variability, the vector resistance to
insecticides and the poor socioeconomic conditions of affected
populations justify the search and adoption of new measures, such
as the development of a fully effective vaccine (Good, 2001).

Merozoite surface proteins and some rhoptry and micronemal
proteins have been considered as vaccine targets, since they are
exposed to the immune system during the invasion of red blood cells
(Cowman et al., 2002). This invasion begins with the merozoite
reversible binding to the erythrocyte surface, mainly mediated by the
Merozoite Surface Proteins (MSPs) (Chitnis and Blackman, 2000).
Subsequently, a high affinity binding known as Tight Junction (TJ)
occurs between the merozoite apical end and the erythrocyte
membrane. The TJ migrates from the anterior to the posterior end of
the merozoite during invasion (Moving Junction) activating the actin-
myosinmachinery (Alexander et al., 2005; Baum et al., 2008; Straub et
al., 2009). As the parasite is moving in, the parasitophorous vacuole is
formed, in which the parasite will develop and replicate for the next
cell generation (Kaneko, 2007).

Recently, some authors have identified the proteins present in
Toxoplasma gondii TJ complex (another member of the Apicomplexa
phylum), using immunoprecipitation techniques. This TJ complex is
formed by a micronemal protein, known as the apical membrane
antigen 1 (AMA-1), and four rhoptry neck proteins (TgRON2, 4, 5 and
8) (Alexander et al., 2005; Baum et al., 2008; Straub et al., 2009).
Besteiro and coworkers have recently proposed a model for TJ
proteins organization, where TgRON2 and TgRON5 are exported to the
host cell membrane, while TgRON4 and 8 are translocated to the host
cell cytoplasm. In this model, TgRON2 and TgRON5 are exposed to the
host cell surface and TgRON2 acts as a specific receptor for TgAMA-1,
which is located on the parasite membrane (Besteiro et al., 2009).

The presence of orthologous genes which encode for RON proteins
in different Apicomplexa members suggests that the TJ complex
formation is a conserved mechanism in this phylum (Proellocks et al.,
2010). TgRON2 and TgRON4 homologous proteins have been
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Abstract

Background: This study describes a bioinformatics approach designed to identify Plasmodium vivax proteins potentially
involved in reticulocyte invasion. Specifically, different protein training sets were built and tuned based on different
biological parameters, such as experimental evidence of secretion and/or involvement in invasion-related processes. A
profile-based sequence method supported by hidden Markov models (HMMs) was then used to build classifiers to search
for biologically-related proteins. The transcriptional profile of the P. vivax intra-erythrocyte developmental cycle was then
screened using these classifiers.

Results: A bioinformatics methodology for identifying potentially secreted P. vivax proteins was designed using sequence
redundancy reduction and probabilistic profiles. This methodology led to identifying a set of 45 proteins that are potentially
secreted during the P. vivax intra-erythrocyte development cycle and could be involved in cell invasion. Thirteen of the 45
proteins have already been described as vaccine candidates; there is experimental evidence of protein expression for 7 of
the 32 remaining ones, while no previous studies of expression, function or immunology have been carried out for the
additional 25.

Conclusions: The results support the idea that probabilistic techniques like profile HMMs improve similarity searches. Also,
different adjustments such as sequence redundancy reduction using Pisces or Cd-Hit allowed data clustering based on
rational reproducible measurements. This kind of approach for selecting proteins with specific functions is highly important
for supporting large-scale analyses that could aid in the identification of genes encoding potential new target antigens for
vaccine development and drug design. The present study has led to targeting 32 proteins for further testing regarding their
ability to induce protective immune responses against P. vivax malaria.
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Introduction

Human malaria is caused by five parasite species from the genus

Plasmodium, of which Plasmodium falciparum has a preferential

distribution in African countries and is particularly important,

since it produces most of the fatal cases. The second species in

clinical importance for humans is Plasmodium vivax (predominantly

distributed throughout Asia and America). P. vivax does not cause

such an imminent life-threatening condition as that caused by P.

falciparum; however, it imposes an important social and economic

toll on the world’s poorest countries, as reflected in the large

number of disability adjusted life years (DALYs) associated with its

incidence [1]. Furthermore, several aspects still hamper the total

eradication of this disease, which include (1) the gradual

emergence of antimalarial drug resistance among parasite strains,

as well as (2) insecticide-resistant populations of the malaria

mosquito vector, and (3) the lack of an effective vaccine [2].

Progress in P. vivax research has been notably delayed by

contrast with P. falciparum, partly due to the difficulty of

establishing a long-term in vitro culture of this species given that

it is restricted to invading human reticulocytes which only account

for ,1–2% of circulating red blood cells. This difficulty has been

reflected in the delayed release of its genome sequence [3], the

transcriptional profile of its intra-erythrocyte developmental cycle
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Rhamnose-binding lectins (RBLs) in vertebrates function in immunity as pattern recognition receptors,
opsonization agents, and activators of pro-inflammatory cytokines. Although they have been identified in
some invertebrate taxa, their distribution, function, and evolutionary patterns in basal metazoans, remain
largely unknown. A unique RBL-containing protein composed of 8 thrombospondin type 1 repeats (TSRs) and
a single RBL domain has been identified in the colonial hydroid Hydractinia symbiolongicarpus. This
Rhamnospondin (Rsp) gene was specifically and constitutively expressed in the mouth of feeding polyps. Here
we report the full characterization of a second Rsp gene from aH. symbiolongicarpus BAC library. Rsp1 and Rsp2
were 1.1 kb apart, shared the same domain architecture and were 93% identical. Introns differed substantially
in size and sequence, excepting two introns that were nearly identical, suggesting the action of inter-locus
recombination. Sequencing full-length cDNAs from a wild-type individual corroborated the exon boundaries
predicted from genomic DNA and showed gene polymorphism at both loci. Database searches and
phylogenetic analyses showed that Rspwas found only in hydrozoans, indicating that it is an innovation of the
cnidarian class Hydrozoa. Phylogenetic analysis of Rsp sequences in hydroids show a tendency of clustering
paralogous genes, suggesting that they have evolved by concerted evolution.
hrombospondin type-1 repeat;

idad Nacional de Colombia, Cr
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1. Introduction

Rhamnose-binding lectins (RBLs) are a family of L-rhamnose
recognizing proteins first isolated from the eggs of the sea urchin
Anthocidaris crassispina (Ozeki et al., 1991) and later identified in a
variety of vertebrate and invertebrate animals. RBLs are found as a
single carbohydrate-binding domain, as two or three tandemly
repeated domains, or as part of multi-domain proteins. The
carbohydrate-binding domain consists of about 95 amino acids
having 8 highly conserved cystein residues and two conserved N-
and C-terminal motifs (Tateno et al., 2002a). Internal disulfide bonds
create a unique α/β fold with long loops important for sugar
recognition. RBLs have been well studied in fish and have proved to
play an important role in immunity. In these species, RBLs are
constitutively expressed by cells of the immune system such as
lymphocytes, monocytes, neutrophils, gill mucous cells, intestine
goblet cells, spleen cells, and thrombocytes (Hosono et al., 1999;
Okamoto et al., 2005). In addition, RBL expression can be induced in
peritoneal macrophages after an inflammatory reaction. RBLs recog-
nize lipopolysaccharides (LPS) and lipoteichoic acid from Gram-
negative and Gram-positive bacteria, displaying preferential affinity
for some types of LPSs, such as the ones found in Escherichia coli K-12
and Shigella flexneri 1A strains (Tateno et al., 2002b). In addition, it has
been shown that RBLs bind to glycolipids and glycoproteins of the
parasitic microsporidian Glugea plecoglosi (Watanabe et al., 2008). In a
recent study, it was demonstrated that RBLs from the chum salmon
(Oncorhynchus keta) induced the expression of the inflammatory
cytokines IL-1, IL-8 and TNF-α in cell lines derived from rainbow trout
(Oncorhynchus mykiss) peritoneal macrophages and gonadal fibro-
blasts (Watanabe et al., 2009). This induction was mediated by the
recognition of globotriaosylceramide (Gb3), a sphingolipid located in
the cell membrane lipid rafts. Moreover, RBLs displayed opsonic
properties on the macrophage cell lines by interacting with Gb3 on
the cell membrane. It has also been suggested that RBLs secreted by
haemocytes from the ascidian Botryllus schlosseri can act as opsonins
(Gasparini et al., 2008; Menin and Ballarin, 2008). Thus, RBLs are
likely to act at various events of inflammatory reactions, from
recognition of molecular patterns to opsonization and activation of
pro-inflammatory cytokines.

Previously, we characterized an RBL-encoding gene in the colonial
hydroid Hydractinia symbiolongicarpus (Cnidaria: Hydrozoa). This hy-
droid is a model animal system to study immune mechanisms in basal
metazoans, and is found in near-shorewaters of the northeastern United
States, growing as a surface incrustation of gastropod shells occupied by
pagurid hermit crabs. Colonies are diploblastic, dioecious, and composed
by a network of polyps interconnected through endodermal canals.

http://dx.doi.org/10.1016/j.gene.2010.11.013
mailto:lfcadavidg@unal.edu.co
http://dx.doi.org/10.1016/j.gene.2010.11.013
http://www.sciencedirect.com/science/journal/03781119
marino
Highlight



Gene 474 (2011) 39–51

Contents lists available at ScienceDirect

Gene

j ourna l homepage: www.e lsev ie r.com/ locate /gene
Evolutionary patterns of killer cell Ig-like receptor genes in Old World monkeys

Catalina Palacios a,b, Laura C. Cuervo a, Luis F. Cadavid a,b,⁎
a Department of Biology, Universidad Nacional de Colombia, Cr. 30 # 45-03, Bogotá, Colombia
b Institute of Genetics, Universidad Nacional de Colombia, Cr. 30 # 45-03, Bogotá, Colombia
Abbreviations: KIR, killer cell Ig-like receptors; NK, N
eceptor tyrosine-based inhibitory motif; ITAM, imm
activation motif; MHC, major histocompatibility com
chromosome.
⁎ Corresponding author. Institute of Genetics, Univers

30 # 45-03, Ed. 426, Bogotá, Colombia. Fax: +57 1 3165
E-mail address: lfcadavidg@unal.edu.co (L.F. Cadavid

0378-1119/$ – see front matter © 2010 Elsevier B.V. Al
doi:10.1016/j.gene.2010.12.006
a b s t r a c t
a r t i c l e i n f o
Article history:
Accepted 14 December 2010
Available online 24 December 2010

Received by Leonardo Marino-Ramirez

Keywords:
Killer cell Ig-Like receptor
Old World monkeys
Evolution
Vervet monkey
Olive baboon
Colobus monkey
Killer cell Ig-like receptors (KIRs) modulate the cytotoxic effects of Natural Killer cells. KIR genes are encoded
in the Leucocyte Receptor Complex and are characterized by their high haplotypic diversity and
polymorphism. The KIR system has been studied in only three species of Old World monkeys, the rhesus
macaque, the cynomolgus macaque, and the sabaeus monkey, displaying a complexity rivaling that of
hominids (human and apes). Here we analyzed bacterial artificial chromosome draft sequences spanning the
KIR haplotype of three other Old World monkeys, the vervet monkey (Chlorocebus aethiops), the olive baboon
(Papio anubis) and the colobus monkey (Colobus guereza). A total of 25 KIR gene models were identified in
these species, predicted to encode receptors with 1, 2, and 3 extracellular Ig domains, all of them with long
cytoplasmic domains having two putative ITIMs, although three had a positively charged residue in the
transmembrane domain. Sequence and phylogenetic analyses showed that most Old World monkeys shared
five classes of KIR loci: i) KIR2DL5/3DL20 in the most centromeric region, followed by ii) the single Ig domain-
encoding locus KIR1D, iii) the pseudogene KIR2DP, iv) the conserved KIR2DL4, and v) the highly diversified
KIR3DL/H loci in the telomeric half of the cluster. An exception to this pattern was the KIR haplotype of the
colobus monkey that lacked the KIR1D, KIR2DP, and KIR2DL4 loci of the central region of the cluster. Thus, Old
World monkeys display a broad spectrum of KIR haplotype variation that has been generated upon an
ancestral haplotype architecture by gene duplication, gene deletion, and non-homologous recombination.
atural Killer; ITIM, immunor-
unoreceptor tyrosine-based
plex; BAC, bacterial artificial
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1. Introduction

Killer cell Ig-like receptors (KIRs) play a key role modulating the
cytotoxic response of Natural Killer (NK) cells against self-altered cells.
They interact with MHC class I molecules on the surface of the target
cell triggering either an activating response that results in cytotoxicity
or an inhibitory signaling conducing to anergy (Moretta et al., 2003).
KIRs are typically constituted by two (2D) or three (3D) extracellular
immunoglobulin (Ig) domains, a stem region, a transmembrane
region, and a long (L) or short (S) cytoplasmic domain. KIRs with
two Ig domains are of two types, one lacking the D0 domain due to the
presence of a pseudoexon 3, and the other lacking the D1 domain due
to a deletion of exon 4 (Vilches and Parham, 2002). Receptors with
long cytoplasmic domains contain two immunoreceptor tyrosine-
based inhibitory motifs (ITIMs) and are therefore inhibitory, whereas
KIRswith short cytoplasmic domains do not have ITIMs, are activating,
and possess a positively charged amino acid in their transmembrane
region allowing the interaction with adaptor molecules such as
DAP12/10 that contain immunoreceptor tyrosine-based activation
motifs (ITAMs) (Lanier, 2003). In primates, KIRs are encoded within
the Leukocyte Receptor Complex (LRC), flanked by the Leukocyte Ig-
like Receptor (LILR) gene cluster at the centromeric end, and by the IgA
Fc receptor gene (FcAR) at the telomeric end (Trowsdale et al., 2001).
There are two groups of KIR haplotypes in humans that vary in gene
content from 7 to 14 loci, although they have in common three
framework genes, KIR3DL3 in the 5′ end, KIR2DL4 in the central region,
and KIR3DL2 in the 3′ end (Vilches and Parham, 2002). These KIR
framework genes delimit two regions where most variation in gene
content occurs (Abi-Rached and Parham, 2005). This KIR cluster
organization has been relativelywell conserved in the other hominids,
i.e., chimpanzees (Sambrook et al., 2005), bonobos (Rajalingam et al.,
2001), gorillas (Rajalingam et al., 2004), and orangutans (Guethlein
et al., 2007).

KIRs have been studied in only three species of Old World
monkeys (Cercopithecidae), the rhesus monkey (Hershberger et al.,
2001; Sambrook et al., 2005; Blokhuis et al., 2010; Kruse et al., 2010),
the cynomolgus macaque (Bimber et al., 2008; Campbell et al., 2009),
and the West African sabaeus monkey (Hershberger et al., 2005). The
rhesus monkey has the best-characterized KIR system among these
species, including a completely sequenced KIR haplotype (Sambrook
et al., 2005). The rhesus monkey KIR system displays high haplotypic
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Malaria remains one of the most prevalent parasitoses worldwide. About 350 to 500 million febrile episodes
are observed yearly in African children alone and more than 1 million people die because of malaria each
year. Multiple factors have hampered the effective control of this disease, some of which include the complex
biology of the Plasmodium parasites, their high polymorphism and their increasingly high resistance to
antimalarial drugs, mainly in endemic regions. The ancient interaction between malarial parasites and
humans has led to the fixation in the population of several inherited alterations conferring protection against
malaria. Some of the mechanisms underlying protection against this disease are described in this review for
hemoglobin-inherited disorders (thalassemia, sickle-cell trait, HbC and HbE), erythrocyte polymorphisms
(ovalocytosis and Duffy blood group), enzymopathies (G6PD deficiency and PK deficiency) and
immunogenetic variants (HLA alleles, complement receptor 1, NOS2, tumor necrosis factor-α promoter
and chromosome 5q31–q33 polymorphisms).
CR1, Complement receptor-1;
; DARC, Duffy antigen receptor
ing protein; G6PD, Glucose-6-
e; HbC, Hemoglobin C; HbE,
in H; HbS, Hemoglobin S; HE,
en; ICs, Immune complexes;
inamide adenine dinucleotide
xide; NOS, NO synthase; NOS2,
r cells; PEP, Phosphoenolpyr-
iparum erythrocyte membrane
vate kinase; PMM, Prior mild
n ovalocytosis; SCD, Sickle-cell
or necrosis factor.

unología de Colombia (FIDIC),
15269.
arroyo).

ll rights reserved.
© 2010 Elsevier B.V. All rights reserved.
1. Introduction

Malaria is a parasitic disease transmitted by Anopheline mosqui-
toes and is highly widespread throughout tropical and subtropical
regions. The exact magnitude of the problem still remains unknown
(Carvalho et al., 2002) since this disease is most commonly found in
poor countries (Olumese, 2005) having less developed health systems
and control strategies (Phillips, 2001). In these areas, the high rates of
morbidity and mortality can be mainly attributable to the lack of
access to effective treatment (Suh et al., 2004) and to the growing
parasite resistance to antimalarial drugs such as chloroquine and
pyrimethamine (Smith et al., 2002). According to the World Malaria
Report 2008, published by the World Health Organization and
UNICEF, 3.3 billion people living in 109 countries or territories were
at risk of acquiring malaria by the end of 2006. It has been calculated
that 250 million clinical episodes of malaria occur each year (mainly
due to Plasmodium falciparum and Plasmodium vivax infections), of
which more than 1 million people die (WHO and UNICEF, 2008).

The immune response induced in humans by infection caused by
malarial parasites is complex and varies depending on the level of
endemicity, epidemiological factors, genetic makeup, host age,
parasite stage and parasite species. Repeated infection and continuous
exposure are required to achieve clinical immunity (which reduces
the risk of death frommalaria and reduces the intensity of the clinical
symptoms) and later anti-parasitic immunity (which directly reduces
the numbers of parasites in an infected individual or inhibits parasite
replication) (Mohan and Stevenson, 1998). Both innate and acquired
immunity processes are invoked during the infection. Resistance
involves genetically-based resistance mechanisms and cell-mediated
immunological mechanisms, but also specific antibodies, which are
able to reduce the severity of the symptoms and mortality are found
among themain actors in the acquired immune response (Smith et al.,
2002).

Innate immunity can be defined as being the host cells' ability to
resist infection by the parasite, irrespective of their previous exposure
to it (the review by Stevenson and Riley, 2004 gives detailed
information about innate immunity against malaria). Resistance
mechanisms have been described in both sporozoite entry to liver
cells and erythrocyte invasion by merozoites (Yuthavong and
Wilairat, 1993) (Fig. 1). Genetically-based resistance is involved in
either altering erythrocyte invasion bymerozoites, in lowering parasite
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The Aotus nancymaae (owl monkey) is an important animal model in biomedical research, particularly for the
preclinical evaluation of vaccine candidates against Plasmodium falciparum and Plasmodium vivax, which
require a precisely typed major histocompatibility complex. The exon 2 from A. nancymaae MHC-DPA1 gene
was characterised in order to infer its allelic diversity and evolutionary history. Aona-DPA1 shows no
polymorphism and is related to other primate DPA alleles (including Catarrhini and Platyrrhini), constituting
an ancient trans-specific and strongly supported lineage with different variability and selective patterns when
compared to other primate–MHC-DPA1 lineages. A. nancymaae monkeys have thus a smaller MHC-DP
polymorphism than MHC-DQ or MHC-DR.
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1. Introduction

Major histocompatibility complex (MHC) class II molecules
display peptides on the surface of antigen-presenting cells (APC) for
subsequent recognition by T cells, thereby performing a key defence
role against pathogens. MHC class II molecules are heterodimers
assembled from an α and a β glycopeptide chains encoded by the
MHC class II A and B genes, respectively. Three main MHC class II loci,
named HLA-DR, -DQ, and -DP, encode functional antigen-presenting
molecules in primates. Genetic polymorphism and diversifying
selection tied to functional and structural restrictions are common
characteristics of these main loci. Such polymorphism is mainly
restricted to the second exon of MHC class II A and B genes, con-
stituting the molecule's peptide binding region (PBR) (Klein et al.,
1993b).

MHC-DP is an ancient locus shared by divergent mammalian
orders (Takahashi et al., 2000; Yuhki et al., 2003). However, its
polymorphism and functionality vary. For example, MHC-DP acquires
a pseudo-genic nature in felines, as also occurs in murinae (mouse-
like rodents), even though MHC-DP is the most polymorphic MHC
class II locus in other rodents, such as the mole rat (Spalax genus)
(Klein et al., 1993a; Yuhki et al., 2003; Kelley et al., 2005).

MHC-DP is themost centromeric locuswithin theprimateMHCgene
cluster region, being constituted by four genes: DPA1 and DPB1 genes
and DPA2 and DPB2 pseudogenes. This arrangement (position and
number) is apparently the same in all primates and was established
before the split between Platyrrhini and Catarrhini ~43 million years
ago (MY) (Klein et al., 1993a; Steiper and Young, 2006).

MHC-DPA1 variability in primates varies amongst nonexistent and
low polymorphism, whilst for MHC-DPB1, it fluctuates frommoderate
to high polymorphism (Otting and Bontrop, 1995; Slierendregt et al.,
1995; Bontrop et al., 1999; Doxiadis et al., 2001). HLA-DPA1 exhibits
low polymorphism in humans, where 28 alleles have been reported to
date, compared to the 138 alleles described for HLA-DPB1 (Robinson,
et al., 2003). In contrast, Callithrix jacchus (the common marmoset, a
neo-tropical primate), has the MHC-DP region inactive, not expres-
sing any MHC-DPmolecule (Antunes et al., 1998). In spite of such low
polymorphism, MHC-DPA1 can be important in modulating an
immune response, since HLA-DPA1*0301 appears to be involved in
the genetic susceptibility to Schistosoma haematobium and several
chronic inflammatory diseases (May et al., 1998; Dai et al., 2010).

Previous studies have characterised Aotus MHC class II genes and
molecules: MHC DQA-DQB (Diaz et al., 2000), MHC-DRB1 (Niño-
Vasquez et al., 2000; Suarez et al., 2006), and MHC-DPB1 (Diaz et al.,
2002). These neo-tropical primates have been shown to be suscep-
tible to various human infectious diseases (Lujan et al., 1986; Polotsky
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Genética Molecular Vegetal, Biología Computacional y Bioinformática

Datos básicos

Año y mes de formación 2003 - 1

Departamento - Ciudad Cundinamarca - Mosquera

Líder Leonardo Mariño-Ramírez

¿La información de este grupo se ha
certificado?

Si el día 2008-12-03

Página web

E-mail lmarino@corpoica.org.co

Clasificación A

Área de conocimiento Ciencias Biológicas -- Genética

Programa nacional de ciencia y tecnología Biotecnología

Programa nacional de ciencia y tecnología
(secundario)

Biotecnología

Instituciones

1.- Corporación Colombiana De Investigación Agropecuaria - Corpoica - (Avalado)

Líneas de investigación declaradas por el grupo

1.- Bioinformática

2.- Biología Computacional

3.- Genética de ganado criollo

4.- Genómica Funcional

5.- Genómica de Microogranismos

6.- Mejoramiento genético

7.- Propagación In Vitro

Sectores de aplicación

Integrantes del grupo

Nombre Vinculación Horas dedicación Inicio - Fin Vinculación

1.- Leonardo Mariño-Ramírez Investigador 20 2003/1 - Actual

2.- Luz Stella Barrero Meneses Investigador 0 2007/1 - Actual

3.- Evelyn Gisela Arenas Ochoa Investigador 0 2009/1 - Actual

4.- Oscar Camilo Bedoya Reina Investigador 0 2007/3 - Actual

5.- Felix Enciso Rodriguez Investigador 40 2008/1 - Actual

6.- Gina Garzón Martínez Investigador 40 2009/1 - Actual

7.- Linda Yhiset Gómez Arias Investigador 40 2008/1 - Actual

8.- Silvia Gómez Daza Investigador 0 2007/1 - Actual

9.- Irving King Jordan Investigador 2003/1 - Actual

10.- Irving King Jordan Investigador 0 2007/1 - Actual

11.- David Landsman Investigador 0 2007/3 - Actual

12.- Víctor Manuel Núñez Zarantes Investigador 0 2007/1 - Actual

13.- Jaime Simbaqueba Gonzalez Investigador 40 2008/1 - Actual

14.- John Spouge Investigador 0 2007/3 - Actual
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15.- Erika Patricia Sánchez Betancourt Investigador 40 2008/1 - Actual

16.- ANA MILENA VALDERRAMA
FONSECA

Investigador 0 2007/1 - Actual

17.- Ana Milena Valderrama Fonseca Investigador 0 2007/1 - Actual

18.- Sandra Patricia Valbuena Aguilar Estudiante 40 2008/1 - 2008/8

Producción

Artículos publicados en revistas científicas

1.- Completo: Producción de lineas homocigotasde arroz toleranes a la toxicidad de aluminio mediante el cultivo de
anteras.
Colombia, Arroz ISSN: 0, 1985 vol:34 fasc: 337 págs: 12 - 17 
Autores: VICTOR MANUEL NUNEZ ZARANTES, 4NUNEZ VMJ NARVAEZ CP MARTINEZ AND W ROCA,

2.- Completo: Importance of Anther Culture in Rice Breeding
Colombia, Arroz ISSN: 0, 1987 vol:34 fasc: 337 págs: 12 - 17 
Autores: VICTOR MANUEL NUNEZ ZARANTES, MARTINEZ CP VM NUNEZ AND W ROCA,

3.- Completo: A SCAR marker for the sex types determination in Colombian genotypes of Carica papaya
Holanda, Euphytica ISSN: 0014-2336, 2007 vol:153 fasc: págs: 215 - 220 
Autores: VICTOR MANUEL NUNEZ ZARANTES, GIOVANNI CHAVES BEDOYA,

4.- Completo: Estudio preliminar para el establecimiento de un protocolo de crioconservación para palma de aceite (Elaeis
guineensis Jacq)
Colombia, Agronomía Colombiana ISSN: 0120-9965, 2007 vol:25 fasc: 2 págs: 215 - 223 
Autores: ALBA LUCIA VILLA, PABLO EDGAR JIMENEZ, RAUL IVAN VALBUENA, SILVIO BASTIDAS, VICTOR MANUEL NUNEZ
ZARANTES,

5.- Completo: Evaluación de la toxicidad de proteínas de Bacillus thuringiensis Berliner sobre el picudo del algodonero
Anthonomus grandis Boheman
Colombia, Agronomía Colombiana ISSN: 0120-9965, 2006 vol:24 fasc: 2 págs: 296 - 301 
Autores: SYLVIA GOMEZ, GUSTAVO DIAZ, VICTOR MANUEL NUNEZ ZARANTES,

6.- Completo: Recombinant Cry3Aa has insecticidal activity againts the andean potato weevil, Premnotrypes vorax.
Estados Unidos, Biochemical And Biophysical Research Communications ISSN: 0006-291X, 2000 vol:279 fasc: págs: 653 -
656 
Autores: SILVIA GOMEZ DAZA, CONSTANZA MATEUS, JAVIER HERNANDEZ, BARBARA ZIMMERMAN,

7.- Completo: Identificación de genes R1 y R2 que contienen resistencia a Phytopthora infestans en genotipos
colombianos de papa
Colombia, Revista Colombiana De Biotecnologia ISSN: 0123-3475, 2003 vol:5 fasc: 2 págs: 40 - 50 
Autores: MARCELA DIAZ, DIEGO FAJARDO, JOSE DILMER MORENO, CELSA GARCIA, VICTOR MANUEL NUNEZ ZARANTES,

8.- Completo: Evaluación de la toxicidad de proteínas de Bacillus thuringiensis Berliner sobre el picudo del algodonero
Anthonomus grandis Boheman
Colombia, Agronomía Colombiana ISSN: 0120-9965, 2006 vol:24 fasc: 2 págs: 296 - 301 
Autores: SILVIA GOMEZ DAZA, GUSTAVO DIAZ, VICTOR MANUEL NUNEZ,

9.- Completo: Genetic variability of Beauveria bassiana associated with the Coffee Berry Borer Hypothenemus hampei
and other insects.
Colombia, Mycological Research ISSN: 0953-7562, 2002 vol:106 fasc: 11 págs: 1307 - 1314 
Autores: ANA MILENA VALDERRAMA FONSECA, ALVARO GAITAN, GABRIEL SALDARRIAGA, PATRICIA VELEZ, ALEX
BUSTILLO,

10.- Completo: Aplicación de la proteína verde fluorescente para el monitoreo de cepas degradadoras de fenol.
Colombia, Revista Colombiana De Biotecnologia ISSN: 0123-3475, 2001 vol:III fasc: 2 págs: 78 - 84 
Autores: ANA MILENA VALDERRAMA FONSECA, JULIA RAQUEL ACERO,

11.- Completo: Análisis de la variabilidad genética del hongo entomopatógeno Beauveria bassiana con marcadores RAPD
Colombia, Revista de La Sociedad Colombiana de Entomologia ISSN: 0, 2000 vol:26 fasc: 1-2 págs: 25 - 29 
Autores: ANA MILENA VALDERRAMA FONSECA, MARCO AURELIO CRISTANCHO, BERNARDO CHAVES,

12.- Completo: Caracterización de aislamientos de Beauveria bassiana para el control de la broca del café
Colombia, Manejo Integrado De Plagas ISSN: 1016-0469, 2001 vol:62 fasc: págs: 38 - 53 
Autores: ANA MILENA VALDERRAMA FONSECA, NANCY ESTRADA, MARIA TERESA GONZALES, PATRICIA VELEZ, ALEX
BUSTILLO,

13.- Completo: Regulatory Change in YABBY-like Transcription Factor Led to Evolution of Extreme Fruit Size during
Tomato Domestication
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Inglaterra, Nature Genetics ISSN: 1061-4036, 2008 vol:40 fasc: 6 págs: 800 - 804 
Autores: LUZ STELLA BARRERO MENESES, STEVEN D TANKSLEY, BIN CONG,

14.- Completo: Evaluating the genetic basis of multiple locule fruit in a broad cross section of tomato cultivars
Alemania, Theoretical And Applied Genetics ISSN: 0040-5752, 2004 vol:109 fasc: 3 págs: 669 - 679 
Autores: LUZ STELLA BARRERO MENESES, STEVEN D TANKSLEY,

15.- Completo: Allelism test among high locule number tomato mutants and genetic mapping of the loci involved
Estados Unidos, Journal Of Experimental Botany ISSN: 1460-2431, 2001 vol:51 fasc: págs: 11 - 13 
Autores: LUZ STELLA BARRERO MENESES, STEVEN D TANKSLEY,

16.- Revista (magazín): Towards the development of a basic genomics platform for exotic fruit solanaceae
Estados Unidos, SOL newsletter ISSN: 0, 2005 vol: fasc: págs: - 
Autores: LUZ STELLA BARRERO MENESES,

17.- Completo: Developmental characterization of the fasciated locus and mapping of Arabidopsis candidate genes
involved in the control of floral meristem size and carpel number in tomato
Canadá, Genome ISSN: 1480-3321, 2006 vol:49 fasc: págs: 991 - 1006 
Autores: LUZ STELLA BARRERO MENESES, STEVEN D TANKSLEY, FEINAN WU, BIN CONG,

18.- Completo: Construcción de bancos de genes y caracterización de germoplasma
Colombia, Agricultura De Las Americas ISSN: 0120-6052, 2005 vol: fasc: 347 págs: 44 - 47 
Autores: LUZ STELLA BARRERO MENESES,

19.- Completo: Transposable element derived DNaseI-hypersensitive sites in the human genome.
Inglaterra, Biology International ISSN: 1745-6150, 2006 vol:1 fasc: 20 págs: 1 - 
Autores: LEONARDO MARINO-RAMIREZ, IRVING KING JORDAN,

20.- Completo: Expression patterns of protein kinases correlate with gene architecture and evolutionary rates
Estados Unidos, Plos One     ISSN: 1932-6203, 2008 vol:3 fasc: 10 págs: e3599 - 
Autores: ALEKSEY OGURTSOV, GIBBES JOHNSON, SVETLANA SHABALINA, NIKOLAY SPIRIDONOV, LEONARDO MARINO-
RAMIREZ, DAVID LANDSMAN,

21.- Completo: Identification and mapping of self-assembling protein domains encoded by the Escherichia coli K-12
genome using lambda repressor fusions.
Estados Unidos, Journal Of Bacteriology ISSN: 0021-9193, 2004 vol:186 fasc: págs: 1311 - 1319 
Autores: LEONARDO MARINO-RAMIREZ, JAMES HU, JONATHAN MINOR, NICOLA READING,

22.- Completo: Origin and evolution of human microRNAs from transposable elements.
Estados Unidos, Genetics ISSN: 0016-6731, 2007 vol:176 fasc: págs: 1323 - 1337 
Autores: JITTIMA PIRIYAPONGSA, LEONARDO MARINO RAMIREZ, IRVING KING JORDAN,

23.- Completo: Isolation and mapping of self-assembling protein domains encoded by the Saccharomyces cerevisiae
genome.
Estados Unidos, Yeast ISSN: 0749-503X, 2002 vol:19 fasc: págs: 641 - 650 
Autores: LEONARDO MARINO-RAMIREZ, JAMES HU,

24.- Completo: Uso de la reacción en cadena de la polimerasa para la caracterización de aislamientos nativos de Bacillus
thuringiensis.
Colombia, Revista Corpoica - Ciencia Y Tecnologia Agropecuarias ISSN: 0122-8706, 1996 vol:2 fasc: págs: 2 - 9 
Autores: LEONARDO MARINO-RAMIREZ,

25.- Corto (Resumen): Caracterización Molecular de Genes cry de Bacillus thuringiensis utilizando PCR Extra-Rápida.
Colombia, Revista Corpoica - Ciencia Y Tecnologia Agropecuarias ISSN: 0122-8706, 1996 vol:2 fasc: págs: 47 - 47 
Autores: LEONARDO MARINO-RAMIREZ,

26.- Completo: Caracterización del gen de la proteína de la cápside de dos aislamientos del virus del mosaico del pepino
(CMV), obtenidos de plátano y banano (Musa spp.).
Colombia, Revista Corpoica - Ciencia Y Tecnologia Agropecuarias ISSN: 0122-8706, 1996 vol:1 fasc: págs: 1 - 5 
Autores: LEONARDO MARINO-RAMIREZ,

27.- Completo: Global regulation by the yeast Spt10 protein is mediated through chromatin structure and the histone
upstream activating sequence elements.
Estados Unidos, Molecular And Cellular Biology ISSN: 0270-7306, 2005 vol:25 fasc: 20 págs: 9127 - 9137 
Autores: PETER ERIKSSON, GEETU MENDIRATTA, NEIL MCLAUGHLIN, TYRA WOLFSBERG, LEONARDO MARINO-RAMIREZ,
TIFFANY POMPA, MOHENDRA JAINERIN, DAVID LANDSMAN, CHANG HUI SHEN, DAVID CLARK,

28.- Completo: Transposable elements donate lineage-specific regulatory sequences to host genomes.
Suiza, Cytogenetic And Genome Research - Online ISSN: 1424-8581, 2005 vol:110 fasc: 1 págs: 333 - 341 
Autores: LEONARDO MARINO-RAMIREZ, DAVID LANDSMAN, IRVING KING JORDAN, KEVIN LEWIS,

29.- Completo: TLX1/HOX11-induced hematopoietic differentiation blockade.
Inglaterra, Oncogene ISSN: 0950-9232, 2007 vol:26 fasc: págs: 4115 - 4123 
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Autores: DAVID LANDSMAN, I RIZ, SERGEY AKIMOV, SHANNON EAKER, KK BAXTER, H LEE, LEONARDO MARINO-
RAMIREZ, TERESA HAWLEY, ROBERT HAWLEY,

30.- Completo: Alignments anchored on genomic landmarks can aid in the identification of regulatory elements.
Inglaterra, Bioinformatics ISSN: 1367-4803, 2005 vol:Suppl1 fasc: págs: i440 - i448 
Autores: LEONARDO MARINO-RAMIREZ, DAVID LANDSMAN, KANNAN THARAKARAMAN, SERGEY SHEETLIN, JOHN
SPOUGE,

31.- Corto (Resumen): Clonación del gen de la cápside proteica de una cepa colombiana del virus del mosaico del
pepino (CMV) para su expresión en plantas por transformación mediante Agrobacterium
Colombia, Revista Corpoica - Ciencia Y Tecnologia Agropecuarias ISSN: 0122-8706, 1997 vol:2 fasc: págs: 58 - 59 
Autores: LEONARDO MARINO-RAMIREZ,

32.- Completo: Evolutionary significance of gene expression divergence.
Holanda, Gene ISSN: 0378-1119, 2005 vol:17 fasc: 345 págs: 119 - 126 
Autores: LEONARDO MARINO-RAMIREZ, IRVING KING JORDAN, EUGENE KOONIN,

33.- Completo: Expression patterns of protein kinases correlate with gene architecture and evolutionary rates
Estados Unidos, Plos One     ISSN: 1932-6203, 2008 vol:3 fasc: 10 págs: e3599 - 
Autores: LEONARDO MARINO RAMIREZ, GIBBES JOHNSON, SVETLANA SHABALINA, NIKOLAY SPIRIDONOV, DAVID
LANDSMAN, ALEKSEY OGURTSOV,

34.- Completo: Database resources of the National Center for Biotechnology Information
Inglaterra, Nucleic Acids Research ISSN: 0305-1048, 2008 vol:37 fasc: 1 págs: D5 - D15 
Autores: DAVID LANDSMAN, ERIC SAYERS,

35.- Completo: TLX1/HOX11-induced hematopoietic differentiation blockade.
Inglaterra, Oncogene ISSN: 0950-9232, 2007 vol:26 fasc: págs: 4115 - 4123 
Autores: DAVID LANDSMAN, TERESA HAWLEY, ROBERT HAWLEY, LEONARDO MARINO RAMIREZ, I RIZ, SERGEY AKIMOV,
SHANNON EAKER, KK BAXTER, H LEE,

36.- Completo: Evolutionary rates and patterns for human transcription factor binding sites derived from repetitive DNA.
Inglaterra, Bmc Genomics ISSN: 1471-2164, 2008 vol:17 fasc: págs: 226 - 
Autores: NALINI POLAVARAPU, LEONARDO MARINO RAMIREZ, DAVID LANDSMAN, JOHN MCDONALD, IRVING KING
JORDAN,

37.- Completo: Transposable elements donate lineage-specific regulatory sequences to host genomes.
Suiza, Cytogenetic And Genome Research - Online ISSN: 1424-8581, 2005 vol:110 fasc: págs: 333 - 341 
Autores: LEONARDO MARINO RAMIREZ, KEVIN LEWIS, DAVID LANDSMAN, IRVING KING JORDAN,

38.- Completo: Co-evolutionary Rates of Functionally Related Yeast Genes.
Nueva Zelanda, Evolutionary Bioinformatics ISSN: 1176-9343, 2006 vol:2 fasc: págs: 295 - 300 
Autores: LEONARDO MARINO RAMIREZ, OLIVIER BODENREIDER, NATALIE KANTZ, IRVING KING JORDAN,

39.- Completo: Transposable element derived DNaseI-hypersensitive sites in the human genome.
Inglaterra, Biology International ISSN: 1745-6150, 2006 vol:20 fasc: págs: 1 - 20 
Autores: IRVING KING JORDAN, LEONARDO MARINO RAMIREZ,

40.- Completo: Alignments anchored on genomic landmarks can aid in the identification of regulatory elements.
Inglaterra, Bioinformatics ISSN: 1367-4803, 2005 vol:Suppl1 fasc: págs: i440 - i448 
Autores: KANNAN THARAKARAMAN, LEONARDO MARINO RAMIREZ, SERGEY SHEETLIN, DAVID LANDSMAN, JOHN SPOUGE,

41.- Completo: Statistical analysis of over-represented words in human promoter sequences.
Inglaterra, Nucleic Acids Research ISSN: 0305-1048, 2004 vol:12 fasc: 32 págs: 949 - 958 
Autores: JOHN SPOUGE, LEONARDO MARINO RAMIREZ, DAVID LANDSMAN, GAVIN KANGA,

42.- Completo: The Histone Database: a comprehensive resource for histones and histone fold-containing proteins.
Estados Unidos, Proteins-Structure Function And Bioinformatics ISSN: 0887-3585, 2006 vol:1 fasc: 62 págs: 838 - 842 
Autores: LEONARDO MARINO RAMIREZ, BENJAMIN HSU, ANDREAS BAXEVANIS, DAVID LANDSMAN,

43.- Completo: Multiple independent evolutionary solutions to core histone gene regulation.
Inglaterra, Genome Biology ISSN: 1465-6906, 2006 vol:7 fasc: págs: R122 - 
Autores: LEONARDO MARINO RAMIREZ, IRVING KING JORDAN, DAVID LANDSMAN,

44.- Revisión (Survey): Histone structure and nucleosome stability.
Inglaterra, Expert Review Of Proteomics ISSN: 1478-9450, 2005 vol:2 fasc: 5 págs: 719 - 729 
Autores: LEONARDO MARINO RAMIREZ, MARICEL KANN, BENJAMIN SHOEMAKER, DAVID LANDSMAN,

45.- Completo: Global regulation by the yeast Spt10 protein is mediated through chromatin structure and the histone
upstream activating sequence elements.
Estados Unidos, Molecular And Cellular Biology ISSN: 0270-7306, 2005 vol:25 fasc: págs: 9127 - 9137 
Autores: PETER ERIKSSON, GEETU MENDIRATTA, NEIL MCLAUGHLIN, TYRA WOLFSBERG, LEONARDO MARINO RAMIREZ,
TIFFANY POMPA, MOHENDRA JAINERIN, DAVID LANDSMAN, CHANG HUI SHEN, DAVID CLARK,
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46.- Completo: Global similarity and local divergence in human and mouse gene co-expression networks.
Inglaterra, Bmc Evolutionary Biology ISSN: 1471-2148, 2006 vol:12 fasc: págs: 6 - 70 
Autores: PANAYIOTIS TSAPARAS, LEONARDO MARINO RAMIREZ, OLIVIER BODENREIDER, EUGENE KOONIN, IRVING KING
JORDAN,

47.- Completo: Conservation and coevolution in the scale-free human gene coexpression network.
Estados Unidos, Molecular Biology And Evolution ISSN: 0737-4038, 2004 vol:21 fasc: págs: 2058 - 2070 
Autores: IRVING KING JORDAN, YURI WOLF, LEONARDO MARINO RAMIREZ, EUGENE KOONIN,

48.- Completo: Finding sequence motifs with Bayesian models incorporating positional information: an application to
transcription factor binding sites.
Inglaterra, Bmc Bioinformatics ISSN: 1471-2105, 2008 vol:4 fasc: págs: 262 - 
Autores: NAK KYEONG KIM, KANNAN THARAKARAMAN, LEONARDO MARINO RAMIREZ, JOHN SPOUGE,

49.- Completo: Scanning sequences after Gibbs sampling to find multiple occurrences of functional elements.
Inglaterra, Bmc Bioinformatics ISSN: 1471-2105, 2006 vol:8 fasc: págs: 408 - 
Autores: KANNAN THARAKARAMAN, LEONARDO MARINO RAMIREZ, SERGEY SHEETLIN, DAVID LANDSMAN, JOHN
SPOUGE,

50.- Completo: The biological function of some human transcription factor binding motifs varies with position relative to
the transcription start site.
Inglaterra, Nucleic Acids Research ISSN: 0305-1048, 2008 vol:36 fasc: págs: 2777 - 2786 
Autores: KANNAN THARAKARAMAN, OLIVIER BODENREIDER, DAVID LANDSMAN, JOHN SPOUGE, LEONARDO MARINO
RAMIREZ,

Trabajos en eventos (Capítulos de memoria)

1.- Completo : Florula de la reserva forestal protectora el Malmo
Colombia, Evento: Encuentro nacional de semilleros de investigación Ponencia: año:2004, Resumenes Encuentro nacional
de semilleros de investigación ISBN: 0 vol: págs: , 
Autores: FELIX ENCISO RODRIGUEZ,

2.- Completo : Caracterización Molecular del lulo (Solanum quitoense) y tomate de árbol (Solanum betaceum) del banco
de germoplasma de Corpoica mediante el empleo de marcadores COS II
Colombia, Evento: X Congreso de la asociación colombiana de fitomejoramiento y producción de cultivos Ponencia:
año:2007, Asociación colombiana de fitomejoramiento y producción de cultivos ISBN: 0 vol: págs: , 
Autores: FELIX ENCISO RODRIGUEZ,

3.- Resumen : Ab Initio prediction of Transcription Factor Binding Sites in intergenic spacers of histone core genes.
Estados Unidos, Evento: 20th NIH Research Festival Ponencia: año:2007, ISBN: vol: págs: , 
Autores: OSCAR CAMILO BEDOYA REINA, LEONARDO MARINO RAMIREZ,

4.- Resumen : Aplicación de un método para la detección de microorganismos nitrificantes y su evaluacion frente a
diferentes parametros ambientales
México, Evento: IV Congreso de Biotecnología y Bioingeniería Ponencia: año:1999, Resúmenes del IV Congreso de
Biotecnología y Bioingeniería ISBN: 0 vol: págs: , 
Autores: ANA MILENA VALDERRAMA FONSECA, JULIA RAQUEL ACERO,

5.- Resumen : Transformación genetica de papa colombiana con genes cry
Colombia, Evento: IX Congreso de la Corporacion para Investigaciones Biologicas Ponencia: año:2003, Resúmenes del IX
Congreso de la Corporacion para Investigaciones Biologicas ISBN: 0 vol: págs: , 
Autores: ANA MILENA VALDERRAMA FONSECA, RAFAEL ARANGO ISAZA, ESPERANZA RODRIGUEZ,

6.- Resumen : Construcciones genéticas cry1Ab y cry1Ac de Bacillus thuringiensis par el desarrollo de líneas de papa con
posible resistencia a Tecia solanivora
Colombia, Evento: VIII Congreso de la Corporacion para Inevstigaciones Biologicas Ponencia: año:2002, Resúmenes del
VIII Congreso de la Corporacion para Inevstigaciones Biologicas ISBN: 0 vol: págs: , 
Autores: ANA MILENA VALDERRAMA FONSECA, RAFAEL ARANGO ISAZA, ESPERANZA RODRIGUEZ,

7.- Resumen : XXVII Congreso de la Sociedad Colombiana de Entomología
Colombia, Evento: XXVII Congreso de la Sociedad Colombiana de Entomología Ponencia: año:2000, Resúmenes del XXVII
Congreso de la Sociedad Colombiana de Entomología ISBN: 0 vol: págs: , 
Autores: ANA MILENA VALDERRAMA FONSECA, ALVARO GAITAN, GABRIEL SALDARRIAGA, PATRICIA VELEZ, ALEX
BUSTILLO,

8.- Resumen : Análisis de la variabilidad genetica del hongo entomopatogeno Beauveria bassiana con marcadores RAPD
Colombia, Evento: XXV Congreso de la Sociedad Colombiana de Entomología Ponencia: año:1998, Resumenes del XXV
Congreso de la Sociedad Colombiana de Entomología ISBN: 0 vol: págs: , 
Autores: ANA MILENA VALDERRAMA FONSECA, PATRICIA VELEZ, ALEX BUSTILLO,

9.- Completo : Application of genomics tools - case study tomato - Solanaceae
Estados Unidos, Evento: American Society of Plant Biologists Ponencia: año:2008, Proceedings of the American Society of
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Plant Biologists (ASPB) 2008 ISBN: 0 vol: págs: , 
Autores: LUZ STELLA BARRERO MENESES,

10.- Completo : Statistical Analysis of DNA Sequences in Human Promoter Regions
Estados Unidos, Evento: 2003 NIH Research Festival Ponencia: año:2003, NIH Press ISBN: 0 vol: págs: , 
Autores: LEONARDO MARINO-RAMIREZ,

11.- Resumen : Evaluating the genetic and molecular bases of multiple locule fruit in tomato
Estados Unidos, Evento: Plant & Animal Genomes XII Conference Ponencia: año:2004, Proceedings of the Plant & Animal
Genomes XII Conference ISBN: 0 vol: págs: , 
Autores: LUZ STELLA BARRERO MENESES, STEVEN D TANKSLEY,

12.- Resumen : Towards the development of a basic genomics platform for exotic fruit solanaceae
Italia, Evento: Second Solanaceae Genome Workshop 2005 Ponencia: año:2005, Proceedings of the Second Solanaceae
Genome workshop ISBN: 0 vol: págs: , 
Autores: LUZ STELLA BARRERO MENESES,

13.- Resumen : Evaluación de la base genética y molecular del numero de lóculos en tomate
Colombia, Evento: 9 Congreso de la Sociedad Colombiana de Fitomejoramiento y Produccion de Cultivos Ponencia:
año:2005, Resumenes del 9 Congreso de la Sociedad Colombiana de Fitomejoramiento y Produccion de Cultivos ISBN: 0
vol: págs: , 
Autores: LUZ STELLA BARRERO MENESES, STEVEN D TANKSLEY,

14.- Resumen : Use of COS markers for the Andean fruited species lulo and tree tomato
Estados Unidos, Evento: PAA/Solanaceae 2006. Genomics meets biodiversity Ponencia: año:2006, Proceedings of the
PAA/Solanaceae 2006. Genomics meets biodiversity ISBN: 0 vol: págs: , 
Autores: ALEXANDRA CRISTINA OLARTE, MARIO LOBO, STEVEN D TANKSLEY, LUZ STELLA BARRERO MENESES,

15.- Completo : Análisis comparativo de los perfiles electroforéticos de proteínas totales de las especies aceitera Elaeis
guineensis y E. oleifera
Colombia, Evento: V congreso de la sociedad colombiana de fitomejoramiento y producción de cultivos Ponencia:
año:1997, Memorias del V congreso de la sociedad colombiana de fitomejoramiento y produccion de cultivos ISBN: 0 vol:
págs: , 
Autores: LUZ STELLA BARRERO MENESES, JAVIER NARVAEZ, VIVIAN HERNANDEZ,

16.- Resumen : Marcadores bioquimicos en un programa de introgresion rapida de genes entre las especies aceiteras
Elaeis guineensis y E. oleifera
Colombia, Evento: II Latin American Meeting of Plant Biotechnology / REDBIO Ponencia: año:1995, Proceedings of the II
Latin American Meeting of Plant Biotechnology / REDBIO ISBN: 0 vol: págs: , 
Autores: LUZ STELLA BARRERO MENESES, JAVIER NARVAEZ, SILVIO BASTIDAS, RAFAEL REYES,

17.- Resumen : Marcadores bioquimicos en un programa de introgresion rapida de genes entre las especies aceiteras
Elaeis guineensis y E. oleifera
Colombia, Evento: X Convención Científica Colombiana Ponencia: año:1995, Memorias de la X Convención Científica
Colombiana ISBN: 0 vol: págs: , 
Autores: LUZ STELLA BARRERO MENESES, JAVIER NARVAEZ, SILVIO BASTIDAS, RAFAEL REYES,

18.- Completo : Marcadores bioquímicos en un programa de introgresión rápida de genes entre las especies aceiteras
Elaeis guineensis y E. oleifera
Colombia, Evento: IV congreso de la sociedad colombiana de fitomejoramiento y produccion de cultivos Ponencia:
año:1995, Memorias del IV congreso de la sociedad colombiana de fitomejoramiento y producción de cultivos ISBN: 0 vol:
págs: , 
Autores: LUZ STELLA BARRERO MENESES, JAVIER NARVAEZ, SILVIO BASTIDAS, RAFAEL REYES,

19.- Completo : Identificación y aislamiento de genes de defensa a Sigatoka negra de germoplasma de banano
Colombia, Evento: V congreso de la sociedad colombiana de fitomejoramiento y producción de cultivos Ponencia:
año:1997, Memorias del V congreso de la sociedad colombiana de fitomejoramiento y produccion de cultivos ISBN: 0 vol:
págs: , 
Autores: LUZ STELLA BARRERO MENESES, JAVIER NARVAEZ, LEONARDO MARINO, NESON TORO, JUAN CARLOS
POLANCO,

20.- Resumen : Genetic characterization of major high locule number loci in tomato
Estados Unidos, Evento: Plant, Animal & Microbe Genomes X Conference Ponencia: año:2002, Proceedings of the Plant,
Animal & Microbe Genomes X Conference ISBN: 0 vol: págs: , 
Autores: LUZ STELLA BARRERO MENESES, STEVEN D TANKSLEY,

21.- Resumen : Mapping and Isolation of the fasciated locus: A major fruit locule number locus in tomato
Estados Unidos, Evento: Plant & Animal Genomes XIV Conference Ponencia: año:2006, Proceedings of the Plant & Animal
Genomes XIV Conference ISBN: 0 vol: págs: , 
Autores: LUZ STELLA BARRERO MENESES, STEVEN D TANKSLEY, BIN CONG,

22.- Completo : Caracterización molecular de lulo y tomate de árbol del banco de germoplasma de Corpoica mediante el
empleo de marcadores COSII
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Colombia, Evento: X Congreso de la Asociación Colombiana de Fitomejoramiento y producción de Cultivos Ponencia:
año:2007, Memorias del X Congreso de la Asociación Colombiana de Fitomejoramiento y producción de Cultivos ISBN: 0
vol: págs: , 
Autores: LUZ STELLA BARRERO MENESES, FELIX EUGENIO ENCISO,

23.- Resumen : Avances en el uso de marcadores moleculares COSII para identificación de híbridos y mapeo genético
comparativo en lulo
Colombia, Evento: X Congreso de la Asociación Colombiana de Fitomejoramiento y producción de Cultivos Ponencia:
año:2007, Memorias del X Congreso de la Asociación Colombiana de Fitomejoramiento y producción de Cultivos ISBN: 0
vol: págs: , 
Autores: LUZ STELLA BARRERO MENESES, ZULMA CARDENAS,

24.- Completo : Genómica estructural y comparativa: Caso solanáceas-tomate
Colombia, Evento: IV Congreso Internacional y VII Congreso Colombiano de Genética Ponencia: año:2006, Salud. Revista
de la Facultad de Salud Universidad Industrial de Santander ISBN: 0121080 vol: págs: , 
Autores: LUZ STELLA BARRERO MENESES,

25.- Completo : The precise positioning of genomic landmarks can aid in the identification of regulatory elements
Estados Unidos, Evento: International Society for Computational Biology (ISMB) meeting 2005 Ponencia: año:2005,
(ISMB) meeting 2005 ISBN: 0 vol: págs: , 
Autores: LEONARDO MARINO-RAMIREZ,

26.- Completo : Identification of positionally clustered sequence elements in human proximal promoter regions
Estados Unidos, Evento: 2004 Genomics Workshop on Identification of Functional Elements in Mammalian Genomes
Ponencia: año:2004, Cold Spring Harbor Laboratory Press ISBN: 0 vol: págs: , 
Autores: LEONARDO MARINO-RAMIREZ,

27.- Completo : Sequence evolution and the human gene expression network
Estados Unidos, Evento: Genomes and Evolution 2004 Ponencia: año:2004, The Pennsylvania State University Press ISBN:
0 vol: págs: , 
Autores: LEONARDO MARINO-RAMIREZ,

28.- Completo : Mycobacterium tuberculosis protein oligomerization domains identified with repressor fusions
Estados Unidos, Evento: Third TB Structural Genomics Consortium Retreat Ponencia: año:2002, Third TB Structural
Genomics Consortium Proceedings ISBN: 0 vol: págs: , 
Autores: LEONARDO MARINO-RAMIREZ,

29.- Completo : Genome-wide mapping of homotypic interactions encoded in microbial genomes
Estados Unidos, Evento: Molecular Genetics of Bacteria & Phages Meeting Ponencia: año:2003, University of Wisconsin
Press ISBN: 0 vol: págs: , 
Autores: LEONARDO MARINO-RAMIREZ,

30.- Completo : Identification of candidate regulatory sequence elements in Homo sapiens
Estados Unidos, Evento: LXVIII Cold Spring Harbor Symposium on Quantitative Biology Ponencia: año:2003, Cold Spring
Harbor Laboratory Press ISBN: 0 vol: págs: , 
Autores: LEONARDO MARINO-RAMIREZ,

31.- Completo : Characterization of protein homotypic interactions encoded by four microbial genomes
Estados Unidos, Evento: Lost Pines Molecular Biology Conference Ponencia: año:2002, Lost Pines Molecular Biology
Conference Proceedings 2002 ISBN: 0 vol: págs: , 
Autores: LEONARDO MARINO-RAMIREZ,

32.- Completo : Genome-wide mapping of protein oligomerization domains in microorganisms
Estados Unidos, Evento: Molecular Genetics of Bacteria & Phages 2002 Ponencia: año:2002, Cold Spring Harbor Laboratory
Press ISBN: 0 vol: págs: , 
Autores: LEONARDO MARINO-RAMIREZ,

33.- Completo : An integrated genomics database for beef cattle
Estados Unidos, Evento: Plant, Animal & Microbe Genomes X Conference Ponencia: año:2002, Plant, Animal & Microbe
Genomes X Conference Proceedings ISBN: 0 vol: págs: , 
Autores: LEONARDO MARINO-RAMIREZ,

34.- Completo : Genetic approaches to study protein interactions
Estados Unidos, Evento: The Association of Biomolecular Resource Facilities meeting Ponencia: año:2002, ABRF 2002
Proceedings ISBN: 0 vol: págs: , 
Autores: LEONARDO MARINO-RAMIREZ,

35.- Completo : Genome-wide mapping of protein oligomerization domains in Saccharomyces cerevisiae
Estados Unidos, Evento: Beyond Genome 2001 Ponencia: año:2001, Beyond Genome 2001 Proceedings ISBN: 0 vol: págs:
, 
Autores: LEONARDO MARINO-RAMIREZ,

36.- Completo : Lambda repressor fusions as a tool to study protein oligomerization in Saccharomyces cerevisiae
Estados Unidos, Evento: Yeast Genetics and Molecular Biology Meeting 2000 Ponencia: año:2000, Yeast Genetics and
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Molecular Biology Meeting 2000 Proceedings ISBN: 0 vol: págs: , 
Autores: LEONARDO MARINO-RAMIREZ,

37.- Completo : Differential gene expression during the break in potato tuber dormancy
Canadá, Evento: Plant Biology Meeting ¿97 Ponencia: año:1997, Plant Biology Meeting ¿97 Proceedings ISBN: 0 vol: págs:
, 
Autores: LEONARDO MARINO-RAMIREZ,

38.- Resumen : Aislamiento y caracterización de cepas de Bacillus thuringiensis en Colombia
Colombia, Evento: XXII Congreso de la Sociedad Colombiana de Entomología SOCOLEN Ponencia: año:1995, Anales de
Socolen 1995 ISBN: 0 vol: págs: , 
Autores: LEONARDO MARINO-RAMIREZ,

39.- Completo : Molecular Characterization of Native Strains of Bacillus thuringiensis
Argentina, Evento: REDBIO ¿95: Second Latin-American Plant Biotechnology Meeting Ponencia: año:1995, REDBIO ¿95
Proceedings ISBN: 0 vol: págs: , 
Autores: LEONARDO MARINO-RAMIREZ,

Libros publicados

Capítulos de libro publicados

1.- Capítulo de libro publicado : CULTIVO DE TEJIDOS EN LA AGRICULTURA
Colombia, 1991, Cultivo De Tejidos En La Agricultura: Fundamentos, ISBN: 958-9183-15-8, Vol. , págs:79 - 77, Ed. Ciat 
Autores: VICTOR MANUEL NUNEZ ZARANTES, L SZABADOS V M NUNEZ L M TELLO G MAFLA J ROA W M ROCA,

2.- Capítulo de libro publicado : CULTIVO DE ANTERAS EN EL MEJORAMIENTO DE PLANTAS
Colombia, 1991, Cultivo De Tejidos En La Agricultura: Fundamentos, ISBN: 958-9183-15-8, Vol. , págs:271 - 312, Ed. Ciat
Autores: VICTOR MANUEL NUNEZ ZARANTES, WVICTOR MANUEL NUNEZ ZARANTESM ROCA V M NUNEZ K MORNAN,

3.- Capítulo de libro publicado : Oat Haploid from Anther Culture and from Wide Hybridizations
Estados Unidos, 1995, In vitro Haploid Production in Higher Plants, ISBN: 0, Vol. , págs: - , Ed. Kluwer Academic
Publishers 
Autores: VICTOR MANUEL NUNEZ ZARANTES, RINES HE O RIERA V M NUNEZ D W DAVIS R L PHILLI,

4.- Capítulo de libro publicado : Monocotiledoneas
Colombia, 2006, Florula de la Reserva Forestal Protectora '' El Malmo'', ISBN: 0, Vol. Vol.1, págs:1 - 88, Ed. Publinprenta
UPTC-Tunja 
Autores: FELIX ENCISO RODRIGUEZ, JUAN CARLOS ZABALA, DANIEL HUMBERTO GALINDO, MARIA MARGARITA SUAREZ,

5.- Capítulo de libro publicado : Genomics of Tropical Solanaceous species: Established and emerging crops
Estados Unidos, 2008, Genomics of tropical Crop Plants: Plant Genetics and Genomics Crops and Models, ISBN: 0, Vol. 1,
págs:453 - 467, Ed. Springer Verlag 
Autores: RC PRATT, D FRANCIS, LUZ STELLA BARRERO MENESES,

6.- Capítulo de libro publicado : Using lambda repressor fusions to isolate and characterize self-assembling domains
Estados Unidos, 2002, Protein-Protein Interactions: A Laboratory Manual, ISBN: 0879696281, Vol. 1, págs:375 - 394, Ed.
Cold Spring Harbor Laboratory Press 
Autores: LEONARDO MARINO-RAMIREZ,

7.- Capítulo de libro publicado : Screening peptide/protein libraries fused to the lambda repressor DNA-binding Domain
in E. coli cells
Estados Unidos, 2003, Methods in Molecular Biology: E. coli Gene Expression Protocols, ISBN: 1588290085, Vol. 205,
págs:235 - 250, Ed. Humana Press, Inc. 
Autores: LEONARDO MARINO-RAMIREZ,

8.- Capítulo de libro publicado : Evolutionary genomics of gene expression
Estados Unidos, 2007, Structural Approaches to Sequence Evolution, ISBN: 9783540353058, Vol. 1, págs:223 - 240, Ed.
Springer 
Autores: LEONARDO MARINO-RAMIREZ,

Textos en publicaciones no cientificas

1.- Revista (magazín) : Towards the development of a basic genomics platform for exotic fruit solanaceae
Estados Unidos, SOL newsletter ISSN: 0, 2005 vol: fasc: págs: - 
Autores: LUZ STELLA BARRERO MENESES,

Partituras musicales
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Prefacio, epílogo

Otra producción bibliográfica

1.- Documento de trabajo (working paper) : Genetic and developmental characterization of locule number loci in
tomato with emphasis on the fasciated locus.
Estados Unidos, 2004, , , vol. ,págs: 1, - , Ed. 
Autores: LUZ STELLA BARRERO MENESES,

2.- Documento de trabajo (working paper) : Aislamiento y caracterización parcial de un elicitor derivado de tubos
germinales de la roya del cafeto (Hemileia vastatrix Berk & Br.)
Colombia, 1994, , , vol. ,págs: 1, - , Ed. 
Autores: LUZ STELLA BARRERO MENESES,

Softwares

1.- Computacional : A-GLAM
Estados Unidos, 2005, , Irrestricta, UNIX/LINUX, , , , Identificacion de elementos de regulacion en secuencias de ADN. 
Autores: LEONARDO MARINO-RAMIREZ,

2.- Computacional : Doodle
Estados Unidos, 2002, , Irrestricta, UNIX/Linux, , , , Plataforma para divulgar datos genomicos obtenidos en varios
microorganismos. 
Autores: LEONARDO MARINO-RAMIREZ,

Productos tecnológicos

1.- Proyecto : Caracterización de eventos del desarrollo floral afectados por el locus fasciated en tomate
Estados Unidos, 2006, , Irrestricta, Caracterizar eventos del desarrollo floral y vegetativo afectados por el locus fasciated
en tomate. 
Autores: LUZ STELLA BARRERO MENESES, STEVEN D TANKSLEY,

2.- Proyecto : Mil cuatro cientas secuencias parciales de genes COSII (Set de Ortólogos Conservados) en lulo (Solanum
guitoense), tomate de árbol (S. betaceum) y taxa relacionados (S. hirtum, S. uniloba)
Estados Unidos, 2006, , Irrestricta, Desarrollar bancos de genes en lulo y tomate de árbol. 
Autores: LUZ STELLA BARRERO MENESES, STEVEN D TANKSLEY, MARIO LOBO, ALEXANDRA CRISTINA OLARTE,

3.- Proyecto : Secuencias de genes COSII en lulo (S. hirtum, S. guitoense) y tomate de árbol (S. uniloba, S. betaceum)
Estados Unidos, 2006, , Irrestricta, Desarrollar bancos de genes en lulo y tomate de árbol. 
Autores: ALEXANDRA CRISTINA OLARTE, MARIO LOBO, STEVEN D TANKSLEY, LUZ STELLA BARRERO MENESES,

4.- Proyecto : Cuatro genes candidatos para la característica número de lóculos del fruto del tomate identificados
Estados Unidos, 2006, , Irrestricta, Identificar genes candidatos para la característica número de lóculos en tomate. 
Autores: LUZ STELLA BARRERO MENESES, STEVEN D TANKSLEY, FEINAN WU, BIN CONG,

5.- Proyecto : Seis características asociadas con el locus fasciated del tomate (tamaño del meristemo floral, número de
órganos florales, tamaño y forma del ovario, tamaño y forma del fruto) en 5 estados del desarrollo floral
Estados Unidos, 2006, , Irrestricta, Caracterizar eventos del desarrollo floral y vegetativo afectados por el locus fasciated
en tomate. 
Autores: LUZ STELLA BARRERO MENESES, STEVEN D TANKSLEY,

6.- Proyecto : Catorce accesiones de tomate del Tomato Genetics Resources Center (TGRC, USA) caracterizadas para
base genética (relaciones de alelismo) del número de lóculos del fruto
Estados Unidos, 2004, , Irrestricta, Identificar y caracterizar los loci del genoma del tomate que controlan el número de
lóculos del fruto. 
Autores: LUZ STELLA BARRERO MENESES, STEVEN D TANKSLEY,

7.- Proyecto : Once marcadores COSII polimórficos evaluados en 62 accesiones de lulo y tomate de árbol
Colombia, 2007, , Restricta, Caracterización molecular de colecciones de germoplasma nacionales. 
Autores: LUZ STELLA BARRERO MENESES, FELIX EUGENIO ENCISO,

8.- Proyecto : Gen de tomate similar a factor de trascripción YABBY (fasciated), Números de accesión en GeneBank:
EU577673 (ADN genómico), EU557674 (cDNA), EU557676 (alelo 1), EU557677 (promotor)
Estados Unidos, 2008, , Irrestricta, Controla numero de lóculos y tamaño del fruto del tomate. 
Autores: LUZ STELLA BARRERO MENESES, STEVEN D TANKSLEY, BIN CONG,

9.- Proyecto : Gen de tomate similar a proteína kinasa TOUSLED, Número de accesión en GeneBank: EU557675
Estados Unidos, 2008, , Irrestricta, Gen candidato que controla tamaño del fruto del tomate. 
Autores: LUZ STELLA BARRERO MENESES, STEVEN D TANKSLEY, BIN CONG,
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Procesos o técnicas

1.- Otra : RNA fingerprinting (DD-RTPCR) para la identificación de genes que se expresan diferencialmente en banano
Colombia, 1996, , Restricta, Identificación de genes de banano. 
Autores: LUZ STELLA BARRERO MENESES,

2.- Otra : Evaluación de diferentes Primers para la caracterización de M. fijiensis por RAPDs
Colombia, 1997, , Restricta, Evaluación de Primers. 
Autores: LUZ STELLA BARRERO MENESES,

Trabajos técnicos

Normas

Cartas, mapas o similares

Cursos de corta duración dictados

Desarrollo de material didáctico o de instrucción

Editoración o revisión

Mantenimiento de obras artísticas

Organización de eventos

Programas en radio o TV

Informes de investigación

Presentación de trabajo

Otra producción técnica

Producción artística/cultural

Trabajos dirigidos/Tutorías concluidas

1.- Trabajo de conclusión de curso de pregrado : Caracterización bioquímica y molecular de cepas de Bacillus
thuringiensis y evaluación biológica sobre larvas de Anthonomus grandis (picudo del algodonero)
Colombia, 2004, , Orientados: Gustavo Enrique Díaz Melendez, Ingenieria Agronómica, Universidad Nacional De Colombia. 
Autores: SILVIA GOMEZ DAZA,

2.- Trabajo de conclusión de curso de pregrado : Caracterización molecular y análisis de variabilidad genética en
aislamientos de Mycosphaerella fijiensis provenientes de las regiones bananeras del Uraba y el eje cafetero colombiano
Colombia, 1999, , Orientados: Carlos Mauricio Molina, Biologia, Pontificia Universidad Javeriana - Puj - Sede Bogotá. 
Autores: LUZ STELLA BARRERO MENESES, CARLOS MAURICIO MOLINA,

3.- Trabajo de conclusión de curso de pregrado : Caracterización molecular y análisis de variabilidad genética en
aislamientos de Mycosphaerella fijiensis provenientes de las regiones del Magdalena y Santander
Colombia, 1999, , Orientados: Sergio Mauricio Aponte, Biologia, Pontificia Universidad Javeriana - Puj - Sede Bogotá. 
Autores: LUZ STELLA BARRERO MENESES, SERGIO MAURICIO APONTE,
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4.- Iniciación Científica : Caracterización molecular de lulo y tomate de árbol del banco de germoplasma de Corpoica
mediante el empleo de marcadores COSII
Colombia, 2007, , Orientados: Felix Eugenio Enciso, Genética, Universidad Pedagógica Y Tecnológica De Colombia - Uptc -
Sede Tunja. 
Autores: LUZ STELLA BARRERO MENESES,

5.- Tesis de doctorado : Transposable elements donate lineage-specific regulatory sequences to host genomes
Estados Unidos, 2004, Tutor principal, Orientados: Kali C. Lewis, IRTA Fellow, National Institutes of Health. 
Autores: LEONARDO MARINO-RAMIREZ, KALI C LEWIS,

6.- Iniciación Científica : Co-evolutionary Rates of Functionally Related Yeast Genes
Estados Unidos, 2005, , Orientados: Natalie Kantz, , National Institutes of Health. 
Autores: LEONARDO MARINO-RAMIREZ, NATALIE KANTZ,

7.- Iniciación Científica : Ab initio prediction of Transcription Factor Binding Sites in the intergenic spacers of Histone
Core Genes
Estados Unidos, 2007, , Orientados: Oscar Camilo Bedoya-Reina, , National Institutes of Health. 
Autores: LEONARDO MARINO-RAMIREZ,

8.- Iniciación Científica : Statistical analysis of over-represented words in human promoter sequences
Estados Unidos, 2004, , Orientados: Gavin C. Kanga, IRTA Fellow, National Institutes of Health. 
Autores: LEONARDO MARINO-RAMIREZ,

Demás trabajos

1.- Demás trabajos : Prediction of TFBS in intergenic spacers of histone core genes.
Colombia, 2007, , , , Presentación. 
Autores: OSCAR CAMILO BEDOYA REINA, LEONARDO MARINO RAMIREZ,

2.- Demás trabajos : Taller Internacional Recursos Genéticos en el Trópico
Colombia, 2005, , , , Presentar el proyecto genoma internacional de la familia Solanaceae. 
Autores: LUZ STELLA BARRERO MENESES, MARIO LOBO,

3.- Demás trabajos : Prediction of TFBS in intergenic spacers of histone core genes.
Estados Unidos, 2007, , , , Presentación. 
Autores: LEONARDO MARINO-RAMIREZ, OSCAR CAMILO BEDOYA REINA,

Jurado/Comisiones evaluadoras de trabajo de grado

1.- Curso de perfeccionamiento/especialización : Identificacion de nuevos genes CryI en aislamientos nativos de
Bacillus thuringiensis por LSSP-PCR
Colombia, 2005, , Orientados: Alejandro Lopez, , Pontificia Universidad Javeriana - Puj - Sede Bogotá. 
Autores: LUZ STELLA BARRERO MENESES,

Participación en comités de evaluación

1.- Otra : Par académico
Colombia, 2008, Ministerio De Agricultura Y Desarrollo Rural - Minagricultura. 
Autores: SILVIA GOMEZ DAZA,

2.- Otra : Par académico
Colombia, 2007, Revista de agronomia Colombiana. 
Autores: SILVIA GOMEZ DAZA,

3.- Otra : Par acedémico
Colombia, 2004, Agro-Bio. 
Autores: SILVIA GOMEZ DAZA,

4.- Otra : Par academico
Colombia, 2005, Pontificia Universidad Javeriana - Puj - Sede Bogotá. 
Autores: SILVIA GOMEZ DAZA,

5.- Otra : Par academico
Colombia, 2008, Ministerio de Agricultura y Desarrollo Rural. 
Autores: SILVIA GOMEZ DAZA,

6.- Otra : Evaluador articulo revista Facultad Nacional de Agronomia, Medellin
Colombia, 2005, . 
Autores: LUZ STELLA BARRERO MENESES,

7.- Otra : Evaluador revista Facultad Nacional de Agronomia, Medellin
Colombia, 2005, . 
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Autores: LUZ STELLA BARRERO MENESES,

8.- Concurso público : Evaluador proyectos y programas Colciencias
Colombia, 2007, colciencias. 
Autores: LUZ STELLA BARRERO MENESES,

9.- Concurso público : Evaluador proyectos Colciencias
Colombia, 2008, . 
Autores: LUZ STELLA BARRERO MENESES,

10.- Concurso público : Evaluador proyectos MADR
Colombia, 2005, Ministerio De Agricultura Y Desarrollo Rural - Minagricultura. 
Autores: LUZ STELLA BARRERO MENESES,

Trabajos dirigidos/Tutorías en marcha

1.- Iniciación Científica : Construcción de mapas genéticos comparativos en las solanáceas lulo y tomate de árbol
mediante el empleo de marcadores COSII
Colombia, 2006, , Orientados: Zulma Cardenas, , . 
Autores: LUZ STELLA BARRERO MENESES, ZULMA CARDENAS,

2.- Iniciación Científica : Mapeo de genes candidatos involucrados en induccion de resistencia y crecimiento vegetal de
tomate tratado con Trichoderma koningii (TH003)
Colombia, 2006, , Orientados: Ivan Fernando Calixto, , Universidad Pedagógica Y Tecnológica De Colombia - Uptc - Sede
Tunja. 
Autores: LUZ STELLA BARRERO MENESES, IVAN FERNANDO CALIXTO,

3.- Iniciación Científica : Caracterización molecular de la colección colombiana de lulo y tomate de árbol mediante el uso
de marcadores COSII
Colombia, 2006, , Orientados: Felix Enciso, , Universidad Pedagógica Y Tecnológica De Colombia - Uptc - Sede Tunja. 
Autores: LUZ STELLA BARRERO MENESES, FELIX ENCISO,

4.- Iniciación Científica : Evaluación de polimorfismos para la construcción de mapas genéticos comparativos en las
solanáceas lulo y tomate de árbol mediante el empleo de marcadores COSII
Colombia, 2006, , Orientados: Zulma Cardenas, , . 
Autores: LUZ STELLA BARRERO MENESES, ZULMA CARDENAS,

5.- Iniciación Científica : Evaluación de polimorfismos con marcadores COSII para la construcción de un mapa genético
en papa criolla
Colombia, 2006, , Orientados: Ivan Fernando Calixto, , Universidad Pedagógica Y Tecnológica De Colombia - Uptc - Sede
Tunja. 
Autores: LUZ STELLA BARRERO MENESES, IVAN FERNANDO CALIXTO,

6.- Tesis de maestría : Caracterización morfo agronómica y molecular de la colección de mora (Rubus glaucus Bent) de
CORPOICA y material de agricultor
Colombia, 2006, Tutor principal, Orientados: Natalia Espinoza, Quimica, Universidad Nacional De Colombia - Sede Bogotá. 
Autores: LUZ STELLA BARRERO MENESES, NATALIA ESPINOZA,

7.- Iniciación Científica : Mapeo de genes relacionados con induccion de resistencia y crecimiento vegetal por
Trichoderma en tomate
Colombia, 2007, , Orientados: Jaime Simbaqueba, Biotecnología, Universidad Militar Nueva Granada - Unimilitar. 
Autores: LUZ STELLA BARRERO MENESES,

8.- Iniciación Científica : Co-evolutionary Rates of Functionally Related Yeast Genes
Estados Unidos, 2005, , Orientados: Natalie Kantz, , National Institutes of Health. 
Autores: LEONARDO MARINO-RAMIREZ,

9.- Tesis de doctorado : Transposable elements donate lineage-specific regulatory sequences to host genomes
Estados Unidos, 2004, Tutor principal, Orientados: Kali C. Lewis, IRTA Fellow, National Institutes of Health. 
Autores: LEONARDO MARINO-RAMIREZ,

10.- Iniciación Científica : Statistical analysis of over-represented words in human promoter sequences
Estados Unidos, 2004, , Orientados: Gavin C. Kanga, IRTA Fellow, National Institutes of Health. 
Autores: LEONARDO MARINO-RAMIREZ,

11.- Tesis de doctorado : DNA Structure Conservation in Functional Elements
Estados Unidos, 2008, Coturor/asesor, Orientados: Loren Hansen, IRTA Fellow, National Institutes of Health. 
Autores: LEONARDO MARINO-RAMIREZ,

Empresas de I+D
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Proyectos

1.- Estimación de la diversidad genética de acciones de Uchuva con el uso de marcadores COSII; 2008 - 

2.- Marcadores bioquímicos en un programa de introgresión rápida de genes entre las especies aceiteras Elaeis guineensis
y E. oleifera; - 

3.- Marcadores bioquímicos y moleculares en la certificación de semilla híbrida comercial de palma de aceite (E.
guineensis); - 

4.- Mejoramiento de variedades colombianas de algodón mediante la introducción de genes BT y RR mediante cruzas y
retrocruzas con variedades transgénicas.; 2006 - 
En Colombia se ha generado materiales genéticos de algodón con buenas características de producción, calidad y
adaptación apropiada a nuestro ecosistema, sin embargo la producción comercial tiene como gran limitante la dificultad en
el manejo de insectos plagas y malezas. A través de este proyecto se pretende mejorar las variedades Colombianas
mediante la introducción de genes que transfieran resistencia a lepidópteros y tolerancia a glifosato a traves de cruzas y
retrocruzas con materiales transgénicos mejorando la sostenibilidad y competitividad del cultivo en el país.El seguimiento a
las variedades colombianas de algodon que se le han introducido los genes Bt y RR se realizará en cada una de las
retrocruzas a nivel de campo y laboratorio.

5.- Identificación y aislamiento de genes de resistencia a Sigatoka negra de germoplasma de babano; - 

6.- Evaluación de la actividad insecticida de cepas nativas de Bacillus thuringienis para el control biológico de plagas de
importancia económica en el cultivo del algodón (Fase 2); 2001 - 2002
En esta segunda fase se realizó la caracterización microscópica, bioquímica y molecular de otras cepas nativas de Bacillus
thuringiensis, y se realizo bioensayos para el control de Spodoptera frugiperda y Alabama argillaceae.Los resultados
mostraron 2 cepas nativas como promisorias por su actividad toxica a nivel de ensayos aen laboratorio y en parcelas
semicontroladas de cultivo de algodón.

7.- Detección Molecular de alelos R1 y R2 que confieren resistencia a phytphthora infestans Mont, De Bary en genotipos
tetraploides de papa.; 2001 - 2001

8.- Caracterización molecular de microorganismos asociados a procesos de nitrificación y desnitrificacion de aguas de
refinería; 1999 - 2001

9.- Transformación genética de papa con los genes cry1Ab y cry1Ac de Bacillus thuringiensis para el posible control de
Tecia solanivora; 2000 - 
En este proyecto se estan transformando plantas de papa con los genes cry1Ab ycry1Ac de Bacillus thuringiensis con una
posible resistencia a Tecia solanivora. La transformacion genetica se realiza usando Agrobacterium. Las lineas
transformadas se evaluaran mediante análisis geneticos para determinar la integhración y expresión de los genes
transferidos. Los tuberculos de las lineas con mayor expresión seran evaluadas en bioensayos para determinar la eficiencia
en el control de Tecia solanivora.

10.- Determinación de niveles y calidad de almidones de la CCC de papa Solanum phureja para futuros proyectos de
mejoramiento; 2001 - 

11.- Identificación molecular de las variedades e híbridos generados por Corpoica.; 2001 - 2001

12.- Introduccion de resistencia al picudo del algodón Antonomus grandis a variedades comerciales colombianas mediante
transformación genética; 2001 - 

13.- Obtención de nuevas variedades de algodón para mejorar la competitividad de la producción.Transformación genética
de variedades colombianas de algodón.; 2001 - 2001

14.- Obtención de variedades de musa (Harton Común) con resistencia al picudo negro Cosmopolites sordidus mendiante
ransformación genética.; 2001 - 

15.- Uso de técnicas de microinjertación para el cultivo de cítricos en Colombia.; 2001 - 2001

16.- Cultivo de Tejidos para la Propagación masiva y transformación genética de guayaba para la producción de fruta sin
semilla y larga vida.; 2001 - 

17.- Establecimiento de un método de transformación genética de Trichoderma Koningii Th003 con un gen reportero; 2007
- 
Estandarizar un protocolo de transformación genética de Trichoderma Koningi utilizando el gen reportero GFP para usarlo
como base de futuros trabajos.

18.- Caracterizacion molecular de los hongos entomopatogenos Beauveria bassiana y Metarhizium anisoplae; 1996 - 1998
En este proyecto se utizaron las tecnicas de RAPD y amplificacion de ITS para la caracterización molecular de los hongos
entomopatogenos Beauveria bassiana y Metarhizium anisopliae. Este proyecto hacia parte de un macroproyecto que
buscaba el mejoramiento genético de estos hongos entomopatogenos.

19.- Bioremediación de fenol en aguas de la industria petrolera; 1999 - 2001
Con este proyecto se aislaron y caractetizaron bacterias con potencial biologico en la remocion de compuestos fenólicos
provenientes de agua de refineria.

20.- Caracterizacion biològica y molecular de cepas de Bacillus thuringiensis para el control de insectos plagas en
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agricultura; 1997 - 1999
Las perdidas de los cultivos, debido al ataque de insectos van desde el 10 al 30% de los costos totales de producción.
Generalmente las plagas se han venido controlando con insecticidas químicos que traen serios problemas tanto para la
salud humana como para los ecosistemas. Una alternativa de bajo impacto ecológico para el control de plagas es el uso de
entomopatógenos como Bacillus thuringuiensis. Dada la diversidad existente en Colombia y el potencial de encontrar
microorganismos entomopatógenos mejores adaptados a las condiciones del trópico y con mayor especificidad contra los
insectos plagas nativos; nace este proyecto tendiente al aislamiento y caracterización microscópica, bioquímica y molecular
de cepas nativas de B. thuringuiensis tomadas del Banco de Cepas de Corpoica. La información obtenida permitió clasificar
aproximadamente 680 aislamientos de acuerdo con su posible actividad biológica contra insectos. También dentro desde
este proyecto se aisló, expresó y purificó la proteína Cry 3Aa recombinante de Bacillus thuringiensis var. san diego así
como se realizo una evaluación biológica sobre larvas de primer instar de Premnotrypes vorax Hustache con el fin de que
en trabajos futuros se pudiera incorporar el gen cry 3Aa en plantas mediante técnicas de ingeniería genética.

21.- Evaluar la actividad insecticida de cepas nativas de Bacillus thuringiensis sobre plagas de importancia economica en el
cultivo de algodon; 2000 - 2001
Una alternativa de menor impacto ecológico para el control de plagas es el uso de microorganismos entomopatógenos con
Bacillus thuringiensis. Aprovechando la gran biodiversidad de nuestro país este proyecto fue encaminado a la
caracterización microscópica, bioquímica y molecular de cepas nativas de B. thuringiensis que se encuentran mejor
adaptadas a nuestras condiciones ambientales. Con estas cepas se realizaron bioensayos a nivel de laboratorio para el
control de Spodoptera frugiperda y Alabama argillacense que son plagas que afectan los cultivos de maíz y algodón
generando altos costos en la producción y disminución en la productividad de dichos cultivos.

22.- Caracterization and gene function of zrp4 gene, a root preferential gen of corn; 1993 - 1998

23.- Developing of maize anther culture method for genetic improvement; 1991 - 1994

24.- Producction of male sterile plants in corn by genetic transformation; 1998 - 2000

25.- caracterization of transgenic corn plants with altered starch quality; 1998 - 2000

26.- Desarrollo de una metodología para diagnóstico de sexos en papaya; 2001 - 

27.- Base molecular de forma y tamaño del fruto del tomate: Un modelo para variación de características cuantitativas;
2003 - 2006
La forma y el tamaño del fruto son factores importantes que determinan la producción, la calidad y la aceptación del
consumidor en muchos cultivos. Ambas son características de herencia cuantitativa que han sido difíciles de entender con
herramientas de biología molecular. El proyecto busca identificar, aislar y entender la base molecular de loci (sitios del
genoma) que afectan el tamaño y la forma del fruto del tomate. Los resultados contribuirán a vislumbrar la naturaleza de
la base molecular de la variación de características cuantitativas y contribuirán a entender la transformación de los ovarios
-pequeños órganos reproductivos- a frutos grandes de diferentes formas y tamaños que asociamos con la agricultura
moderna. Además, se reconstruirán los eventos involucrados en la domesticación del tomate y otras especies portadoras
de frutos.

28.- Development of COS databases for the Andean fruited species lulo and tree tomato-DCC Plant Genome Research- NSF
Supplement Plant Genomics Project: “Sequence and annotation of the tomato euchromatin: A framework for Solanaceae
Comparative Biology; 2005 - 2007
Dos especies exóticas nativas de la región andina (Colombia, Ecuador, y Perú), el lulo (Solanum quitoense) y el tomate de
árbol (Solanum betaceum) tienen un gran potencial para convertirse en productos de alto impacto en mercados nacionales
e internacionales con un alto retorno económico para los agricultores. A pesar de su incrementado valor en el mercado, los
mayores limitantes para su adopción por agricultores locales son la falta de sustento tecnológico asociado con una oferta
casi nula de materiales mejorados. CORPOICA mantiene colecciones de lulo y tomate de árbol y taxa relacionados, las
cuales tienen procesos parciales de caracterización fenotípica y genotípica. El desarrollo de marcadores moleculares
informativos para la caracterización de estos recursos genéticos es una necesidad inmediata para su apropiado uso. Estos
marcadores serán también útiles en programas de introgresión de alelos para resistencia, alta producción y calidad. El
proyecto propone el desarrollo y entrenamiento de científicos colombianos en la generación de bases de datos de
secuencias parciales de genes COSII (segunda generación de secuencias de genes ortólogos conservados) en lulo y tomate
de árbol, de tal forma que esta información pueda ser usada a futuro para evaluar la diversidad funcional en colecciones de
germoplasma, desarrollar mapas genéticos y asociativos, y asistir programas de mejoramiento genético a través de
selección asistida por marcadores y genómica.

29.- Análisis de la expresión génica de plantas de tomate tratadas con Trichoderma koningii (TH003) en relación con
parámetros de inducción de la resistencia y del crecimiento vegetal; 2006 - 2008
Se pretende estimular a las comunidades científica y académica para que aborden campos del conocimiento tales como la
resistencia inducida, la estimulación del crecimiento vegetal y la genómica estructural y funcional como elementos de la
biotecnología actual indispensables para los estudios de bioprospección y de dilucidación de fenómenos biológicos.
Igualmente se pretende continuar con la sensibilización de los agricultores sobre los beneficios directos e indirectos del
control biológico de fitopátogenos y del uso de estrategias de producción limpias

30.- Certificación y escalamiento de material de mora con potencial nutritivo y nutracéutico para entrega a pequeños
agricultores; 2006 - 2009
Dentro de la cadena frutícola, la mora (Rubus glaucus Bent) es un frutal andino que representa una de las 10 frutas
agroindustriales promisorias. En Colombia se cultiva principalmente la mora de Castilla, variedad ampliamente adaptada
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pero que presenta limitaciones de susceptibilidad fitosanitaria y bajo contenido de grados Brix. La oferta de un solo
material puede conducir a la vulnerabilidad en la producción. Esto aunado a la necesidad cada vez más creciente de
producir materiales con un alto valor nutritivo, hacen necesario tomar acciones que conlleven a seleccionar materiales con
valor agregado que contribuyan a mejorar la calidad de vida. El proyecto busca fortalecer la cadena de la mora e impulsar
su crecimiento, a través del desarrollo tecnológico integrado, que involucre diferentes líneas de producción. Para esto, se
trabaja en la caracterización e identificación de material promisorio (30 accesiones de la colección CORPOICA y materiales
de productores de Cundinamarca) desde el punto de vista morfo-agronómico, nutricional y nutracéutico con actividad
antioxidante. Se utilizan marcadores moleculares tipo AFLPs para estudios de huella genómica. El material élite
seleccionado es utilizado para el desarrollo de esquemas de producción limpia de semilla que involucren la utilización de
biocontroladores y biofertilizantes que mejoren su establecimiento y reduzcan los problemas fitosanitarios originados
durante la propagación. El material élite es escalado mediante multiplicación masiva in vitro para su entrega a pequeños
agricultores quienes derivan su sustento del cultivo de la mora.

31.- Iniciativa para la aplicación de la genómica en el mejoramiento genético de la papa criolla: estudio de la resistencia a
la gota (Phytophthora infestans); 2006 - 2008
La papa (Solanum sp) es el cuarto cultivo de importancia alimentaria en el mundo después del maíz, el trigo y el arroz.
La papa criolla (S. phureja) como alimento, ofrece a la dieta del consumidor un excelente valor nutricional. Como recurso
genético, ofrece al país una gran variabilidad genética para la generación de variedades con características de interés
agronómico entre las cuales se destaca la resistencia genética a plagas y enfermedades. La papa es atacada por una gran
número de patógenos, siendo el principal Phytophthora infestans, causante del tizón tardío o gota. En Colombia esta
enfermedad es considerada como un problema altamente prioritario, que puede llegar a causar hasta el 100% de pérdida
cuando el cultivo no es adecuadamente protegido. Entre las estrategias de control de P. infestans, el método más eficiente
sigue siendo la utilización de fungicidas y, el más deseado, apropiado y realista, la utilización de variedades resistentes. El
presente proyecto propone utilizar 2 parentales de S. phureja (uno altamente resistente y otro altamente susceptible a P.
infestans) y su población F1 para ser caracterizados molecularmente a través del aislamiento de genes de defensa que se
expresan como resultado de la infección y del uso de marcadores SSRs y COSII para la futura selección asistida por
marcadores y/o genómica en el mejoramiento genético de papa diploide (S. phureja) y papa tetraploide (S. tuberosum).

32.- Uso de marcadores COS en las solanáceas lulo y tomate de árbol para caracterización de germoplasma y genomica
comparativa; 2006 - 2009
Los frutales andinos de la familia Solanácea tales como el lulo (Solanum quitoense) y el tomate de árbol (Cyphomandra
betacea) tienen un gran potencial para convertirse en productos de alto impacto en mercados nacionales e internacionales
con un alto retorno social y económico a agricultores y consumidores. A pesar de su incrementado valor en el mercado, los
principales limitantes para su adopción por agricultores locales son la falta de sustento tecnológico asociado con una oferta
casi nula de materiales mejorados. En este sentido el presente proyecto pretende contribuir al conocimiento de la base
genética de la diversidad de estos frutales como insumo para programas de mejoramiento en Colombia. Se están
utilizando marcadores COSII (segunda generación de secuencias de genes ortólogos conservados), los cuales se generan a
partir de secuencias conservadas de genes de especies de la familia Solanácea. Los marcadores COS están siendo
utilizados en procesos de caracterización de germoplasma, identificación de híbridos, y estudios iniciales de genómica
comparativa con otras especies de la familia Solanácea para contribuir al futuro mejoramiento asistido por marcadores o
por genómica en estos cultivos.

33.- Evaluación de resistencia de uchuva a F. oxysporum como control integrado de la enfermedad; 2008 - 2011
Dentro de la cadena frutícola, la uchuva (Physalis peruviana L.) representa una de las especies con mayor proyección para
emprender proyectos productivos con miras a la exportación. La uchuva es la segunda fruta de exportación para Colombia
después del banano. El genotipo colombiano es el más apetecido por su sabor más dulce y por su mejor color, confiriendo
así una ventaja en los mercados internacionales. Sin embargo, a pesar de su riqueza y gran potencial, la uchuva no ha
adquirido el grado de importancia esperado, lo cual puede atribuirse a una falta de sustento tecnológico adecuado. Su
cultivo en Colombia enfrenta importantes problemas fitosanitarios, dentro de los cuales se destaca el marchitamiento
causado por el hongo Fusarium oxysporum que está afectando seriamente la sostenibilidad económica y ambiental del
cultivo, debido a la magnitud de las pérdidas que reporta el sector productivo y al abuso de fungicidas de síntesis química
que se emplean para su control. En el mercado mundial la tendencia actual de la demanda de alimentos se caracteriza
por el consumo de productos "limpios". Al respecto, la legislación en varios países exige una disminución considerable del
uso de plaguicidas químicos, la implementación de medidas fitosanitarias integradas y la utilización de buenas prácticas
agrícolas (http://www.cci.org.co/noticias.html; http://www.eurep.org/fruit/index_html). En este contexto, la resistencia
varietal junto con otros métodos de control integrado (como el control biológico, ver proyecto 2 del presente programa)
constituye una herramienta valiosa para reducir los riesgos de contaminación ambiental y de residualidad en el producto
de consumo, provocados por los ingredientes activos utilizados habitualmente. La utilización del potencial genético de
cualquier cultivo, depende de la disponibilidad de una base genética amplia para poder aplicar procesos de selección. En
uchuva, las instituciones portadoras del germoplasma (Universidad Nacional, Universidad de Nariño, Corpoica) han
realizado estudios morfo-agronómicos y de calidad del fruto. Sin embargo, no se ha estudiado el potencial de las
colecciones para atributos de resistencia a enfermedades limitantes, lo cual constituye el primer paso para la generación
de variedades y material de siembra con tolerancia o resistencia. El patógeno más limitante en la actualidad es F.
oxysporum, el cual debido a su capacidad de reproducción, diseminación y formación de estructuras de resistencia,
presenta una larga persistencia en los suelos y gran resistencia a los métodos convencionales de control. Esto hace que la
utilización de variedades resistentes o tolerantes sea el método de control deseable. El presente proyecto propone
complementar el programa focalizado en el patógeno, con un enfoque dirigido hacia la planta. Para ello, se evaluará la
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variabilidad genética de la uchuva y se identificarán fuentes de resistencia/tolerancia a F. oxysporum. Paralelamente, se
buscarán homólogos de genes de resistencia en uchuva que puedan estar asociados con resistencia a dicho patógeno, para
lo cual será necesario conocer la estructura poblacional con marcadores altamente informativos. El estudio aportará
herramientas valiosas para la identificación de materiales con tolerancia o resistencia, el diseño de estrategias de
cruzamiento y la generación eficiente de variedades resistentes. De esta forma se espera que los resultados del proyecto
contribuyan a impactar la producción limpia de uchuva a través de esquemas de manejo integrado de la enfermedad más
limitante, y así, la competitividad y sostenibilidad de la cadena en los mercados nacionales e internacionales.

34.- Análisis bioquímico de la interacción huesped - patógeno y desarrollo de un método para el diagnóstico de la
enfermedad del anillo rojo en palma de aceite; - 

35.- Genes de defensa a Sigatoka en America Latina; - 

36.- Introduccion de genes con propiedaddes de resistencia al Anthonomus grandis Boheman a variedades Colombians
comerciales de algodon mediante transformacion genetica; 2003 - 2004
Anthonomus grandis es una plaga que afecta el cultivo de algodón debido a que causa daño a las estructuras productivas
(botones florales y cápsulas), esta plaga es controlada con químicos que causan daño al hombre, medio ambiente e
insectos benéficos; una alternativa de menos impacto ecológico es la obtención de plantas que se defiendan del ataque de
los insectos disminuyendo además los costos de producción. Por lo anterior este proyecto fue encaminado en dos vías:
una en la búsqueda de genes que expresen proteínas tóxicas a A. grandis las cuales fueron probadas a través de
bioensayos a nivel de laboratorio y se le determino su toxicidad sobre larvas de primer instar, para luego estos genes ser
introducidos en materiales de algodón y la otra vía fue estandarizar un sistema de regeneración in Vitro de variedades
mejoradas de algodón a través de embriogénesis y/o organogenesis.

37.- Desarrollo de una técnica eficiente de regeneración in vitro en variedades comerciales Colombianas de algodón para
introducir genes para el control de picudo; 2004 - 2004
La obtención de plantas transgénicas se puede lograr a través de dos vías: una directa mediante la introducción de los
genes de interés utilizando Agrobacterium tumefacies y/o biobalistica y la otra indirecta por cruzas y retrocruzas entre los
padres contranstante para la característica deseada. La primera vía fue la escogida en este proyecto, para introducir
genes que confieran resistencia a las variedades colombianas de algodón de ataque de Anthonomus grandis (picudo del
algodonero). Para poder lograr el objetivo se trabajó en la estandarización de un protocolo de transformación genética
utilizando A. tumefaciens y en un sistema de regeneración con las variedades de algodón.

38.- Aislamiento y caracterización de los genes nag70 y gluc78 de Trichoderma koningii cepa th003; 2007 - 
Utilizando las regiones conservadas entre las especies del mismo género a través de PCR específica se pretende amplificar
los genes Nag 70 y Gluc 78 de Trichoderma Koningi involucrados en la actividad micoparasítica, para luego clonarlos y
caracterizarlos.









Formación	  de	  Recurso	  Humano	  
	  
1.	  Docente	  en	  Programas	  de	  Doctorado	  
	  
Universidad	  de	  La	  Sabana	  -‐	  Doctorado	  en	  Biociencias	  
	  
http://www.unisabana.edu.co/postgrados/doctorado-‐en-‐biociencias/nuestro-‐
programa/	  
	  
Contacto:	  
	  
Ing.	  Esperanza	  Carvajal	  Hoyos	  
Coordinadora	  Doctorado	  Biociencias	  
Facultad	  de	  Ingeniería	  
Universidad	  de	  La	  Sabana	  
doctorado.biociencias@unisabana.edu.co	  
Tel.	  8615555	  Ext.	  2557	  
Cel.	  3112376878	  
	  
2.	  Docente	  en	  Programas	  de	  Doctorado	  
	  
Universidad	  Nacional	  de	  Colombia	  -‐	  Doctorado	  en	  Ciencias	  Biomédicas	  
	  
http://www.medicina.unal.edu.co/doctcienciabiom/	  
	  
Contacto:	  
	  
Carlos	  Alberto	  Parra	  López	  
Coordinador	  Doctorado	  en	  Ciencias	  Biomédicas	  	  
Facultad	  de	  Medicina	  
Universidad	  Nacional	  de	  Colombia	  
Tel.	  316-‐5000	  Ext.	  15039	  /	  15016	  	  
e-‐mail:	  docbiomed_fmbog@unal.edu.co	  
	  
3.	  Docente	  en	  Programas	  de	  Doctorado	  
	  
Boston	  University	  –	  Bioinformatics	  
	  
http://www.bu.edu/bioinformatics/	  
	  
Contacto:	  
	  
Tom	  Tullius	  
Life	  Science	  and	  Engineering	  Building	  (LSE)	  
24	  Cummington	  St	  
Boston,	  MA	  



tullius@bu.edu	  
Tel:	  +1	  617-‐353-‐2482	  
	  
	  
4.	  Docente	  en	  Programas	  de	  Maestría	  
	  
Universidad	  de	  Los	  Andes	  –	  Ingeniería	  de	  Sistemas	  
	  
http://sistemas.uniandes.edu.co/sitio/maestria	  
	  
Contacto:	  
	  
Silvia	  Takahashi	  
Profesor	  Asociado	  
Universidad	  de	  los	  Andes	  	  
Carrera	  1	  este	  N°	  19A-‐40	  of.	  ML	  705	  	  
Bogotá,	  Colombia	  
stakahas@uniandes.edu.co	  
Tel:	  3394949	  Ext.	  2870	  
	  
4.	  Docente	  en	  Programas	  de	  Maestría	  
	  
Johns	  Hopkins	  University	  –	  Bioinformatics	  
	  
http://advanced.jhu.edu/academic/biotechnology/ms-‐in-‐bioinformatics/	  
	  
Contacto:	  
	  
Beth	  M.	  Lemkelde	  
Advanced	  Academic	  Programs	  
Krieger	  School	  of	  Arts	  and	  Sciences	  
Johns	  Hopkins	  University	  
1717	  Massachusetts	  Avenue,	  NW	  
Washington,	  DC	  	  20036	  
Beth_Lemkelde@jhu.edu	  
Tel.	  +1	  202-‐452-‐1916	  
	   	  



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

CURSO INTERNACIONAL DE BIOINFORMÁTICA: 
MANEJO DE LAS HERRAMIENTAS BÁSICAS 

 
 

Octubre 11–14 de 2005 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 



 
 

 
PRESENTACIÓN 

 
A pesar de ser la rama de las ciencias biológicas más recientemente surgida, la 
bioinformática es el área del conocimiento que ha hecho los aportes más valiosos a 
muchos de los grandes logros científicos de nuestro tiempo; tal es el caso del 
proyecto genoma humano, el cual sin duda alguna ha revolucionado la forma de ver 
al hombre y ha ampliado las posibilidades de las ciencias. Gracias a la aplicación de 
la informática a las ciencias biológicas algunas labores como la creación de bancos 
de información, el procesamiento y análisis de resultados experimentales y la 
comparación de grandes cantidades de datos son cada vez más rápidas y 
confiables. En la actualidad buena parte del avance de los proyectos de 
investigación en biología molecular, bioquímica, genética y biotecnología depende 
del uso de las herramientas que provee la  bioinformática.   
 

JUSTIFICACIÓN 
 

El inmenso caudal de información científica que se genera día a día, la profundidad 
de la misma y la necesidad de realizar procesos de análisis cada vez más complejos 
hace muy difícil la labor de generar nuevo conocimiento. Por tal razón, resulta de 
vital importancia para el investigador manejar las herramientas computacionales 
básicas que le permitan asegurar el éxito de sus proyectos de investigación.  
 

OBJETIVO GENERAL  
 

Introducir a los estudiantes universitarios, profesores de todos los niveles e 
investigadores del área de las ciencias biológicas en el manejo de las herramientas 
básicas de la bioinformática que provee el Centro Nacional para la Información en 
Biotecnología (NCBI) de los Estados Unidos de Norteamérica 
(http://www.ncbi.nlm.nih.gov/).   
 

OBJETIVOS ESPECÍFICOS 
 

Conocer las diversas aplicaciones diseñadas por NCBI para la búsqueda y manejo 
de información importante para la investigación en ciencias biológicas. 
 
Aprender a manejar las bases de datos GenBank, MMDB y bases de datos 
derivadas de NCBI. 
 
Aprender a manejar los programas de búsqueda de similitudes y otros recursos 
informáticos.   
 
 

 
 
 



 
 
 

CONTENIDO DEL CURSO 
 
Sesión 1(Octubre 11): Presentación 
 
¿Que es la bioinformática?  
¿Cómo y cuándo aparece?  
Principales bases de datos en bioinformática (NCBI, EBI, SIB, EMBL)  
La necesidad de la Bioinformática en Colombia (redes)  
UNIX: El sistema operativo por excelencia en bioinformática.  
 
Base de datos GenBank: descripción y alcances 

Bases de datos derivadas de NCBI: RefSeqs  

Búsqueda en bases de datos usando Entrez 

a. Información relacionada 

b. Búsqueda en Entrez 

 
Sesión 2 (Octubre 12): Conceptos básicos de Biología Molecular  
 
Estructura y composición del ADN y del ARN  
Estructura y composición de proteínas  
Dogma central de la Biología Molecular  
Código genético  
Estructura de los genes (promotores, amplificadores, represores)  
Marcos de lectura abiertos  
Mapas físicos y genéticos  
Islas CpG  
 
Bases de datos de estructuras de NCBI 

a. Base de datos de modelaje molecular (MMDB) 

b. Alineamientos estructurales 

c. Observación de estructuras y alineamientos estructurales con Cn3D 

 



 
Sesión 3 (Octubre 13): Importancia de la comparación de secuencias genicas y 

protéicas 
¿Porqué y cómo comparar secuencias? 

  Búsquedas de similitudes usando BLAST de NCBI 

a. Estadística de alineamientos locales 

b. Sistemas de conteo 

c. Uso de los servicios de BLAST en la web 

d. PSI-BLAST 

e. RPS-BLAST 

f. Páginas especializadas de BLAST  

 

Sesión 4 (Octubre 14): Aplicación práctica de la bioinformática  

Recursos para genómica en NCBI 

a. Genomas microbianos completos en Entrez 

b. Recursos para genomas de organismos superiores 

• RefSeq y genes 

• Unigene 

• Datos de variación (SNPs) 

• Los genomas del humano, ratón y rata 

• Visor de Mapas 

• Otros genomas 

 

Trabajo complementario 
Alineamiento múltiple  
El problema del número de secuencias en el alineamiento múltiple  
Encontrando zonas conservadas  
Utilidad en el diseño de iniciadores o cebadores  
Programas en INTERNET (uso en línea)  
Programas para descarga y uso local  
 
Construcción de dendrogramas   
Métodos de distancia  
Tipos de distancia: Modelos de sustitución (Ácidos nucleicos y proteínas)  
 



 

Coordinación General: 
 
Mauricio Pulido Jiménez. Coordinador CEBM Gimnasio Campestre 
 
Javier Hernández Fernández. Asesor CEBM Gimnasio Campestre 
 
Jaime Bernal Villegas, M.D., Ph.D. Rector Gimnasio Campestre  
 
Conferencista: 
Leonardo Mariño Ramírez, Ph.D.  
Staff Scientist  
National Center for Biotechnology Information 
National Library of Medicine 
National Institutes of Health 
Bethesda, MD – USA 
http://www.ncbi.nlm.nih.gov/CBBresearch/Marino/ 
 
Monitor: 
 
Javier Hernández-Fernández, M.Sc. Asesor CEBM Gimnasio Campestre 
 
Dirigido a:  
 
El curso está abierto a estudiantes universitarios, profesores de todos los niveles e 
investigadores de cualquier área de las ciencias biológicas. Es recomendable 
conocimientos elementales de biología molecular, conocimientos básicos de manejo 
de computadores y conocimientos de inglés.  
 
Fecha de realización:  
Octubre 11 – 14 de 2005  (2-6 p.m) 
 
Lugar:  
Laboratorio de Informática, Gimnasio Campestre.  
Calle 165 No. 19-50.  Bogotá. 
 
Cupo máximo:  
30 personas 
 
Valor de la inversión:  
$250.000 
 
Informes e inscripciones:  
Tel: 526-1700 / 526-1727 / 526-1737  ext. 269 
Fax: 526-1710 
E-mail: centrobiomol@campestre.edu.co 



Curso Internacional 
Manejo de Herramientas Básicas en Bioinformática 

 
Conferencista 

 
Leonardo Mariño Ramírez, Ph.D. 

Staff Scientist 
National Center for Biotechnology Information 

National Library of Medicine 
Bethesda, MD – USA 

 
Octubre 2 – 3 de 2006  

Universidad de La Sabana.  
Campus Universitario. Puente del Común. 

Chía. Autopista Norte Km 21. 
 

PRESENTACIÓN 
 
A pesar de ser la rama de las ciencias biológicas más recientemente surgida, 
la bioinformática es el área del conocimiento que ha hecho los aportes más 
valiosos a muchos de los grandes logros científicos de nuestro tiempo. 
Gracias a la aplicación de la informática a las ciencias biológicas algunas 
labores como la creación de bancos de información, el procesamiento y 
análisis de resultados experimentales y la comparación de grandes 
cantidades de datos son cada vez más rápidas y confiables. En la actualidad 
buena parte del avance de los proyectos de investigación en biología 
molecular, bioquímica, genética y biotecnología depende del uso de las 
herramientas que provee la bioinformática. 
 
El inmenso caudal de información científica que se genera día a día, la 
profundidad de la misma y la necesidad de realizar procesos de análisis cada 
vez más complejos hace muy difícil la labor de generar nuevo conocimiento. 
Por lo tanto, resulta de vital importancia para el investigador manejar las 
herramientas computacionales básicas que le permitan asegurar el éxito de 
sus proyectos de investigación. Debido a esto, el presente curso busca 
introducir a los estudiantes universitarios, profesores e investigadores del 
área de las ciencias biológicas en el manejo de las herramientas básicas en 
Bioinformática que provee el Centro Nacional para la Información en 
Biotecnología (NCBI) de los Estados Unidos de Norteamérica. 



 
 

Contenido del Curso 
 

 
 

Día 1. Octubre 2 de 2006
Conceptos básicos de Biología Molecular  
Estructura y composición del ADN, ARN y proteínas. 
Código genético. 
Estructura de los genes. 
Marcos de lectura  abiertos. 
Mapas físicos y genéticos. 

Sesión 1  
8 a.m. - 10 a.m. 
 

Refrigerio 10:00 a.m. - 10:30 a.m. 
Introducción a la Bioinformática 
¿Que es la bioinformática? 
¿Cómo y cuándo aparece? 
Principales bases de datos en bioinformática: 
- NCBI, EBI, SIB, EMBL. 
Base de datos GenBank: descripción y alcances. 
Bases de datos derivadas de NCBI: RefSeqs. 
Búsqueda en bases de datos usando Entrez. 
- Información relacionada. 
- Búsqueda en Entrez.  

Sesión 2  
10:30 a.m. - 12:30 a.m. 
 

Almuerzo 12:30 - 1:30 
Bases de datos de estructuras del NCBI 
- Base de datos de modelamiento molecular 
(MMDB). 
- Alineamientos estructurales. 
- Observación de estructuras y alineamientos 
estructurales con Cn3D. 

Sesión 3 
1:30 p.m. - 3:30 p.m. 
 

Refrigerio 3:30 p.m. - 4:00 p.m. 
Comparación de secuencias. Parte I 
¿Porqué y cómo comparar secuencias de genes y 
proteínas? 
Búsquedas de similitudes usando BLAST del NCBI. 
- Estadística de alineamientos locales. 
- Sistemas de conteo.  
- Uso de los servicios de BLAST en la web. 

Sesión 4  
4:00 p.m. - 6:00 p.m. 
 



 
 

Contenido del Curso 
 

 
 
 
 
 

Día 2. Octubre 3 de 2006
Comparación de secuencias. Parte II 
- PSI-BLAST. 
- RPS-BLAST. 
- Páginas especializadas de BLAST.  
Alineamiento múltiple 
- El problema del número de secuencias. 
- Encontrando zonas conservadas. 

Sesión 5  
8 a.m. - 10 a.m. 
 

Refrigerio 10:00 a.m. - 10:30 a.m. 
Recursos para genómica en el NCBI 
Genomas microbianos completos en Entrez. 
Recursos para genomas de organismos superiores. 
- RefSeq y genes. 
- Unigene. 
- Datos de variación (SNPs). 
- Los genomas del humano, ratón y rata. 
- Visor de mapas. 

Sesión 6 
10:30 a.m. - 12:30 a.m. 
 

Almuerzo 12:30 - 1:30 
Diseño de iniciadores 
Conceptos básicos. 
Programas en línea (INTERNET).  
Programas para descarga y uso local. 

Sesión 7 
1:30 p.m. - 3:30 p.m. 
 

Refrigerio 3:30 p.m. - 4:00 p.m. 
Construcción de dendrogramas 
Conceptos básicos. 
Métodos de distancia. 
Tipos de distancia: modelos de sustitución (ácidos 
nucleicos y proteínas). 
Análisis de datos: RFLP, AFLP, RAPD, PFGE. 
Programas empleados. 

Sesión 8 
4:00 p.m. - 6:00 p.m. 
 



Coordinación General 
Yenny Milena Gómez P. Coordinadora de Investigación. 
Facultad de Medicina, Universidad de La Sabana. 
Javier Hernández-Fernández, Docente investigador. 
Zootecnia, Universidad de La Salle 

Conferencista 
Leonardo Mariño Ramírez, Ph.D. NCBI. USA. 
http://www.ncbi.nlm.nih.gov/CBBresearch/Marino/ 
Correo electrónico: marino@ncbi.nlm.nih.gov  

Monitor 
Elkin  Hernández Porras, Médico Investigador.  
Facultad de Medicina. Universidad de La Sabana. 

Dirigido a 
Estudiantes universitarios, profesores e investigadores de las diferentes áreas 
de las ciencias biológicas interesados en aprender el manejo de las 
herramientas básicas en Bioinformática. 

Cupo limitado 
Máximo 25 personas.  

Valor de la inversión 
$250.000. Descuento para estudiantes. 
El precio del curso incluye refrigerios y almuerzos. 
Se entregará un certificado de asistencia al finalizar el curso. 
 
Las inscripciones finalizan el 15 de septiembre de 2006. 
 

Procedimiento de inscripción y pago  
1- Envíe un mensaje al correo electrónico 
investigacion.medicina@unisabana.edu.co  con los siguientes datos: 
Nombres y apellidos completos (así aparecerán en el certificado de 
asistencia). Dirección y teléfono para contactar. Institución a la cual se 
encuentra vinculado.  
2- Inmediatamente recibirá un correo electrónico confirmando la reserva del 
cupo y los datos necesarios para el pago del curso mediante consignación 
bancaria. 
3- Envíe por fax o correo electrónico copia del recibo de la consignación. 



4- En 1 a 3 días recibirá otro correo confirmando la inscripción al curso y los 
detalles concretos del lugar donde se realizará. Las inscripciones cuyo pago 
no sea realizado antes de iniciar el curso podrán ser anuladas.  
 
Informes e inscripciones 
Teléfono: 8615555 Ext. 2654 – 2605. 
Fax: 8615555 Ext. 2626 – 2612. 
Correo electrónico: investigacion.medicina@unisabana.edu.co  

         elkineh@yahoo.com 
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V Simposio Biología Molecular 
 

DIAGNÓSTICOS DE ACOMPAÑAMIENTO 
LA REVOLUCIÓN GENÓMICA APLICADA A LA MEDICINA MODERNA. 

 
Universidad Libre-Seccional Cali 

Instituto de Investigaciones Biomédicas 
III Semestre Medicina y Cirugía 

 
PROGRAMA 

 
SESION 1. INTRODUCCIÓN A LOS DIAGNÓSTICOS DE ACOMPAÑAMIENTO Y MEDICINA PERSONALIZADA. 
Hora Tema Conferencista(s) 

8:00 – 9:00 am 
(60 min) 

Videoconferencia internacional: 
Marcadores Moleculares en Tumores 
Sólidos. 
 

Dra Maria Luisa Maestro de las Casas, PhD 
(España).  
Laboratorio Patología Molecular.  
Hospital Clínico San Carlos – Madrid. 

9:00 – 9:20 am 
(20 min) 

– Bienvenida. 
– Introducción: Medicina 

personalizada, diagnósticos de 
acompañamiento e investigación 
tranalscional. 

 

Augusto Valderrama Aguirre MsC. PhD(C) 
Profesor Asociado, Universidad Libre-Cali  
Director Grupo IIB 
 

9:20 – 10:00 am 
(40 min) 

Conferencia Magistral I: Genomas 
virales vs genoma humano.  
 

Felipe García Vallejo, PhD 
Profesor Titular, Universidad del Valle 
Director Laboratorio de Biología Molecular y 
Patogénesis. 
 

9:40 – 10:00 am 
(20 min) 

Coffee Break (30 min) 

 

SESION 2. IDENTIFICACIÓN MOLECULAR DE SUJETOS CON EL GENOTIPO ADECUADO PARA EL TRATAMIENTO.  
Hora Temas Conferencista(s) 
10:00 – 10:40 am 
(40 min) 

Conferencia Magistral II: Tecnologías 
de última generación para la 
determinación de marcadores 
genómicos en medicina personalizada. 
 

Dr Leonardo Mariño, PhD (USA).  
Computational Biology Branch. 
National Center for Biotechnology Information 
(NCBI/NLM/NIH). 
 

10:40 – 11:05 am 
(25 min) 

1. EGFR (Erlotinib y Gefitinib). 
2. KIT (Imatinib). 
 

Grupo 1 – Estudiantes 3er semestre Medicina y 
Cirugía, Universidad Libre – Cali. 

11:05 – 11:30 am 
(25 min) 

3. VEGFA (Bevacizumab). 
4. ERBB2 (Trastuzumab). 
 

Grupo 2 – Estudiantes 3er semestre Medicina y 
Cirugía, Universidad Libre – Cali. 

11:30 – 11:55 am 
(25 min) 

5. KRAS (Cetuximab). 
6. NAT2 (Isoniazida). 
7. VKORC1 (Warfarina) 
 

Grupo 3 – Estudiantes 3er semestre Medicina y 
Cirugía, Universidad Libre – Cali. 

11:55 am – 2:00 
pm (2 horas) 

Espacio para almuerzo (2 horas) 
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SESION 3. IDENTIFICACIÓN MOLECULAR DE SUJETOS CUYA RESPUESTA AL TRATAMIENTO SEA POBRE O TÓXICA.  
Hora Temas Conferencista(s) 
2:00 – 2:35 pm 
(35 min) 

Conferencia Magistral III: Aplicaciones 
de los Diagnósticos de 
Acompañamiento en Oncología Clínica 
y necesidades más imperantes en el 
suroccidente Colombiano. 
 

Dr Álvaro Guerrero, MD (Colombia).  
Especialista en Hematología y Oncología. 
Hemato-oncólogos de Occidente. 
 

2:35 – 3:00 pm 
(25 min) 

1. CYP2C19 (Omeprazol). 
2. CYP2C9 (Warfarina). 
3. CYP2D6 (Fluoxetina). 
 

Grupo 4 – Estudiantes 3er semestre Medicina y 
Cirugía, Universidad Libre – Cali. 

3:00 – 3:25 pm 
(25 min) 

4. HLA-B (Abacavir, Carbamazepina). 
5. DPYD (Capecitabina, 5-

Fluorouracilo). 
 

Grupo 5 – Estudiantes 3er semestre Medicina y 
Cirugía, Universidad Libre – Cali. 

3:25 – 3:50 pm 
(25 min) 

6. G6PD (Cloroquina, Dapsona). 
7. TPMT (Mercaptopurina). 
8. UGT1A1 (Irinotecam). 
 

Grupo 6 – Estudiantes 3er semestre Medicina y 
Cirugía, Universidad Libre – Cali. 

3:50 – 4:15 pm  
(25 min) 

Coffee Break (30 min) 

 

SESION 4. TECNOLOGÍAS DE APROBADAS POR LA FDA PARA DIAGNÓSTICO DE ACOMPAÑAMIENTO.  
Hora Temas Conferencista(s) 
4:15 – 4:40 pm 

(25 min) 
AmpliChip Cytochrome P450 (Roche). 
 
 

Grupo 7 – Estudiantes 3er semestre Medicina y 
Cirugía, Universidad Libre – Cali. 

4:40 – 5:05 pm 
(25 min) 

KRAS mutation detection kit (Qiagen) Grupo 8 – Estudiantes 3er semestre Medicina y 
Cirugía, Universidad Libre – Cali. 
 

5:05 – 5:30 pm 
(25 min) 

1. PathVysion HER-2 DNA Probe Kit 
(Abbott) 

2. TheraGuide (Myriad) 
 

Grupo 9 – Estudiantes 3er semestre Medicina y 
Cirugía, Universidad Libre – Cali. 

5:30 – 6:00 pm  
(25 min) 

Brindis de cierre (30 min) 

 

  



 
 

Carolina G 
 

   
Carrera 45 No. 26-85, EDIFICIO URIEL GUTIÉRREZ, 2º piso Oficina 206 

Teléfono: (57-1) 316 5099 Conmutador: (57-1) 316 5000 Ext. 18115 – 18151 - 18163 Fax: Ext. 18172 
Correo electrónico: dirinvesti_bog@unal.edu.co / Bogotá, Colombia, Sur América  

DIB-719-2011 
 
Bogotá, 9th September 2011  
   
   Professor  
LEONARDO MARIÑO RAMIREZ 
NCBI, NLM, NIH 
Computational Biology Branch 
Bethesda, MD 
United States of America 
   
   

Dear Professor Mariño:  
 
The Academic and Research Directors at the National University of Colombia are pleased to 
announce the upcoming International school, which will be offered this summer and a Special 
Course on November. The course will be part of a series of lectures given by international experts 
on new technologies in health and Eco-cities. 

 
The International School will intend to cover several topics about these fields. Specifically, the topic 
of new technologies in health will have a section focused on Genomics in Infectious Diseases, a 
public tool (this course will be developed, from Nov 28

th
 to Dic. 2

nd
, 2011). Given your professional 

and academic achievement and your contributions to the field, it´s a pleasure for the International 
School to invite you to participate as a guest speaker and to host you in our city.  
   
According to the program of the International School, your proposed lectures will be on:  
 
A. Genomics, genome sequencing and annotation. Tools overview: Next-generation sequencing 

and Genome assembly.  
 

B. Practical Session 1 B: The genome sequence of Mycobacterium colombiense CECT 3035 type 
strain - Genome assembly and annotation Demo 

  
We will be grateful for your visit at least during the following days. The National University of 
Colombia will cover flight tickets (in economic class) and the hotel, while you are in this event. No 
US Federal Government funds will be used to pay for any portion of the travel and no honorarium 
will be given to the traveler. 
 
Sincerely yours, 

 
   

 
LUIS FERNANDO NIÑO VÁSQUEZ    JUAN MANUEL TEJEIRO 

Research Director      Academic Director  









21 June 2012 

 

    

INTERNATIONAL CENTRE FOR GENETIC ENGINEERING AND BIOTECHNOLOGY 

 

Theoretical and Practical Course 
"Bioinformatics: Computer Methods 
in Molecular and Systems Biology" 

 
 

ICGEB and AREA Informatics Lab, AREA Science Park 
Trieste, Italy, 25-30 June 2012 

 
 

PRELIMINARY PROGRAMME 
 
 
MONDAY, 25 June 

 
08:00  Pick-up from Hotel Roma   
     
08:30  Registration  ICGEB Foyer, ‘W’ Building   
     
09:15  Welcome Address  ICGEB Seminar Room, ‘W’ Building 

Sándor Pongor, ICGEB, Trieste, Italy 
     
09:30  Bioinformatics and knowledge representation: 

theoretical intro to the course 
 Sándor Pongor 

     
10:45  Break   
     
11:15  The ICGEB computer system, course infrastructure  Informatics Laboratory, ‘E3’ Building  

Dario Palmisano, ICGEB, Trieste, Italy 
Sándor Pongor 

     
12:30  Sequence analysis, database searching   David Judge, University of Cambridge, UK 

 

     
13:30  Lunch  Cafeteria, Ground Floor, 'C' Building 
     
14:30  Sequence analysis, database searching (cont.)  David Judge 
     
18:00  Get-Together Party  ICGEB Foyer,’W’ Building 
     
19:00  Bus to Hotel Roma   
 
TUESDAY, 26 June 
 
08:30  Pick-up from Hotel Roma   
     
09:00   Sequence analysis, database searching (cont.)  David Judge 
     
11:00  Break   
     
11:30   Sequence analysis, database searching (cont.)  David Judge 
     
13:30   Lunch  Cafeteria, Ground Floor, 'C' Building 
     
14:30   Sequence analysis, database searching (cont.)  David Judge 
     
18:00   Bus to Hotel Roma   



 
 

 

 

WEDNESDAY, 27 June 
 
08:30  Pick-up from Hotel Roma   
     
09:00  Sequence analysis, database searching (cont.)  David Judge 
     
11:00  Break   
      
11:30  Sequence analysis, database searching (cont.)  David Judge 
     
13:30  Lunch  Cafeteria, Ground Floor, 'C' Building 
     
14:30  KEGG: Kyoto Encyclopedia of Genes and Genomes  Minoru Kanehisa, Kyoto University and  

University of Tokyo, Japan 
     

18:00  Bus to Hotel Roma   
 
THURSDAY, 28 June 
 
08:30  Pick-up from Hotel Roma   
     
09:00  The European Bioinformatics Institute (EBI) services: 

searches, functional genomics and pathway 
databases 

 Gabriella Rustici, EBI, Hinxton, UK 

     
11:00  Break   
     
11:30  The EBI services (cont.)  Gabriella Rustici 
     
13:30  Lunch  Cafeteria, Ground Floor, 'C' Building 
     
14:30  The EBI services (cont.)  Gabriella Rustici 
     
18:00  Bus to Hotel Roma   
 
FRIDAY, 29 June 
 
08:30  Pick-up from Hotel Roma   
     
09:00  The National Center for Biotechnology Information 

(NCBI) services, nucleic acid databases 
 Leonardo Marino Ramirez, NCBI , NIH, 

Bethesda, MD, USA 
     
11:00  Break   
     
11:30  NCBI services (cont.)  Leonardo Marino Ramirez 
     
13:30  Lunch  Cafeteria, Ground Floor, 'C' Building 
     
14:30  Next-generation sequencing data analysis using open 

source software 
 Leonardo Marino Ramirez 

     
18:00  Bus to Hotel Roma   
 
SATURDAY, 30 June 
 
08:30  Pick-up from Hotel Roma   
     
09:00  Genome computing, phylogeny  Martin Bishop, Cambridge, UK, David Judge  
     
10:30  Break   
     
11:00  Genome computing, phylogeny (cont.)  Martin Bishop, David Judge 
     
13:00  Lunch  ICGEB premises, ‘W’ Building 
     
14:00  Protein sequence databases, UniProt  Elisabeth Gasteiger, SIB Swiss Institute of 

Bioinformatics, Geneva, Switzerland 
     

18:00  Bus to Hotel Roma   
 



Boston University Bioinformatics Graduate Program 

24 Cummington Street 
Boston, Massachusetts 02215 
T 617‐358‐0752  F 617‐353‐4814 
www.bu.edu/bioinformatics 
 
 
 

 

July 28, 2011 

 

Leonardo Marino-Ramirez, Ph.D. 

NCBI / NLM / NIH 

Building 38A, Room 6S614M 

8600 Rockville Pike 

Bethesda, MD 20894 

 

Dear Dr. Marino-Ramirez, 

 

I am pleased to confirm your appointment as Adjunct Professor of the Bioinformatics Graduate Program 

at Boston University, effective September 1, 2011 through August 31, 2014.  Thank you for submitting a 

request for appointment and the required documentation. 

 

We would appreciate it if you keep the Program informed of major achievements in your scientific life and 

provide electronic copies of your papers for our files.  Note that you will be receiving the Bioinformatics 

Program Newsletter on a regular basis and are more than welcome to submit items about your research 

and other activities – and news about the accomplishments of your students, both past and present. 

 

Please accept my best wishes for successful participation in the Program.  If you need any administrative 

support, please contact Caroline Lyman at clyman@bu.edu. 

 

With best wishes, 

 
Thomas D. Tullius 

Director, 

Boston University Bioinformatics Program 





Proyectos	  de	  Investigación	  en	  Colombia	  
	  
1.	  Secuencia	  del	  transcriptoma	  de	  la	  Uchuva	  Physalis	  peruviana	  
	  
2.	  Secuencia	  del	  genoma	  de	  Mycobacterium	  colombiense	  
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ATPasas TIPO P DE M. tuberculosis COMO POSIBLES DIANAS TERAPÉUTICAS 

En colaboracion con Carlos Yesid Soto Ospina, PhD 
 
Durante la infección, el bacilo tuberculoso enfrenta condiciones adversas como una escasa disponibilidad 
de iones esenciales y de nutrientes necesarios para su supervivencia [1-5], así como un arsenal de 
sustancias tóxicas usadas por las células fagocíticas para eliminar patógenos intracelulares, entre ellas se 
pueden mencionar: altas concentraciones de H+, hidrolasas, péptidos antimicrobianos, especies reactivas 
de nitrógeno y oxígeno y altas concentraciones de cationes de metales pesados [6]. 
 
Probablemente, el éxito del bacilo tuberculoso durante la infección, en parte puede deberse a que 
responde de manera efectiva a este microambiente y se adapta a él. En ello, las ATPasas tipo P deben ser 
indispensables, ya que no solo transportan cationes metálicos, sino que generan los gradientes 
electroquímicos necesarios para el transporte de otro tipo de solutos a través de membranas celulares y 
también protegen a la célula de sustancias tóxicas presentes en los fagosomas [7, 8]. 
 
Las ATPasas tipo P son proteínas de membrana conservadas en estructura tridimensional, más que en 
secuencia de aminoácidos. Poseen de 6 a 10 TMS que orientan los extremos N- y C-terminales al lado 
citoplasmático de la membrana. El extremo N-terminal forma la gran cabeza citoplasmática caracterizada 
por formar 2 grandes loops en los que se ubican los principales sitios activos de la enzima. Por su parte, el 
extremo C-terminal está embebido casi en su totalidad en la membrana. Exhiben 5 dominios funcional y 
estructuralmente diferentes: tres citoplasmáticos (A, actuador; N, unión a nucleótido; y P, fosforilación) y 
dos embebidos en la membrana (T, transporte; y S, soporte específico de la clase) [7, 9-11]. Durante cada 
ciclo catalítico el dominio P es fosforilado en un residuo de aspartato, por acción del dominio N (actividad 
proteín-quinasa) y posteriormente defosforilado por el dominio A (actividad fosfatasa) [7, 9]. 

M. tuberculosis posee 12 ATPasas tipo P (CtpA, CtpB, CtpC, CtpD, CtpE, CtpF, CtpG, CtpH, CtpI, CtpJ, CtpV y 
KdpB), un gran número en comparación con micobacterias saprófitas como M. smegmatis que solo posee 
6 ATPasas tipo P. 7 de esas doce ATPasas han sido postuladas como posibles transportadores de cationes 
de metales pesados [12], lo que sugiere una posible importancia de estas en la defensa celular de las 
micobacterias durante la infección, como se ha propuesto para otros procariotas y algunos eucariotas 
unicelulares [8]. Los metales pesados, que bajo ciertas condiciones son fundamentales para la vida, en 
concentraciones elevadas se convierten en agentes tóxicos que bloquean grupos funcionales, desplazan 
iones metálicos esenciales o modifican las conformaciones activas de moléculas biológicas [13]. Por ello, 
resulta fundamental que las bacterias sean capaces de establecer un equilibrio entre la entrada y la salida 
de cada metal, de tal forma que ellos se mantengan en la concentración a la que son nutrientes. Por lo 
tanto, los transportadores que permiten mantener dicha homeostasis deben ser fundamentales para la 
virulencia de estos patógenos intracelulares [14].  

Acorde con la hipótesis anterior, se ha propuesto que CtpC, CtpG y CtpV, pueden hacer parte de un 
mecanismo de defensa usado por las micobacterias para sobrevivir por largos periodos de tiempo dentro 
de células fagocíticas humanas, ya que establecieron que se sobreexpresan durante el proceso de 
infección [6]. Actualmente se sabe que CtpV es un exportador de cobre necesario para la virulencia de M. 
tuberculosis [14], mientras que CtpC está involucrada en el eflujo de Zn2+ [6].  
 
Recientemente se han desarrollado nuevos medicamento anti-TB, tales como diarilquinolinas y 
benzotiazinas cuyas dianas se ubican en la membrana plasmática micobacteriana [6] lo que muestra una 
ventaja, ya que antimicrobianos diseñados contra dianas en la membrana evitan los problemas 
relacionados con la permeabilidad de dicha barrera biológica. Uno de dichos antibióticos es un inhibidor 
de la F1-F0-ATP sintasa micobacteriana [15], otro tipo de ATPasa que al dejar de funcionar limita la cantidad 
de ATP disponible en la célula, es por ello que este medicamento puede suministrase en conjunto con 
otro compuesto que estimule el uso de las pobres reservas de ATP del patógeno, como por ejemplo un 
activador de ATPasas tipo P.  
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Recientemente, Murphy and Brown han mencionado la importancia de CtpF y CtpG de M. tuberculosis 
como posibles dianas para causar dicho desperdicio de ATP micobacteriano; sin embargo, estas proteínas 
tienen una considerable similitud con sus ortólogos humanos, lo que exige un gran reto para de desarrollo 
de inhibidores selectivos para estos transportadores micobacterianos [16]. 

Para establecer cuál de las ATPasas de M. tuberculosis tiene mayor potencial como diana terapéutica, 
nuestro grupo de investigación esta realizando un meta-análisis de múltiples datos de expresión génica y 
microarreglos previamente publicados. Dichos experimentos han sido realizados en condiciones que 
simulan la infección tales como hipoxia, inanición, infección en macrófagos y e infección murina. En la 
actualidad estamos determinando un consenso de las ATPasas tipo P que son más importantes para la 
supervivencia de la micobacteria durante la infección.  
 
Lo que hemos observado hasta el momento es que varios genes de ATPasas tipo P se sobreexpresan en 
presencia de sustancias tóxicas como antimicrobianos, S-nitrosoglutation (GSNO), etanol, H2O2 y óxido 
nítrico [17-19], en bajas tensiones de oxígeno [20, 21], e incluso algunas de ellas se sobreexpresan durante 
la infección de macrófagos [22].  

Por otro lado, para establecer cual bomba es mejor diana terapéutica es importante tener en cuenta, qué 
tan divergentes son las ATPasas del bacilo tuberculoso con respecto a las ATPasas tipo P de humanos y de 
los organismos que hacen parte de microbiota intestinal humana (para evitar toxicidad del medicamento). 

Entonces, la idea general del estudio bioinformático es encontrar zonas conservadas en las ATPasas tipo P 
micobacterianas, que estén ausentes en las ATPasas tipo P de humanos y de organismos simbióticos 
presentes en la flora intestinal humana. Puntualmente se pretende: 
  
1. Buscar similitudes entre Ortólogos cercanos de las ATPasas tipo P de M. tuberculosis: regiones 

conservadas presentes en ATPasas tipo P tanto de M. tuberculosis como de otras Actinobacterias 
patógenas como por ejemplo: M. avium, M. bovis, M. leprae, Corynebacterium diphtheriae, C. 
amicolatum, C. striatum, C. jeikeium, C. urealyticum, C. xerosis, Nocardia asteroides, N. brasiliensis y 
Streptomyces somaliensis. Set 1. 
 

2. Buscar similitudes entre Ortólogos lejanos de las ATPasas tipo P de M. tuberculosis: regiones 
conservadas presentes en ATPasas tipo P de humanos, de otros organismos superiores y de 
organismos presentes en la flora del tracto digestivo humano (Homo sapiens, Mus musculus, E. coli y E. 
faecalis, entre otros. Set 2. 

 
3. Buscar diferencias entre los sets 1 y 2: ósea establecimiento de diferencias entre las ATPasas tipo P 

de humanos y las ATPasas tipo P micobacterianas.  
 
Se espera que los dominios de las ATPasas tipo P micobacterianas identificados como posibles blancos 
moleculares sean “drogables”, ósea que puedan ser inhibidos específicamente por compuestos dirigidos a 
ellos. En ello, las ATPasas tipo P tienen una aparente ventaja y es que los sitios de unión a ATP o 
fosforilación suelen ser buenas dianas, además que en la actualidad existe mucha investigación respecto 
al desarrollo de inhibidores de quinasas [23].  
 
Los blancos identificados serán sometidos a un análisis posterior usando Docking molecular, para buscar 
potenciales inhibidores.    
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PanAmerican Bioinformatics Institute
Leveraging science for health and development across the Americas

UNIVERSIDAD

NACIONAL
DE COLOMBIA

The mission of the PanAmerican Bioinformatics Institute (PABI) is to facilitate public health and economic 
development in the Americas through bioinformatics education, research and outreach.  The PABI was orig-
inally formed as a collaborative effort between faculty from Universidad Nacional de Colombia and the 
Georgia Institute of Technology in the USA; we are currently made up of a growing network of faculty and 
student researchers in Colombia and the United States.  In order to achieve our mission, we are engaged in 
a series of activities centered on specific bioinformatics and genomics research themes that are directly 
related to public health and economic development in Latin America.  Members of the PABI: 1) offer bio-
informatics workshops and short courses for students and faculty in Colombia, 2) facilitate student ex-
changes between host institutions and laboratories in Colombia and the USA, and 3) engage in collaborative 
research efforts in bioinformatics and genomics that bring together laboratories from Colombia and the USA.  
The goal of all of these efforts is to help create the local human capacity needed to deal with region-specific
challenges for public health and economic development across the Americas.  In order to initially focus the 
work of the PABI, we have chosen to build on standing collaborative relationships between Colombia and the 
USA.  This focus takes advantage of strong existing ties between laboratories form the two nations and also 
benefits from the distinguishing characteristics of the Colombian people, a few of which are enumerated 
below.  It is anticipated that this two country model will ultimately be extended across the Americas.

Why Bioinformatics?
The biological sciences are undergoing a revolution in experimental technology 
that is resulting in massive data sets of unprecedented breadth and depth. For 
instance, it is now possible to characterize the sequence of an entire human gen-
ome in a single day for only a few thousand dollars. This revolution and the res-
ulting deluge of data present profound challenges as well as unique opportunities.
The bottleneck in biological research occurs more often than ever at the level of

computational analysis of large-scale data sets.  Accordingly, bioinformatics education and research will only 
become more important as computational work becomes an indispensable part of the life sciences.  Aside 
from the importance of the fields, bioinformatics and computational biology are marked by features that 
make them uniquely accessible research endeavors.  First and foremost, bioinformatics and computational 
biology research can be relatively inexpensive compared to experimental biology. Substantial contributions 
to research in computational biology, and even fundamental discoveries, can be made using only a desktop 
computer and an internet connection.  Even high-performance computing can be done on the cheap now 
thanks to the advent of cloud computing.  In addition, bioinformatics has benefited tremendously from the 
open source software movement.  Virtually all major state-of-the-art bioinformatics software applications are 
made freely and readily available to academic researchers.  Thus, as opposed to expensive facilities, equip-
ment and reagents, the major limiting factors for bioinformatics and computational biology are the enthus-
iasm, skills and imagination of the researchers engaged in the work.  Fortunately, these human characteristics 
can be found in abundant supply among the people of Colombia.  In short, because of its relatively low cost 
and the emphasis on human capital, we are convinced that the field of bioinformatics can be a paradigm of 
science as an engine for human development in the Americas.
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Why Colombia?
The South American nation of Colombia has undergone a transformation over the last 
decade and is now poised to emerge as a major player in the hemisphere.  The country 
that was plagued by years of internal armed conflict has seen marked increases in sec-
urity and stability along with continued economic growth.  BusinessWeek recently dec-
lared Colombia as "the most extreme emerging market on Earth" and the New York Times 
named the country as one of its top travel destinations for 2010.  Nevertheless, the repu-
tation of Colombia has not yet caught up with the reality of increased stability and prod-
uctivity that exist on the ground.  As such, there are abundant opportunities for outreach 
and international collaboration with Colombia that have yet to be tapped.  Colombia also 
possesses a world-class system of universities and a highly educated populace.  PABI faculty know from 
experience that Colombian students are passionate about their education and relish the opportunity to 
engage with students and faculty from abroad.  Indeed, human capital represents the richest resource in 
Colombia and throughout all of Latin America for that matter.  The recent emergence of a more stable Col-
ombia, together with the longer standing tradition of academic excellence, make the timing ideal timing 
for investment in bioinformatics education and research in Colombia.

Specific Challenges
The PanAmerican Bioinformatics Institute aims to use bioinformatics education, research and outreach to 
help create the local human capacity needed to deal with region-specific challenges for public health and 
economic development in Colombia.  To address these broad goals in a targeted fashion, we have chosen 
to initially concentrate the efforts of PABI on two specific research themes: 1) computational genomics of 
Mycobacterium colombiense and 2) transcriptomics of Physalis peruviana L.

Mycobacterium colombiense is a novel species of the Mycobacterium genus recently 
identified in Colombian HIV/AIDS patients.  Mycobacteria are a leading cause of death 
from bacterial infections worldwide and a major challenge for public health in devel-
oping countries.  The public health significance of this particular bacterial pathogen is 
further underscored by the fact that all Colombian patients who presented M. colom-
biense caused mycobacteremia died from the infections.  PABI affiliated investigators 
are spearheading a genome sequencing and analysis project for M. colombiense.  
Patient samples and genomic DNA will be isolated by members of the Martha Murcia 

Physalis peruviana L. is a member of the plant family Solanacea and closely related to 
tomato and potato.  P. peruviana L. is indigenous to the high Andes region in South 
America, and in Colombia it is called by the indigenous name Uchuva.  Long known for 
its medicinal properties, presumably based on demonstrated anti-flammatory and anti-
oxidant properties, Uchuva has recently become an important economic crop in 
Colombia.  PABI member investigators, led by Dr. Leonardo Mariño-Ramírez, are 
characterizing and analyzing the transcriptome of several varieties of Uchuva.  One of 
the goals of this work is to identify molecular markers associated with disease resis-

laboratory at the Universidad Nacional de Colombia, genome sequencing will be done by the group of 
Timothy Read at Emory University and genome analysis will be performed as a distributed collaborative eff-
ort among PABI member laboratories.  Students will be trained in the use of the latest computational gen-
omics tools and techniques using real-world sequence data generated as part of this project.

tance.  The analysis of the transcriptome data, along with the generation of a P. peruviana L. database that 
will host and distribute sequence data and associated annotations, will be performed by PABI affiliated stud-
ents under the guidance of PABI faculty in Colombia and the US.  A bioinformatics workshop where 
P. peruviana L. transcriptome sequence data will be actively analyzed will be held at Georgia Tech in 2010. 
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PABI Activities
The PanAmerican Bioinformatics Institute’s public health and economic development missions are addressed
through an ongoing series of:

1. bioinformatics workshops and short courses for students and faculty in Colombia

2. student exchanges between host institutions and laboratories in Colombia and the USA

3. collaborative research efforts in bioinformatics and genomics

Past activities: PABI faculty have taught in four bioinformatics summer workshops or short courses in Colom-
bia since 2005.  In the last year, four Colombian graduate students have interned in US host laboratories

Ongoing activities:  PABI faculty and students are involved in targeted collaborative research projects on the 
genomics of Mycobacterium colombiense and the transcriptome analysis of Physalis peruviana L.

Upcoming activities: There will be a bioinformatics workshop involving PABI faculty along with Colombian
and US students at Georgia Tech in December 2010.  There will be a applied computational genomics summer
Course in Colombia in July 2011.

PABI Founders
The PanAmerican Bioinformatics Institute was 
founded by Dr. Leonardo Mariño-Ramírez
from Universidad Nacional de Colombia and 
Dr. King Jordan from the Georgia Institute of 
Technology in the USA.  Drs. Mariño-Ramírez
and Jordan have been close research collab-
orators since 2002 and have worked together 
on bioinformatics education and outreach 
in Colombia since 2005.

Leonardo Mariño-Ramírez
Profesor ad-honorem
Universidad Nacional de Colombia
http://www.ncbi.nlm.nih.gov/CBBResearch/Marino

King Jordan
Associate Professor
School of Biology
http://jordan.biology.gatech.edu

Contact us: King Jordan    king.jordan@biology.gatech.edu    202-321-5485    http://panambioinfo.org

Giving Opportunities
Several gift opportunities are available to support the PanAmerican Bioinformatics Institute. Our key fund-
ing needs are outlined below (shown in US dollars):

SUPPORTING INTERNATIONAL WORKSHOPS
Bioinformatics workshop , Georgia Tech, December 2010 ………………………………………………………………….$15,000
Applied computational genomics course, Colombia, July 2010 …………………………………………………………..$25,000
Funds will support the continuation of workshops and short courses that bring together faculty and students from Colombia and the USA

INTERNATIONAL GRADUATE FELLOWSHIPS
Colombian graduate student exchange program ………………………………………………………………………………..$40,000
US graduate student instructional fellowship ……………………………………………………………………………………..$20,000
Colombian students will study in US host laboratories and US students will travel to Colombia to engage in instructional activities and research

SUPPORTING COLLABORATIVE RESEARCH EFFORTS
Mycobacterium colombiense genome project …………………………………………………………………………………….$50,000
Funds will support the genome sequencing and analysis of this pathogenic bacterium isolated from Colombian HIV/AIDS patients
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